Multitopic Categories via Ordered Face Structures

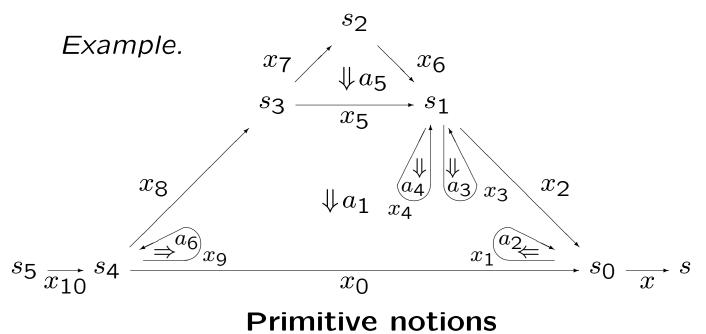
Marek Zawadowski

June 27, 2008, Calais, France

Plan of the talk

- Definition of ordered face structures (ofs), monotone and local maps
- Principal and normal ofs'es
- Operations on ofs'es $(\mathbf{d}^{(k)}, \mathbf{c}^{(k)}, \otimes_k)$
- Many-to-one computads vs ofs'es
- ω -maps and monotone ω -maps of ofs'es
- Multitopic category (substitution as a pushout, cell systems 'out of' a cell, a pasting diagram, strategies)

Ordered face structures are combinatorial structures describing the 'shapes' of (all) cells in many-to-one computads.



Faces (finite sets): S_n - *n*-faces, $n \in \omega$

Codomains (functions): $\gamma : S_{n+1} \to S_n$ $\gamma(a_1) = x_0, \ \gamma(a_2) = x_1$

Domains (relations): $\delta : S_{n+1} \to S_n + 1_{S_{n-1}}$ $\delta(a_1) = \{x_1, x_2, x_3, x_4, x_5, x_8, x_9, \}, \ \delta(a_2) = 1_{s_0}$

Lower orders (relations): $<^{\sim}$ on $S_n \times S_n$ $a_5 <^{\sim} a_1$, $x_4 <^{\sim} x_3$

Derived notions

Lower preorder (relation): $<^-$ transitive closure of the relation

$$a \triangleleft^{-} b$$
 iff $\gamma(a) \in \delta(b)$

Upper order (relation): $<^+$ transitive closure of the relation

 $a \triangleleft^+ b$ iff $\exists_{\alpha \text{ not a loop}} a \in \delta(\alpha), \ \gamma(\alpha) = b$

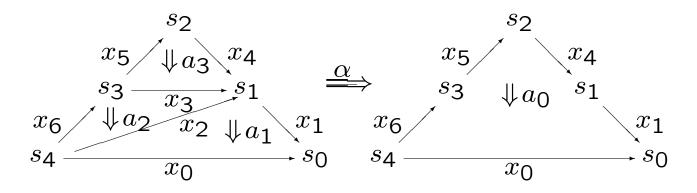
Axioms of ordered face structures

1. Globularity axiom

$$\gamma\gamma(\alpha) = \gamma\delta(\alpha) - \delta\dot{\delta}^{-\lambda}(\alpha)$$
$$\delta\gamma(\alpha) \equiv_1 \delta\delta(\alpha) - \gamma\dot{\delta}^{-\lambda}(\alpha)$$

 \equiv_1 -'equality that almost ignores empty faces'.

Example.



we have

 $\gamma\gamma(\alpha) = x_0, \ \delta\delta(\alpha) = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ $\delta\gamma(\alpha) = \{x_1, x_4, x_5, x_6\}, \ \gamma\delta(\alpha) = \{x_0, x_2, x_3\}$... and five more axioms.

Two basic kinds of morphisms:

A local morphism $f : S \to T$ is a family of functions $f_k : S_k \to T_k$, for $k \in \omega$, such that the diagrams

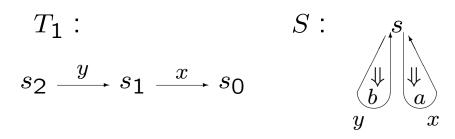
commute. For the right square it means more then commutation of relations, we demand that for any $a \in S_{\geq 1}$,

$$f_a: (\dot{\delta}(a), <^{\sim}) \longrightarrow (\dot{\delta}(f(a)), <^{\sim})$$

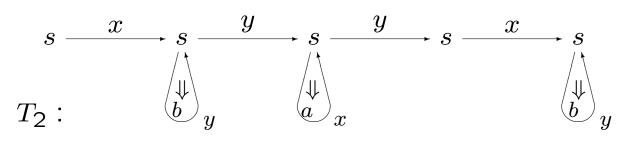
be an order isomorphism, where f_a is the restriction of f to $\dot{\delta}(a)$ (if $\delta(a) = 1_u$ we mean by that $\delta(f(a)) = 1_{f(u)}$).

