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Plan of the talk

• Definition of ordered face structures (ofs),
monotone and local maps

• Principal and normal ofs’es

• Operations on ofs’es (d(k), c(k), ⊗k)

• Many-to-one computads vs ofs’es

• ω-maps and monotone ω-maps of ofs’es

• Multitopic category (substitution as a
pushout, cell systems ’out of’ a cell, a past-
ing diagram, strategies)
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Ordered face structures are combinatorial
structures describing the ’shapes’ of (all) cells
in many-to-one computads.

Example.
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Primitive notions

Faces (finite sets): Sn - n-faces, n ∈ ω

Codomains (functions): γ : Sn+1 → Sn
γ(a1) = x0, γ(a2) = x1

Domains (relations): δ : Sn+1 → Sn + 1Sn−1
δ(a1) = {x1, x2, x3, x4, x5, x8, x9, }, δ(a2) = 1s0

Lower orders (relations): <∼ on Sn × Sn
a5 <

∼ a1, x4 <
∼ x3
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Derived notions

Lower preorder (relation): <− transitive clo-
sure of the relation

a /− b iff γ(a) ∈ δ(b)

Upper order (relation): <+ transitive closure
of the relation

a /+ b iff ∃α not a loop a ∈ δ(α), γ(α) = b
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Axioms of ordered face structures

1. Globularity axiom

γγ(α) = γδ(α)− δδ̇−λ(α)

δγ(α) ≡1 δδ(α)− γδ̇−λ(α)

≡1 -’equality that almost ignores empty faces’.

Example.
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we have

γγ(α) = x0, δδ(α) = {x1, x2, x3, x4, x5, x6}

δγ(α) = {x1, x4, x5, x6}, γδ(α) = {x0, x2, x3}

... and five more axioms.
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Two basic kinds of morphisms:

A local morphism f : S → T is a family of
functions fk : Sk → Tk, for k ∈ ω, such that the
diagrams
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Sk t· 1Sk−1
Tk t· 1Tk−1

-

fk + 1fk−1

Sk+1 Tk+1-
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δ
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δ

commute. For the right square it means more
then commutation of relations, we demand
that for any a ∈ S≥1,

fa : (δ̇(a), <∼) −→ (δ̇(f(a)), <∼)

be an order isomorphism, where fa is the re-
striction of f to δ̇(a) (if δ(a) = 1u we mean by
that δ(f(a)) = 1f(u)).

A monotone morphism f : S → T is a local
morphism that preserves lower order <∼ (glob-
ally).
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Examples. f1 : T1 → S is monotone:
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f2 : T2 → S is not monotone but it is local:
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The following two ordered face structures are
not isomorphic (globally) but they are isomor-
phic locally:
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oFs (oFsloc) - is the category of ordered face
structures and monotone (local) maps
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The size of an ordered face structure S is
the sequence natural numbers

size(S) = {|Sn − δ(S−λn+1)|}n∈ω

We have an order < on such sequences, so that
{xn}n∈ω < {yn}n∈ω iff there is k ∈ ω such that
xk < yk and for all l > k, xl = yl.

An ordered face structure P is principal iff
size(P )n ≤ 1, for n ∈ ω.
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An ordered face structure N is k-normal iff
dim(N) ≤ k and size(N)n = 1, for n < k.
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In oFs we have operations of the k-domain
d(k) and k-codomain c(k), i.e. we have mono-
tone morphisms:
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When the k-codomain of R agrees with the k-
domain of S we have a commuting k-tensor
square

c(k)R S-

d(k)
S

R R⊗k S-
κR
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in oFs which is a pushout in oFsloc.

Example
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Embedding

(−)∗ : oFs −→ Compm/1

S 7→ S∗
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∐
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then f1 ◦k f0 = [f0, f1]
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Mod⊗(oFsop, Set) is the category models of
oFs, i.e. of the functors from oFsop to Set

sending tensor squares to pullbacks.

Theorem.

(−)∗ : oFs −→ Compm/1

induces the functor

Compm/1 Mod⊗(oFsop, Set)-

C Comp((−)∗, C)-

which is an equivalence of categories. The full
image of (−)∗ is the category oFsloc.
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oFsω is the full image of oFs in ωCat.

