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Plan of the talk

Definition of ordered face structures (ofs),
monotone and local maps

Principal and normal ofs’es

Operations on ofs’es (d(%), ¢ )
Many-to-one computads vs ofs’es
w-maps and monotone w-maps of ofs’es

Multitopic category (substitution as a
pushout, cell systems 'out of’ a cell, a past-
ing diagram, strategies)



Ordered face structures are combinatorial
structures describing the 'shapes’ of (all) cells
in Mmany-to-one computads
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Primltlve notions
Faces (finite sets): S, - n-faces, n € w

Codomains (functions): v :S,4+1 — Sn
v(a1) = zg, v(a2) = x1

Domains (relations): 6 : S,41 — Sh+ 1g _
5(&1) {%1,$2,$3,$4,£B5,$8,$9,} 5(0’2) — 180

Lower orders (relations): <™~ on Sp X Sp
ag <7 a1, v4 <7 x3



Derived notions

Lower preorder (relation): <~ transitive clo-
sure of the relation

a<" b iff v(a) € 6(b)

Upper order (relation): <7 transitive closure
of the relation

a <]+ b iff Ela not a loop a & 5(05), ’Y(Qﬂ) = b



Axioms of ordered face structures

1. Globularity axiom
vy(a) = ~8(a) — 65 (a)
5y(a) =1 66(a) — 6~ Ma)

=4 -'equality that almost ignores empty faces’.
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we have
/7/7(05) — L0, 55(04) — {ZE1,332,£U3,£B4,335,$6}
57(04) — {33‘]_,$4,CC5,CU6}, 75(04) — {330,332,333}

. and five more axioms.



Two basic kinds of morphisms:

A local morphism f : S — T is a family of
functions fi. : S — T}, for k € w, such that the
diagrams

Jk+1 Jk+1
Sk41 + Th41 Sk+41 + - Tht1
v \ v \ 5
St 17 S]{;L'lls_ T L1y
fkj k 1fk + ]-fk_l k-1

commute. For the right square it means more
then commutation of relations, we demand
that for any a € S>1,

fa 1 (8(a), <) — (6(f(a)),<™)
be an order isomorphism, where f, is the re-
striction of f to §(a) (if 6(a) = 1, we mean by
that 5(f(a)) = 1f(u))

A monotone morphism f : S — T is a local
morphism that preserves lower order <~ (glob-

ally).



Examples. f1 : 77 — S is monotone:
7&'

; S S
Yy x
Y x

fo 1> — S is not monotone but it is local:

T
S - S - S

x Y Y
- S - S
ég é% ég
T2: by a_ . by

The following two ordered face structures are
not isomorphic (globally) but they are isomor-

phic locally:
S

S
c) |\a a C
T Yy
Jo /2
r<~z

Y T
2\ b

z2<~x

oFs (oF's;,.) - is the category of ordered face
structures and monotone (local) maps



The size of an ordered face structure S is
the sequence natural numbers

size(S) = {|Sn — 8(S, 31 Inew

We have an order < on such sequences, so that
{xn}tnew < {yn}new iff there is k € w such that
xp <yp and for all I > k, x; = y;.

An ordered face structure P is principal iff
size(P)n < 1, for n € w.
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An ordered face structure N is k-normal iff
dim(N) < k and size(N), = 1, for n < k.
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In oFs we have operations of the k-domain
d*) and k-codomain c(*), i.e. we have mono-
tone morphisms:

(k) (k)
d
dg 5 g S g

Example




When the k-codomain of R agrees with the k-
domain of S we have a commuting k-tensor
square

R R RS

cg_-f) ks
k

in oF's which is a pushout in oF's;,,.
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Embedding
(=) : oFs — Compm/1
S +— S*
SZ — H OFSlOC(R7 S)

dim(R)<k
k-domains and k-codomains S™*:

f'

R

T

c(FR Cp

S

k-compositions in S*: if c(k)(fo) = d(k)(fl)
- Jo

C R
c(’f)R@y O\RO o R [fo, f1l
d(m / J1

Rq Ry

Y

S

then f1 o fo = [fo, f1l
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Modg(oFsP, Set) is the category models of
oFs, i.e. of the functors from oFs°? to Set
sending tensor squares to pullbacks.

T heorem.
(=) : oFs — Compm/1

induces the functor

Comp™/1 Mods (oFs®P, Set)

Ct—— Comp((—)* C)

which is an equivalence of categories. The full
image of (—)* is the category oFs;,,..
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oFs, is the full image of oFs in wCat.

