### The Web Monoid and Opetopic Sets

Stanisław Szawiel joint work with Marek Zawadowski

Institute of Mathematics University of Warsaw

> CT2010 21st June 2010

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Make M. Makkai's definition of weak  $\omega$ -categories useable



## Goals

▶ Make M. Makkai's definition of weak  $\omega$ -categories useable

"there is an obvious weak ω-category of ...."

## Goals

• Make M. Makkai's definition of weak  $\omega$ -categories useable

- "there is an obvious weak ω-category of ...."
- First step: make opetopic sets easier to work with

To build an opetopic set ....

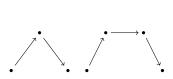
Example (n = 1)

 $\bullet \longrightarrow \bullet$ 

▶ ... start with *n*-cells

To build an opetopic set ...

Example (n = 1)

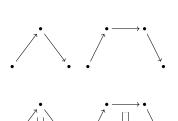


- ... start with n-cells
- Hocus-Pocus determine the possible (n + 1)-cells

イロト イポト イヨト イヨト

### To build an opetopic set ...

Example (n = 1)



- ... start with *n*-cells
- Hocus-Pocus determine the possible (n + 1)-cells
- ► Decide which (n + 1)-cells are realized

(a)

### To build an opetopic set ...

Example 
$$(n = 2)$$

- ... start with *n*-cells
- Hocus-Pocus determine the possible (n + 1)-cells
- Decide which (n + 1)-cells are realized

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Question: how do we determine the possible (n + 1)-cells?

(ロ) (回) (E) (E) (E) (O)

◆□ > ◆□ > ◆臣 > ◆臣 > □ = −の < ⊙

Operad for operads (Baez-Dolan). Motivated conceptually.

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Operad for operads (Baez-Dolan). Motivated conceptually.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

 Multicategory of function replacement (Hermida-Makkai-Power). Motivated geometrically.

Operad for operads (Baez-Dolan). Motivated conceptually.

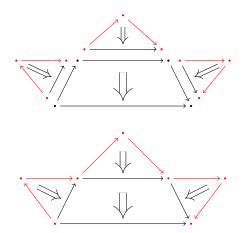
・ロト ・ 日 ・ モート ・ モー・ うへぐ

- Multicategory of function replacement (Hermida-Makkai-Power). Motivated geometrically.
- ► Web Monoid seeks the middle ground.

## The Geometrical Problem

following Hermida-Makkai-Power

Problem: Composing cells pastes their domains!



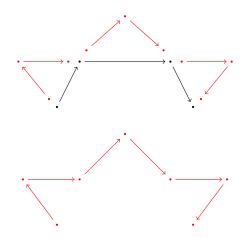
<ロ> <同> <同> < 回> < 回>

э

## The Geometrical Problem

following Hermida-Makkai-Power

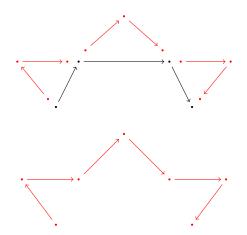
Question: what kind of operation is this?



## The Geometrical Problem

following Hermida-Makkai-Power

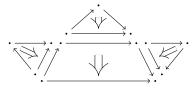
Question: what kind of operation is this?

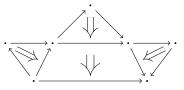


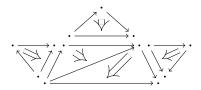
Replace instances of cells (black) with formal composites of cells.

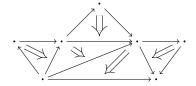
# An Insight

This operation commutes with taking formal composites









< ロ > < 回 > < 回 > < 回 > < 回 >

## Definition

A lax monoidal fibration over  ${\cal B}$  is a lax monoid object in the 2-category of fibrations over  ${\cal B}$ , fibered functors and fibered natural transformations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

## Definition

A lax monoidal fibration over  $\mathcal{B}$  is a lax monoid object in the 2-category of fibrations over  $\mathcal{B}$ , fibered functors and fibered natural transformations.

・ロト ・ 日 ・ モート ・ モー・ うへぐ

#### In practice

A lax monoidal fibration over  ${\mathcal B}$  is a fibration  ${\mathcal E} \to {\mathcal B}$  and

## Definition

A lax monoidal fibration over  $\mathcal{B}$  is a lax monoid object in the 2-category of fibrations over  $\mathcal{B}$ , fibered functors and fibered natural transformations.