A monotone morphism $f : S \to T$ is a local morphism that preserves lower order $<^{\sim}$ (globally).

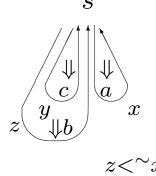
Examples. $f_1 : T_1 \to S$ is monotone:

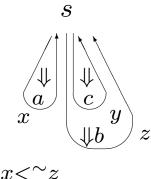


 $f_2: T_2 \to S$ is not monotone but it is local:



The following two ordered face structures are not isomorphic (globally) but they are isomorphic locally:





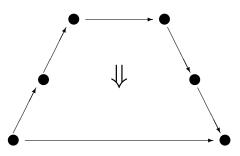
 $\mathbf{oFs}~(\mathbf{oFs}_{loc})$ - is the category of ordered face structures and monotone (local) maps

The size of an ordered face structure S is the sequence natural numbers

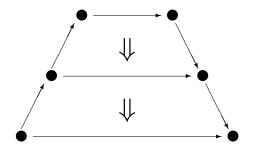
$$size(S) = \{|S_n - \delta(S_{n+1}^{-\lambda})|\}_{n \in \omega}$$

We have an order < on such sequences, so that $\{x_n\}_{n\in\omega} < \{y_n\}_{n\in\omega}$ iff there is $k \in \omega$ such that $x_k < y_k$ and for all l > k, $x_l = y_l$.

An ordered face structure P is **principal** iff $size(P)_n \leq 1$, for $n \in \omega$.



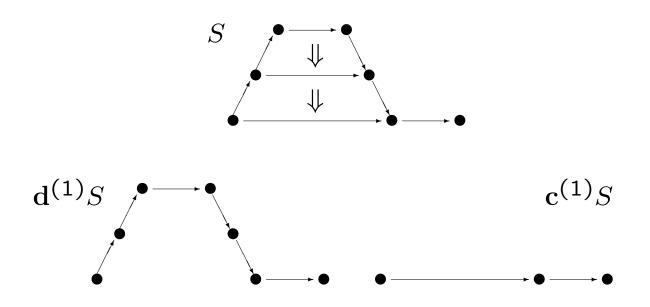
An ordered face structure N is k-normal iff $dim(N) \le k$ and $size(N)_n = 1$, for n < k.



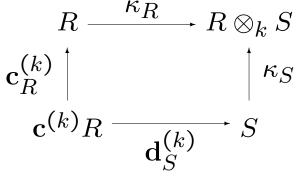
In oFs we have operations of the k-domain $d^{(k)}$ and k-codomain $c^{(k)}$, i.e. we have monotone morphisms:

$$\mathbf{d}^{(k)}S \xrightarrow{\mathbf{d}^{(k)}_S} S \xleftarrow{\mathbf{c}^{(k)}_S} \mathbf{c}^{(k)}S$$

Example

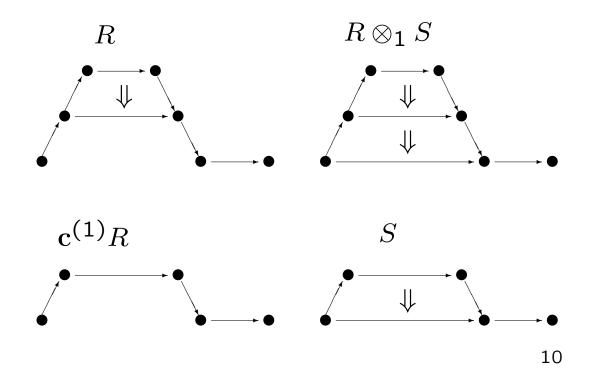


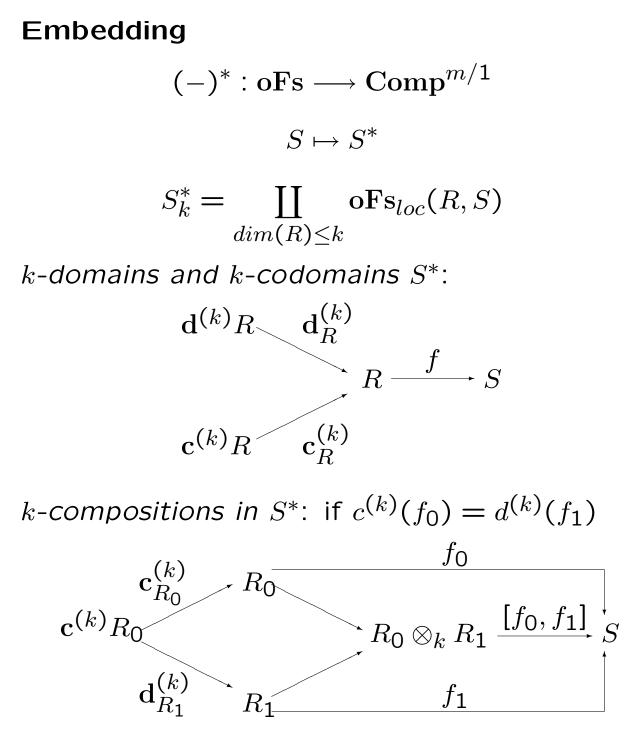
When the k-codomain of R agrees with the kdomain of S we have a commuting k-**tensor** square



in oFs which is a pushout in oFs $_{loc}$.

Example





then $f_1 \circ_k f_0 = [f_0, f_1]$

 $Mod_{\otimes}(\mathbf{oFs}^{op}, Set)$ is the category models of \mathbf{oFs} , i.e. of the functors from \mathbf{oFs}^{op} to Set sending tensor squares to pullbacks.

Theorem.

$$(-)^*$$
: oFs \longrightarrow Comp $^{m/1}$

induces the functor

 $\operatorname{Comp}^{m/1} \longrightarrow Mod_{\otimes}(\mathbf{oFs}^{op}, Set)$

 $C \longmapsto \operatorname{Comp}((-)^*, C)$

which is an equivalence of categories. The full image of $(-)^*$ is the category \mathbf{oFs}_{loc} .

 \mathbf{oFs}_{ω} is the full image of \mathbf{oFs} in ωCat .

A morphism $\xi : R \to S$ is \mathbf{oFs}_{ω} is an ω -map that is a transformation between presheaves

$$\xi : \mathbf{oFs}_{loc}(-, R) \longrightarrow \mathbf{oFs}_{loc}(-, S)$$
$$a : V \longrightarrow R \mapsto \xi_a : V_a \longrightarrow S$$

that 'preserves' dimension of domains, k-domains, k-codomains, and k-tensors, i.e.

1.
$$dim(V_a) \leq dim(V);$$

2. $\xi(a \circ d_V^{(k)}) = \xi(a) \circ d_{V_a}^{(k)}$, similar for codomains
3. if $V = V^1 \otimes_k V^2$ then $V_a = V_{a \circ \kappa_{V^1}}^1 \otimes_k V_{a \circ \kappa_{V^2}}^2$
and
 $\xi(a \circ \kappa^1) = \xi(a) \circ \bar{\kappa}^1, \qquad \xi(a \circ \kappa^2) = \xi(a) \circ \bar{\kappa}^2$

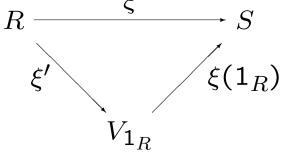
We have two embeddings

$$\mathbf{oFs}_{loc} \longrightarrow \mathbf{oFs}_{\omega} \longrightarrow \omega Cat$$

first is essentially surjective (defined by composition) and the second is full.

Let $\xi : R \to S$ be an ω -map. ξ is an inner ω -map iff $\xi(1_R) = 1_S$.

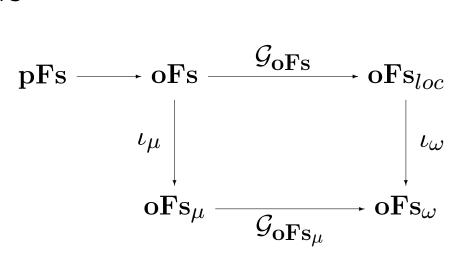
Proposition. Every o-map $\xi : R \to S$ in oFs_{ω} can be factored as a inner map followed by a local map.



 ξ is a **monotone** ω -map iff $\xi(1_R)$ is a monotone morphism.

 \mathbf{oFs}_{μ} - the category of ordered face structures and monotone $\omega\text{-maps}$

We have a commuting square of categories and functors



All functors are essentially surjective embeddings. The vertical ones are full on isomorphisms, and the horizontal ones send tensor squares to pushouts. $\begin{array}{l} \mbox{Multitopic category} (M.Makkai) = \mbox{model of} \\ \mbox{oFs}, \end{array}$

 $X : \mathbf{oFs}^{op} \to Set$

in which every cell (pasting diagram) $\alpha \in X(N)$ with N normal has a composition $a \in X(P)$ with P principal, P || N.

Thus we need to say what does it mean that a pasting diagram α do compose to a principal cell a.

This is expressed by saying that

the cell system X(a) of 'cells going out' of a

is equivalent over X with

the cell system $X(\alpha)$ of 'cells going out' of α .

We fix $X : \mathbf{oFs}^{op} \to Set$, $\alpha \in X(N)$, $a \in X(P)$ such that $P \parallel N$, P principal of dimension k, Nk-normal, for the rest of the talk.

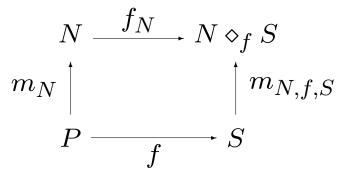
The composition ω -map

$$m_N: P \to N$$

is the inner ω -map which sends $\mathbf{1}_P$ to $\mathbf{1}_N$ and is identity on lower dimension cell (=local maps).

We say that the morphism $f: P \to S$ in oFs is of **d-type** iff $f(P_k) \subseteq S_k - \gamma(S_{k+1})$.

Lemma. (substitute N for P in S along f) If $m_N : P \to N$ is composition ω -map, $f : P \to S$ d-type morphisms then there is a pushout in \mathbf{oFs}_{μ}



with $m_{N,f,S}$ inner ω -map and f_N monotone.

 $P \Downarrow \mathbf{oFs}$ - the category of P-pointed shapes is defined as follows.

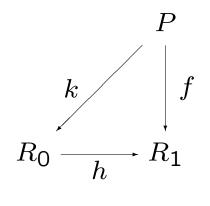
There are two kinds of objects

- the non-pointed objects are the objects of oFs
- the *pointed* objects are d-type morphisms from P to objects of \mathbf{oFs}

There are three kinds of morphisms

- \bullet between non-pointed objects are the usual morphisms in $\mathbf{oFs},$
- between pointed objects are the morphisms in comma category $P \downarrow \mathbf{oFs}$,

• from the non-pointed objects to pointed object are 'monotone maps that omit the point', i.e. for $R_0 \in \mathbf{oFs}$ and d-type morphism $f: P \to R_1$ in $P \downarrow_d \mathbf{oFs}$, the monotone morphism $h: R_0 \to R_1$ is a morphism in $P \Downarrow \mathbf{oFs}$ if f does not factorize through h, i.e. there is no local map k making the triangle



commutes.

• There are no morphisms from pointed objects to non-pointed objects in $P \Downarrow \mathbf{nFs}_{loc}$.

We have an embedding on non-pointed objects

$$\iota_P : \mathbf{oFs} \longrightarrow P \Downarrow \mathbf{oFs}$$

'cells out of a (α) in X'

 $X_a, X_\alpha : P \Downarrow \mathbf{oFs} \longrightarrow Set$

The functors X_a , X_α agree with X on oFs part of $P \Downarrow \mathbf{oFs}$, and on d-type morphisms it picks those cells that have a, α in the specified place. More specifically, for $S \in \mathbf{oFs}$

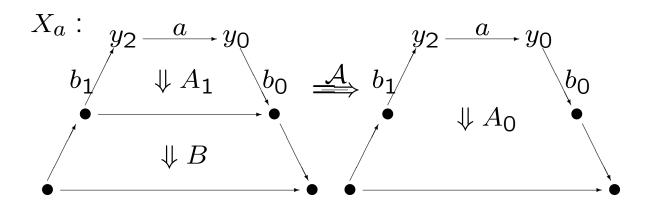
$$X_a(S) = X(S) = X_\alpha(S)$$

for $f: P \to S \in P \Downarrow \mathbf{oFs}$

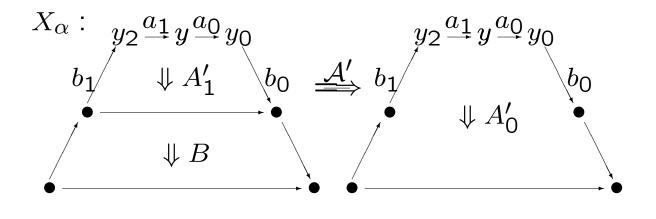
$$X_a(f) = X(f)^{-1}(\{a\}) \subseteq X(S)$$

$$X_{\alpha}(f) = X(f_N)^{-1}(\{\alpha\}) \subseteq X(N \diamond_f S)$$

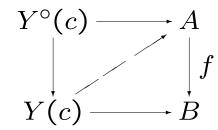
recall that $f_N : N \longrightarrow N \diamond_f S$ is a monotone morphism.



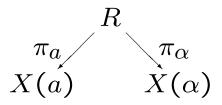
$$\alpha : \qquad y_2 \xrightarrow{a_1} y \xrightarrow{a_0} y_0$$



A functor $f : A \to B \in Set^{\mathcal{C}^{op}}$ is **fiberwise surjective** iff for any $c \in \mathcal{C}$



 $X(a) \simeq_X X(\alpha)$ iff there is a **strategy** i.e. a span of fiberwise surjective functors



that restricts to a commuting diagram