A morphism ξ : R → S is oFsω is an ω-map
that is a transformation between presheaves

ξ : oFsloc(−, R) −→ oFsloc(−, S)

a : V → R 7→ ξa : Va → S

that ’preserves’ dimension of domains, k-
domains, k-codomains, and k-tensors, i.e.

1. dim(Va) ≤ dim(V );

2. ξ(a◦d(k)
V ) = ξ(a)◦d(k)

Va
, similar for codomains

3. if V = V 1 ⊗k V 2 then Va = V 1
a◦κ1

V 1
⊗k V 2

a◦κ2
V 2

and

ξ(a ◦ κ1) = ξ(a) ◦ κ̄1, ξ(a ◦ κ2) = ξ(a) ◦ κ̄2
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We have two embeddings

oFsloc oFsω- ωCat-

first is essentially surjective (defined by com-
position) and the second is full.

Let ξ : R → S be an ω-map. ξ is an inner
ω-map iff ξ(1R) = 1S.

Proposition. Every o-map ξ : R → S in oFsω
can be factored as a inner map followed by a
local map.
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ξ is a monotone ω-map iff ξ(1R) is a mono-
tone morphism.

oFsµ - the category of ordered face structures
and monotone ω-maps

We have a commuting square of categories and
functors

oFsµ oFsω-

GoFsµ

oFs oFsloc-
GoFs

?

ιµ

?

ιω

pFs -

All functors are essentially surjective embed-
dings. The vertical ones are full on isomor-
phisms, and the horizontal ones send tensor
squares to pushouts.
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Multitopic category (M.Makkai) = model of
oFs,

X : oFsop → Set

in which every cell (pasting diagram) α ∈ X(N)

with N normal has a composition a ∈ X(P )

with P principal, P‖N .

Thus we need to say what does it mean that
a pasting diagram α do compose to a principal
cell a.

This is expressed by saying that

the cell system X(a) of ’cells going out’ of a

is equivalent over X with

the cell system X(α) of ’cells going out’ of α.
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We fix X : oFsop → Set, α ∈ X(N), a ∈ X(P )
such that P‖N , P principal of dimension k, N
k-normal, for the rest of the talk.

The composition ω-map

mN : P → N

is the inner ω-map which sends 1P to 1N and is
identity on lower dimension cell (=local maps).

We say that the morphism f : P → S in oFs is
of d-type iff f(Pk) ⊆ Sk − γ(Sk+1).

Lemma. (substitute N for P in S along f)
If mN : P → N is composition ω-map, f : P →
S d-type morphisms then there is a pushout in
oFsµ

P S-

f

N N �f S-
fN

6
mN

6
mN,f,S

with mN,f,S inner ω-map and fN monotone.
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P ⇓ oFs - the category of P -pointed shapes is
defined as follows.

There are two kinds of objects

• the non-pointed objects are the objects of
oFs

• the pointed objects are d-type morphisms
from P to objects of oFs

There are three kinds of morphisms

• between non-pointed objects are the usual
morphisms in oFs,

• between pointed objects are the morphisms
in comma category P ↓ oFs,
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• from the non-pointed objects to pointed
object are ’monotone maps that omit the
point’, i.e. for R0 ∈ oFs and d-type mor-
phism f : P → R1 in P ↓d oFs, the mono-
tone morphism h : R0 → R1 is a morphism
in P ⇓ oFs if f does not factorize through
h, i.e. there is no local map k making the
triangle

R0 R1
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k
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��	
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?
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commutes.

• There are no morphisms from pointed ob-
jects to non-pointed objects in P ⇓ nFsloc.

We have an embedding on non-pointed objects

ιP : oFs −→ P ⇓ oFs
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’cells out of a (α) in X’

Xa, Xα : P ⇓ oFs −→ Set

The functors Xa, Xα agree with X on oFs part
of P ⇓ oFs, and on d-type morphisms it picks
those cells that have a, α in the specified place.
More specifically, for S ∈ oFs

Xa(S) = X(S) = Xα(S)

for f : P → S ∈ P ⇓ oFs

Xa(f) = X(f)−1({a}) ⊆ X(S)

Xα(f) = X(fN)−1({α}) ⊆ X(N �f S)

recall that fN : N −→ N �f S is a monotone
morphism.
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Example
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A functor f : A→ B ∈ SetCop is fiberwise sur-
jective iff for any c ∈ C
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