・ロト ・ 日 ・ モート ・ モー・ うへぐ

#### In practice

A lax monoidal fibration over  ${\mathcal B}$  is a fibration  ${\mathcal E} \to {\mathcal B}$  and

The fibers are lax monoidal

## Definition

A lax monoidal fibration over  $\mathcal{B}$  is a lax monoid object in the 2-category of fibrations over  $\mathcal{B}$ , fibered functors and fibered natural transformations.

◆□> ◆□> ◆三> ◆三> ・三> のへの

#### In practice

A lax monoidal fibration over  ${\mathcal B}$  is a fibration  ${\mathcal E} \to {\mathcal B}$  and

- The fibers are lax monoidal
- The reindexing functors are lax monoidal

## Definition

A lax monoidal fibration over  $\mathcal{B}$  is a lax monoid object in the 2-category of fibrations over  $\mathcal{B}$ , fibered functors and fibered natural transformations.

・ロト ・ 日 ・ モート ・ モー・ うへぐ

#### In practice

A lax monoidal fibration over  ${\mathcal B}$  is a fibration  ${\mathcal E} \to {\mathcal B}$  and

- The fibers are lax monoidal
- The reindexing functors are lax monoidal
- Our examples: fibers are strong, reindexing never

with amalgamation

#### Category Sig<sub>a</sub>

#### Objects

Sets A together with a typing  $\partial^A : A \to O \times O^*$ 

◆□ > ◆□ > ◆臣 > ◆臣 > □ = −の < ⊙

with amalgamation



### Category Sig<sub>a</sub>

#### Objects

Sets A together with a typing  $\partial^A : A \to O \times O^*$ 

・ロト ・回ト ・ヨト ・ヨト

2

► a ∈ A are function symbols

with amalgamation



## Category Sig<sub>a</sub>

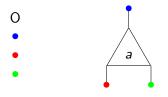
#### Objects

Sets A together with a typing  $\partial^A : A \to O \times O^*$ 

- ► a ∈ A are function symbols
- O is the set of types or sorts

イロン 不同 とくほう イヨン

with amalgamation



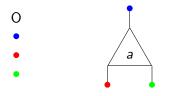
## Category Sig<sub>a</sub>

#### Objects

Sets A together with a typing  $\partial^A : A \to O \times O^*$ 

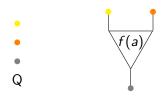
- ► a ∈ A are function symbols
- O is the set of types or sorts
- ▷ ∂(a) lists output and input types of a

with amalgamation

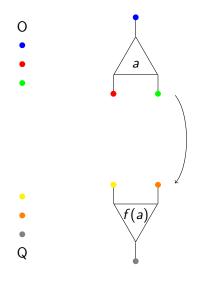


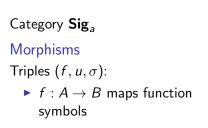
# Category $Sig_a$ Morphisms Triples $(f, u, \sigma)$ :

<ロ> <同> <同> < 回> < 回>



with amalgamation

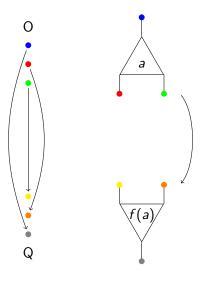




<ロ> <同> <同> < 回> < 回>

э

with amalgamation



# Category **Sig**<sub>a</sub> Morphisms

Triples  $(f, u, \sigma)$ :

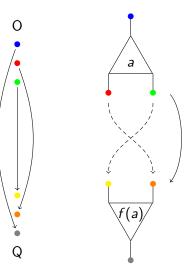
*f* : *A* → *B* maps function symbols

イロン イロン イヨン イヨン

э

•  $u: O \rightarrow Q$  relates the types

with amalgamation



## Category $\mathbf{Sig}_{a}$

Morphisms

Triples  $(f, u, \sigma)$ :

- *f* : *A* → *B* maps function symbols
- $u: O \rightarrow Q$  relates the types
- σ<sub>a</sub> connects inputs of a to those of f(a), respecting types

э

The functor (signature  $\mapsto$  its types) defines the fibration  $\mathbf{Sig}_a \rightarrow \mathbf{Set}$ .

The functor (signature  $\mapsto$  its types) defines the fibration  $\mathbf{Sig}_a \to \mathbf{Set}$ .

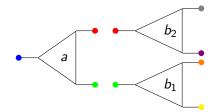
 $A \otimes_O B$  consists of formal composites:

 $\{a(b_1,\ldots,b_k)|a \in A, b_i \in B, \text{inputs of } a = \text{outputs of } b_i\}$ 

The functor (signature  $\mapsto$  its types) defines the fibration  $\mathbf{Sig}_a \to \mathbf{Set}$ .

