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» First step: make opetopic sets easier to work with



To build an opetopic set ...

Example (n = 1)

» . ..start with n-cells



To build an opetopic set ...

Example (n = 1)

» . ..start with n-cells

. » Hocus-Pocus — determine

/\ /% \ the possible (n 4+ 1)-cells



To build an opetopic set ...

Example (n = 1)

» . ..start with n-cells

. » Hocus-Pocus — determine

/\ /% \ the possible (n 4+ 1)-cells

» Decide which (n + 1)-cells
are realized

NN




To build an opetopic set ...

> .. .start with n-cells
» Hocus-Pocus — determine
Example (n = 2) the possible (n + 1)-cells
» Decide which (n+ 1)-cells
are realized
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How to do magic

Question: how do we determine the possible (n + 1)-cells?
Answer: use a mysterious monoid

» Operad for operads (Baez-Dolan). Motivated conceptually.

» Multicategory of function replacement
(Hermida-Makkai-Power). Motivated geometrically.

> Web Monoid — seeks the middle ground.



The Geometrical Problem

following Hermida-Makkai-Power

N,
Ny N
2 N
N4




The Geometrical Problem

following Hermida-Makkai-Power

Question: what kind of operation is this?




The Geometrical Problem

following Hermida-Makkai-Power

Question: what kind of operation is this?

Replace instances of cells (black) with formal composites of cells.



An Insight

This operation commutes with taking formal composites
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Lax Monoidal Fibrations

Definition
A lax monoidal fibration over B is a lax monoid object in the
2-category of fibrations over B, fibered functors and fibered natural

transformations.

In practice

A lax monoidal fibration over B is a fibration £ — B and
» The fibers are lax monoidal
» The reindexing functors are lax monoidal

» Our examples: fibers are strong, reindexing — never
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Category Sig,

Objects
Sets A together with a typing
" A— O x O
> a € A are function
symbols

o ¢ ¢ O

» O is the set of types or
sorts

» J(a) lists output and
input types of a
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Ordinary Signatures

with amalgamation

Category Sig,
Morphisms

o e o O

Triples (f, u,0):
\ i » f: A— B maps function
AN symbols

SN » u: O — Q relates the
v v types

> o, connects inputs of a to

those of f(a), respecting
types

I
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Lax Monoidal Fibration Structure

The functor (signature — its types) defines the fibration
Sig, — Set.

A ®o B consists of formal composites:
{a(b1,...,bx)|a € A, b; € B,inputs of a = outputs of b;}

Typical element of A®o B:

*— b2

—o

§

Note the obvious typing
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Monoidal Signatures

Set of types becomes a multicategory M € Mon(Sig,) over O.
Objects of Sig,,,.,

Objects over M are sets A with typing functions A — M.
New typing appears

output type typing of M

» Horizontal typing.

Morphisms
As in Sig,
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Two Monoidal Structures

» New one:
A Om B=A Xo B,
defined by
horizontal typing
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Distributivity

<

» An element of
(AoB)® C

» Or maybe of
(A C)o(B® C)?

» A natural
isomorphism makes
the picture
unambiguous
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The Three Tensors Theorem

distributivity of monoidal structures

> ©,® - two (strong) monoidal structures on C

» ® distributes over @ if we are given natural isomorphisms:
vagc: (AR C)o(BC)—(AoB)®C

¢C:/@—>/@®C

which satisfy some coherence conditions
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The Three Tensors Theorem

assumptions

» C - cocomplete category
» [], ®, ® - three finitary monoidal structures

» Each distributes over previous one



The Three Tensors Theorem

statement

Theorem
There is a unique ®-monoid structure on W := Fu(lg), such that
the unit of the adjunction n : lg — Fo(lg) is the unit of the

multiplication v : W Q@ W — W, which in turn makes the following
main diagram commute:

Waw)o(Waw) vev WwWoew
‘|
Wow)ew I
u®1l
WeW v W

1 - multiplication in free monoid
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Further Results

> Fibered version: WW becomes functor of the base category.

» In Sig,,,, multiplication in W(M) substitues formal
composites of symbols for symbols. Essential feature of
“function replacement”.

» W(M) is naturally a monoid in Sig, over M. Its algebras are
equivalent to multicategories over M (with O fixed).
Analogous to what Baez and Dolan want.

» The amalgamation permutations of WW(M) cannot be
straightened out, in general, even if M is standard.
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Opetopic Sets

an inductive definition

> Xp is a set - the set of objects, or 0-cells.

> Sp, the monoid of O-pasting diagrams, is the pullback of the
trivial monoid along Xg — 1:

le— 5

|y o

{x}! X3
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Opetopic Sets

an inductive definition

» Inductive step: X, and S, given
1. Xpi1 - chosen set of (n + 1)-cells
2. Upa1: Xppr1 — Sy - give each cell domain and codomain.
3. W(S,) - calculate possible (n 4+ 1)-pasting diagrams.
4. S,.1 is the pullback of W(S,) along ¥,41.

W(Sn) 5n+1

al (v )T la

T
Xn+1

This attaches cell names to the codomain and openings in the
domain of every possible diagram.
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Opetopic Sets

in pictures
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Opetopic Sets

the category

A morphism of opetopic sets X — Y:
» Maps of cells — functions f, : X, = Y,

» Compatible with forming pasting diagrams, taking domains
and codomains.



