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Regular Equational Theories

~xn = x1, . . . , xn

A term in context

t : ~xn

is regular if every variable in ~xn occurs in t at least once.

An equation

s = t : ~xn

is regular iff both s : ~xn and t : ~xn are regular terms in
contexts.
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Regular theory

A an equational theory T is regular iff it has a set of regular
axioms.
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Regular Equational Theories
interpretations, examples

Regular interpretation

An interpretation of equational theories I : T → T ′ is regular iff it
interprets n-ary symbols f in T as regular terms in contexts t : ~xn

in T ′.
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in T ′.

Examples of regular theories

The theory of sup-lattices: two operations ∨ and ⊥, of arity 2
and 0, respectively, and equations

x1 ∨ (x2 ∨ x3) = (x1 ∨ x2) ∨ x3, x1∨ ⊥= x1 =⊥ ∨x1,

x1 ∨ x2 = x2 ∨ x1, x1 ∨ x1 = x1

It is a terminal regular theory.

Monoids, monoids with involutions, abelian monoids.

Groups, rings, modules ARE NOT!
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Regular operads and Semi-analytic monads
semi-analytic functors

i : S→ F is an inclusion of a subcategory with the same
objects whose morphisms are surjections

SetS San-
LanιS '

SetF End-
LanιF '

6
Lani

6

San - the essential image of SetS → End; it is the category of
semi-analytic functors and semi-cartesian natural
transformations.

the monoids in SetS is the category of regular operads RegOp

the monoids in San is the category of semi-analytic monads
SanMnd.
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Regular operads and Semi-analytic monads
semi-analytic series, notation[

Y
n

]
- the set of injections from n = {1, . . . , n} to the set Y

We have a right action of permutation group Sn[
Y
n

]
× Sn −→

[
Y
n

]

〈~y , τ〉 7→ ~y ◦ τ

A : S→ Set functor then on An we have a left action of Sn

Sn × An −→ An

〈τ, a〉 7→ A(τ)(a)
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Regular operads and Semi-analytic monads
semi-analytic series (continuation)

Dividing

[
Y
n

]
× An by the relation

〈~y ◦ τ, a〉 ∼ 〈~y ,A(τ)(a)〉

can form the set [
Y
n

]
⊗n An

... NOT functorial in Y

... and whole semi-analytic series

Â(Y ) =
∑
n∈ω

[
Y
n

]
⊗n An

which IS functorial in Y !
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Regular operads and Semi-analytic monads
semi-analytic series (Â on morphism)

f : X → Y -function, [~x , a] an element of

[
X
n

]
⊗n An

We take the epi-mono factorization α, ~y of f ◦ ~x

m Y--
~y

n X-- ~x

??
α

?
f

and we put
Â(f )([~x , a]) = [~y ,A(α)(a)]

Thus we have defined Â(f ) : Â(X ) −→ Â(Y )
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Regular operads and Semi-analytic monads
ˆ(−) on natural transformations

If τ : A→ B is a natural transformation in SetS we define

τ̂ : Â −→ B̂

Thus we have a functor

ˆ(−) : SetS −→ End
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Regular operads and Semi-analytic monads
equivalence of monoidal categories

Theorem

The following are three descriptions of the same (monoidal)
category

the category San of semi-analytic functors, the essential
image of the left Kan extension SetS −→ End ;

the essential image of the functor ˆ(−) : SetS −→ End;

the category of finitary endofunctors on Set that preserve
pullbacks along monos, with semi-cartesian natural
transformations i.e. such that the naturality squares for monos
are pullbacks (E. Manes: category of collection monads
(1998) = category of finitary taut monads on Set (2007)).

the category SetS;
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Regular operads and Semi-analytic monads
examples of semi-analytic functors

Examples of semi-analytic functors

The functor
P≤n : Set −→ Set

associating to a set X the set of subsets of X with at most
n-elements is not analytic, if n > 2, as it can be easily seen
that it does not preserve weak pullbacks. However, it
preserves pullbacks along monos and hence it is semi-analytic.

If U is a set, n ∈ ω then the functor (−)U
≤n : Set → Set,

associating to a set X the set of functions from U to X with
an at most n-element image, is not analytic, if |U| > n > 2.
Again it can be easily seen that it does not preserve weak
pullbacks. However, it is semi-analytic.

The functor part of any monad on Set that comes from a
regular equational theory is semi-analytic.
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Regular operads and Semi-analytic monads
equivalence

Theorem

The following four categories are equivalent

the category RegET of regular equational theories and regular
interpretations;

the category RegOp of regular operads, i.e. monoids in SetS;

the category SanMnd of semi-analytic monads, i.e. monoids
in San;

the category RegLT of regular Lawvere theories monads.
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Lawvere Theories
notation

Fop - the initial Lawvere theory

the unique morphism into another theory Lawvere theory

π : Fop → T

Aut(n) is the set of automorphisms of n in T

We have functions

ρn : Sn × Aut(1)n −→ Aut(n)

such that

(σ, a1, . . . , an) 7→ a1 × . . .× an ◦ πσ
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Aut(n) is the set of automorphisms of n in T

We have functions

ρn : Sn × Aut(1)n −→ Aut(n)

such that

(σ, a1, . . . , an) 7→ a1 × . . .× an ◦ πσ

Simple automorphisms

We say that Lawvere theory T has simple automorphisms iff ρn is
a bijection, for n ∈ ω.
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Lawvere Theories
simple automorphisms, projection-regular factorization

Projection morphisms

The class of projections in T is the closure under isomorphism of
the image under π of all monomorphisms in F.
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Lawvere Theories
regular interpretations

Interpretations of Regular Lawvere theories

A regular interpretation of Lawvere theories I : T → T ′ is an
interpretation of Lawvere theories that preserves regular
morphisms.
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The end

Happy Birthday George!
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