 $A \otimes_O B$  consists of formal composites:

 $\{a(b_1, \dots, b_k) | a \in A, b_i \in B, \text{inputs of } a = \text{outputs of } b_i\}$ Typical element of  $A \otimes_O B$ :

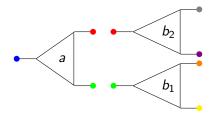


イロト イポト イヨト イヨト

The functor (signature  $\mapsto$  its types) defines the fibration  $\mathbf{Sig}_a \rightarrow \mathbf{Set}$ .

 $A \otimes_O B$  consists of formal composites:

 $\{a(b_1, \dots, b_k) | a \in A, b_i \in B, \text{inputs of } a = \text{outputs of } b_i\}$ Typical element of  $A \otimes_O B$ :



#### Note the obvious typing

## Monoidal Signatures

Set of types becomes a multicategory  $M \in Mon(\mathbf{Sig}_a)$  over O.

## Monoidal Signatures

Set of types becomes a multicategory  $M \in Mon(\mathbf{Sig}_a)$  over O. Objects of  $\mathbf{Sig}_{ma}$ 

Objects over *M* are sets *A* with typing functions  $A \rightarrow M^{\dagger}$ .

#### Monoidal Signatures

Set of types becomes a multicategory  $M \in Mon(\mathbf{Sig}_a)$  over O. Objects of  $\mathbf{Sig}_{ma}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Objects over M are sets A with typing functions  $A \rightarrow M^{\dagger}$ .

New typing appears

 $\blacktriangleright A \to M^{\dagger} \xrightarrow{\text{output type}} M \xrightarrow{\text{typing of } M} O^{\dagger}$ 

#### Monoidal Signatures

Set of types becomes a multicategory  $M \in Mon(\mathbf{Sig}_a)$  over O. Objects of  $\mathbf{Sig}_{ma}$ 

・ロト ・ 日 ・ モート ・ モー・ うへぐ

Objects over *M* are sets *A* with typing functions  $A \rightarrow M^{\dagger}$ .

New typing appears

$$\blacktriangleright A \to M^{\dagger} \xrightarrow{\text{output type}} M \xrightarrow{\text{typing of } M} O^{\dagger}$$

Horizontal typing.

#### Monoidal Signatures

Set of types becomes a multicategory  $M \in Mon(\mathbf{Sig}_a)$  over O. Objects of  $\mathbf{Sig}_{ma}$ 

・ロト ・ 日 ・ モート ・ モー・ うへぐ

Objects over *M* are sets *A* with typing functions  $A \rightarrow M^{\dagger}$ .

New typing appears

$$\blacktriangleright A \to M^{\dagger} \xrightarrow{\text{output type}} M \xrightarrow{\text{typing of } M} O^{\dagger}$$

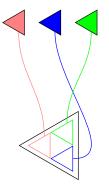
Horizontal typing.

Morphisms As in **Sig**<sub>a</sub>

#### Two Monoidal Structures



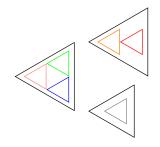
#### Two Monoidal Structures



► Obvious one, A ⊗<sub>M</sub> B, defined using typing in M

・ロト ・回ト ・ヨト ・ヨト

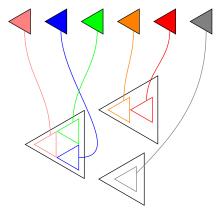
#### Two Monoidal Structures



▶ New one:  $A \odot_M B = A \otimes_O B$ , defined by horizontal typing

<ロ> <同> <同> < 回> < 回>

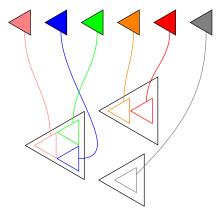
#### Distributivity



• An element of  $(A \odot B) \otimes C$ 

・ロン ・回 と ・ ヨン ・ ヨン …

#### Distributivity



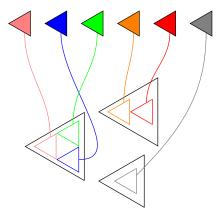
• An element of  $(A \odot B) \otimes C$ 

<ロ> <同> <同> < 回> < 回>

2

• Or maybe of  $(A \otimes C) \odot (B \otimes C)$ ?

