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Question: how do we determine the possible (n + 1)-cells?
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I Multicategory of function replacement
(Hermida-Makkai-Power). Motivated geometrically.
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The Geometrical Problem
following Hermida-Makkai-Power

Question: what kind of operation is this?

Replace instances of cells (black) with formal composites of cells.



An Insight

This operation commutes with taking formal composites
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The Three Tensors Theorem
statement

Theorem
There is a unique ⊗-monoid structure on W := F�(I⊗), such that
the unit of the adjunction η : I⊗ → F�(I⊗) is the unit of the
multiplication ν :W ⊗W →W, which in turn makes the following
main diagram commute:

(W ⊗W)� (W ⊗W) W �W

(W �W)⊗W

W ⊗W W

ν � ν

ϕ

µ⊗ 1

µ

ν

µ - multiplication in free monoid



Main Diagram



Further Results

I Fibered version: W becomes functor of the base category.

I In Sigma, multiplication in W(M) substitues formal
composites of symbols for symbols. Essential feature of
“function replacement”.

I W(M) is naturally a monoid in Siga over M. Its algebras are
equivalent to multicategories over M (with O fixed).
Analogous to what Baez and Dolan want.

I The amalgamation permutations of W(M) cannot be
straightened out, in general, even if M is standard.



Further Results

I Fibered version: W becomes functor of the base category.

I In Sigma, multiplication in W(M) substitues formal
composites of symbols for symbols. Essential feature of
“function replacement”.

I W(M) is naturally a monoid in Siga over M. Its algebras are
equivalent to multicategories over M (with O fixed).
Analogous to what Baez and Dolan want.

I The amalgamation permutations of W(M) cannot be
straightened out, in general, even if M is standard.



Further Results

I Fibered version: W becomes functor of the base category.

I In Sigma, multiplication in W(M) substitues formal
composites of symbols for symbols. Essential feature of
“function replacement”.

I W(M) is naturally a monoid in Siga over M. Its algebras are
equivalent to multicategories over M (with O fixed).
Analogous to what Baez and Dolan want.

I The amalgamation permutations of W(M) cannot be
straightened out, in general, even if M is standard.



Further Results

I Fibered version: W becomes functor of the base category.

I In Sigma, multiplication in W(M) substitues formal
composites of symbols for symbols. Essential feature of
“function replacement”.

I W(M) is naturally a monoid in Siga over M. Its algebras are
equivalent to multicategories over M (with O fixed).
Analogous to what Baez and Dolan want.

I The amalgamation permutations of W(M) cannot be
straightened out, in general, even if M is standard.



Opetopic Sets
an inductive definition

I X0 is a set - the set of objects, or 0-cells.

I S0, the monoid of 0-pasting diagrams, is the pullback of the
trivial monoid along X0 → 1:

1 S0

{∗}† X †0

∂
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Opetopic Sets
an inductive definition

I Inductive step: Xn and Sn given

1. Xn+1 - chosen set of (n + 1)-cells
2. ϑn+1 : Xn+1 → Sn - give each cell domain and codomain.
3. W(Sn) - calculate possible (n + 1)-pasting diagrams.
4. Sn+1 is the pullback of W(Sn) along ϑn+1.

W(Sn) Sn+1

S†
n X †

n+1

∂
(ϑn+1)†

∂

This attaches cell names to the codomain and openings in the
domain of every possible diagram.
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Opetopic Sets
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I Maps of cells – functions fn : Xn → Yn

I Compatible with forming pasting diagrams, taking domains
and codomains.
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