A morphism £ : R — S is oFsy, is an w-map
that is a transformation between presheaves

§ 1 0Fs;p(—, R) — oFs;,.(—,5)

CLV—>R|_>£CLVCL_>S

that ’'preserves’ dimension of domains, k-
domains, k-codomains, and k-tensors, i.e.

1. dim(Vy) < dim(V);
2. g(aod§f)) = g(a)od(’z), similar for codomains

3. ifV=V1®kV2 then V, = V1 1 ®kv2 2

aOIivl CLOH,VQ
and

E(aokt) =¢(a)okt,  €laor®) =¢(a)ok?
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We have two embeddings

oFs;,., —— oFsy, —— wCat

first is essentially surjective (defined by com-
position) and the second is full.

Let ¢ : R — S be an w-map. & is an inner
w-map iff £(1p) = 1g.

Proposition. Every o-map £ : R — S in oFsy
can be factored as a inner map followed by a

/ / )
ocal map. ¢ <
5’\ %(11%)
Vi,
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£ is a monotone w-map iff £(1) is a mono-
tone morphism.

oF's, - the category of ordered face structures
and monotone w-maps

We have a commuting square of categories and
functors

g
pF's oF's oFs oF's;,.
I/IJ, Ly
OFSM g OFSW
goFsM

All functors are essentially surjective embed-
dings. The vertical ones are full on isomor-
phisms, and the horizontal ones send tensor
squares to pushouts.
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Multitopic category (M.Makkai) = model of
oF's,

X : oFs®? — Set

in which every cell (pasting diagram) a € X(N)
with N normal has a composition a € X(P)
with P principal, P||N.

Thus we need to say what does it mean that
a pasting diagram o do compose to a principal

cell a.

This is expressed by saying that

the cell system X (a) of 'cells going out’ of a
IS equivalent over X with

the cell system X («) of 'cells going out’ of «.
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We fix X : oFs? — Set, a € X(N), a € X(P)
such that P||N, P principal of dimension k, N
k-normal, for the rest of the talk.

The composition w-map
my P — N

IS the inner w-map which sends 1p to 1, and is
identity on lower dimension cell (=local maps).

We say that the morphism f: P — S in oF's is
of d-type iff f(Fy) C Sk —v(Sgp+1)-

Lemma. (substitute N for P in S along f)
If my : P — N is composition w-map, f: P —
S d-type morphisms then there is a pushout in
oF's,

N _IN NogS

my MmN, f,S

P 7 - S

with MmN, f.8 inner w-map and fp monotone.

17



P || oFs - the category of P-pointed shapes is
defined as follows.

There are two Kinds of objects

e the non-pointed objects are the objects of
oF's

e the pointed objects are d-type morphisms
from P to objects of oFs

There are three kinds of morphisms

e between non-pointed objects are the usual
morphisms in oF's,

e between pointed objects are the morphisms
in comma category P | oFs,
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e from the non-pointed objects to pointed
object are 'monotone maps that omit the
point’, i.e. for Rg € oFs and d-type mor-
phism f: P — Ry in P |; oFs, the mono-
tone morphism A : Rg — Rq IS @ morphism
in P | oFs if f does not factorize through
h, i.e. there is no local map k£ making the
triangle

commutes.

e [ here are no morphisms from pointed ob-
jects to non-pointed objects in P | nFs;,..

We have an embedding on non-pointed objects

tp : oFs — P |l oFs
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'cells out of a («) in X’

Xa, Xa PU/OFS — Set

The functors X,, Xqo agree with X on oF's part
of P || oFs, and on d-type morphisms it picks
those cells that have a, o in the specified place.
More specifically, for S € oFs

Xa(S) = X(S) = Xa(S5)

for f: P— S e Pl oFs
Xa(f) = X(f) " {a}) € X(9)

Xo(f) = X(fN) T{a}) CX(NopS)

recall that fy : N — N ¢S is a monotone
morphism.
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Example

Xg . Yo
by
o

a

J Aq

Yo

o A

—

:

Vi

Y2

Y2

o/

I} Ag '\
a a
Ly 29 g
yo Y1y yq
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A functor f: A — B e Set®” is fiberwise sur-
jective iff for any ¢ € C

Yo(e) A
Dl
Y(c) B

X(a) ~x X(a) iff there is a strategy i.e. a
span of fiberwise surjective functors

R
Ta,  \Ta

X (a) X ()

that restricts to a commuting diagram

X

~

ROLP

mo \m

X =X(a)oLp X(a)op=X
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