#### Distributivity



- An element of  $(A \odot B) \otimes C$
- Or maybe of (A ⊗ C) ⊙ (B ⊗ C)?
- A natural isomorphism makes the picture unambiguous

<ロ> <同> <同> < 回> < 回>

э

distributivity of monoidal structures

▶  $\odot$ ,  $\otimes$  - two (strong) monoidal structures on C

distributivity of monoidal structures

- $\odot, \otimes$  two (strong) monoidal structures on  ${\mathcal C}$
- $\blacktriangleright$   $\otimes$  distributes over  $\odot$  if we are given natural isomorphisms:

$$\varphi_{A,B,C} : (A \otimes C) \odot (B \otimes C) \to (A \odot B) \otimes C$$
$$\dot{\varphi}_{C} : I_{\odot} \to I_{\odot} \otimes C$$

distributivity of monoidal structures

- $\odot, \otimes$  two (strong) monoidal structures on  ${\mathcal C}$
- $\blacktriangleright$   $\otimes$  distributes over  $\odot$  if we are given natural isomorphisms:

$$\varphi_{A,B,C} : (A \otimes C) \odot (B \otimes C) \to (A \odot B) \otimes C$$
$$\dot{\varphi}_{C} : I_{\odot} \to I_{\odot} \otimes C$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

which satisfy some coherence conditions

assumptions

• C - cocomplete category



assumptions

- C cocomplete category
- $\prod$ ,  $\odot$ ,  $\otimes$  three finitary monoidal structures

assumptions

- C cocomplete category
- $\coprod$ ,  $\odot$ ,  $\otimes$  three finitary monoidal structures

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

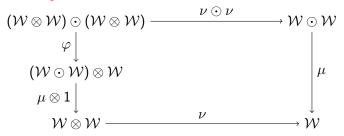
Each distributes over previous one

statement

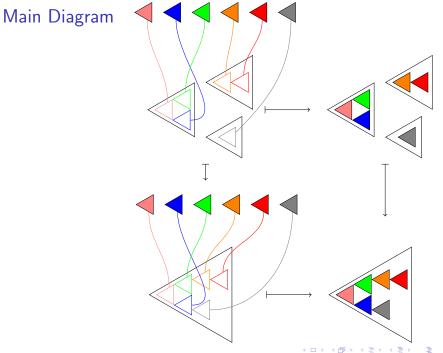
#### Theorem

There is a unique  $\otimes$ -monoid structure on  $\mathcal{W} := \mathcal{F}_{\odot}(I_{\otimes})$ , such that the unit of the adjunction  $\eta : I_{\otimes} \to \mathcal{F}_{\odot}(I_{\otimes})$  is the unit of the multiplication  $\nu : \mathcal{W} \otimes \mathcal{W} \to \mathcal{W}$ , which in turn makes the following main diagram commute:

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで



 $\mu$  - multiplication in free monoid



 $\neg \land \land \land$ 

 $\blacktriangleright$  Fibered version:  ${\cal W}$  becomes functor of the base category.

- $\blacktriangleright$  Fibered version:  ${\cal W}$  becomes functor of the base category.
- In Sig<sub>ma</sub>, multiplication in W(M) substitues formal composites of symbols for symbols. Essential feature of "function replacement".

- $\blacktriangleright$  Fibered version:  ${\cal W}$  becomes functor of the base category.
- In Sig<sub>ma</sub>, multiplication in W(M) substitues formal composites of symbols for symbols. Essential feature of "function replacement".
- ► W(M) is naturally a monoid in Sig<sub>a</sub> over M. Its algebras are equivalent to multicategories over M (with O fixed). Analogous to what Baez and Dolan want.

・ロト ・ 日 ・ モート ・ モー・ うへぐ

- ► Fibered version: *W* becomes functor of the base category.
- In Sig<sub>ma</sub>, multiplication in W(M) substitues formal composites of symbols for symbols. Essential feature of "function replacement".
- ▶ W(M) is naturally a monoid in Sig<sub>a</sub> over M. Its algebras are equivalent to multicategories over M (with O fixed). Analogous to what Baez and Dolan want.

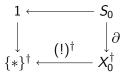
◆□ → ◆□ → ◆ □ → ◆ □ → ● ● ● ● ●

► The amalgamation permutations of W(M) cannot be straightened out, in general, even if M is standard.



•  $X_0$  is a set - the set of objects, or 0-cells.

- $X_0$  is a set the set of objects, or 0-cells.
- ►  $S_0$ , the monoid of 0-pasting diagrams, is the pullback of the trivial monoid along  $X_0 \rightarrow 1$ :



◆□> ◆□> ◆三> ◆三> ・三> のへの

• Inductive step:  $X_n$  and  $S_n$  given

- Inductive step:  $X_n$  and  $S_n$  given
  - 1.  $X_{n+1}$  chosen set of (n+1)-cells

• Inductive step:  $X_n$  and  $S_n$  given

- 1.  $X_{n+1}$  chosen set of (n+1)-cells
- 2.  $\vartheta_{n+1}: X_{n+1} \to S_n$  give each cell domain and codomain.

### Opetopic Sets

an inductive definition

• Inductive step:  $X_n$  and  $S_n$  given

- 1.  $X_{n+1}$  chosen set of (n+1)-cells
- 2.  $\vartheta_{n+1}: X_{n+1} \to S_n$  give each cell domain and codomain.

3.  $W(S_n)$  - calculate possible (n + 1)-pasting diagrams.

#### **Opetopic Sets**

an inductive definition

• Inductive step:  $X_n$  and  $S_n$  given

- 1.  $X_{n+1}$  chosen set of (n+1)-cells
- 2.  $\vartheta_{n+1}: X_{n+1} \to S_n$  give each cell domain and codomain.
- 3.  $W(S_n)$  calculate possible (n + 1)-pasting diagrams.
- 4.  $S_{n+1}$  is the pullback of  $\mathcal{W}(S_n)$  along  $\vartheta_{n+1}$ .

$$\begin{array}{c} \mathcal{W}(S_n) \longleftarrow S_{n+1} \\ \partial \\ \beta_n^{\dagger} \longleftarrow (\vartheta_{n+1})^{\dagger} \\ X_{n+1}^{\dagger} \end{array}$$

#### **Opetopic Sets**

an inductive definition

• Inductive step:  $X_n$  and  $S_n$  given

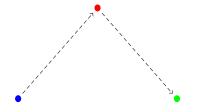
- 1.  $X_{n+1}$  chosen set of (n+1)-cells
- 2.  $\vartheta_{n+1}: X_{n+1} \to S_n$  give each cell domain and codomain.
- 3.  $W(S_n)$  calculate possible (n + 1)-pasting diagrams.
- 4.  $S_{n+1}$  is the pullback of  $\mathcal{W}(S_n)$  along  $\vartheta_{n+1}$ .

$$\begin{array}{c} \mathcal{W}(S_n) \longleftarrow S_{n+1} \\ \partial \\ \int & & \downarrow \\ S_n^{\dagger} \longleftarrow X_{n+1}^{\dagger} \\ \end{array}$$

This attaches cell names to the codomain and openings in the domain of every possible diagram.

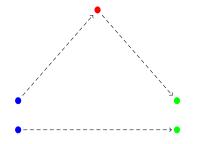
◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

• An element of  $S_0$ 



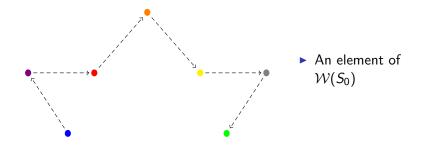
• Multiplication in  $S_0$ 

・ロト ・回ト ・ヨト



• Multiplication in  $S_0$ 

・ロト ・回ト ・ヨト

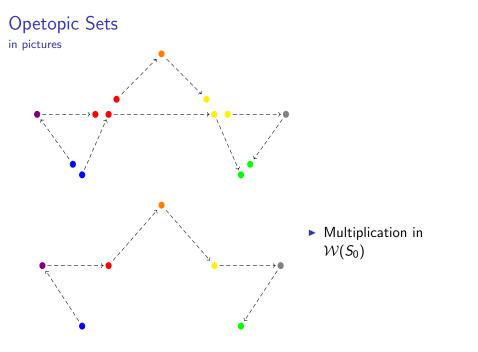


・ロン ・日子・ ・ ヨン

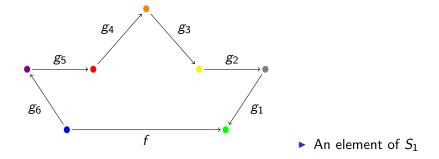
## Multiplication in W(S<sub>0</sub>)

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

문어 문



- 《口》 《祠》 《ヨ》 《ヨ》 - ヨー ‐ つく



・ロン ・回 と ・ ヨン ・

#### Opetopic Sets the category

A morphism of opetopic sets  $X \rightarrow Y$ :



#### Opetopic Sets the category

A morphism of opetopic sets  $X \rightarrow Y$ :

• Maps of cells – functions  $f_n: X_n \to Y_n$ 

## Opetopic Sets the category

A morphism of opetopic sets  $X \rightarrow Y$ :

- Maps of cells functions  $f_n: X_n \to Y_n$
- Compatible with forming pasting diagrams, taking domains and codomains.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで