
The Web Monoid and Opetopic Sets

Stanis law Szawiel
Marek Zawadowski

Institute of Mathematics, University of Warsaw
ul. Banacha 2, 00-913 Warsaw, Poland

October 31, 2010

Abstract

We develop a new definition of opetopic sets. There are two main
technical ingredients. The first is the systematic use of fibrations, which
are implicit in most of the approaches in the literature. Their explicit
use leads to certain clarifications in the construction of opetopic sets and
other constructions. The second is the “web monoid”, which plays a role
analogous to the “operad for operads” of Baez and Dolan, the “multi-
category of function replacement” of Hermida, Makkai and Power. We
demonstrate that the web monoid is closely related to the “Baez-Dolan
slice construction” as defined by Kock, Joyal, Batanin and Mascari.

Contents

Introduction 2

1 Lax Monoidal Fibrations 4

2 The Three Tensors Theorem 7
2.1 Free Monoids in Monoidal Fibrations 7
2.2 Distributivity of Monoidal Structures 11
2.3 The Main Theorem . 13
2.4 Essential Steps in The Proof of The Main Theorem 14

3 Fibrations of Signatures 16
3.1 Signatures with Amalgamation 18
3.2 Monoidal Signatures with Amalgamation 23
3.3 Distributivity for Monoidal Signatures 30

4 The Category of Opetopic Sets 31

1

5 Comparison with “Polynomial functors and opetopes” 33
5.1 Proof of The Comparison Theorem 37

A Proof of the Main Theorem 43

B Coherence Calculations for Distributivity in Sigma 55

C Nonstandard Amalgamation is Necessary 59

Bibliography 62

Introduction

Opetopic sets are notorious for being difficult to define and work with. In this
work we will separate the difficult parts from the easy parts, and encapsulate
each difficult part in some formal structure. The end result is a rather straight-
forward definition of the category of opetopic sets. The category of opetopes,
unfortunately, remains beyond reasonable reach (generators and relations are
no good).

To facilitate this separation and isolation we will use lax monoidal fibra-
tions, introduced in [Zaw10] for this purpose. Typed operads originally used by
Baez and Dolan in [HDA3], and most other structures used for the definition
of opetopic sets (or just opetopes), for example the multicategories of [HMP]
and polynomial functors of [KJBM], naturally assemble into fibrations, which
turn out to be fibrations of monoids of some monoidal fibration. Lax monoidal
fibrations seem to provide a natural language for working with opetopic sets.

All three approaches cited above use the fact that a free monoid in a certain
monoidal category can be made into a monoid in a different monoidal category.
Thus Baez and Dolan consider the “operad for operads” as an operad whose
universe is the universe of the free operad on the universe of the terminal sym-
metric operad. Hermida, Makkai and Power construct the “multicategory of
function replacement” from a free multicategory. Perhaps the slickest construc-
tion is used in [KJBM]. We review it in section 5, where we compare our work
to that of [KJBM].

Our main tool for constructing opetopic sets has the same flavor. It is called
the “web monoid”. It can be constructed in any fibration with appropriate
extra structure. This structure is where all the difficult parts of opetopic sets
are enclosed.

The first piece of structure are two strong monoidal structures, say ⊗ and �,
subject to certain cocontinuity conditions. This reflects the fact the web monoid
is a ⊗-monoid on the underlying object of a free �-monoid. Furthermore we
require that “⊗ distributes over �”, a notion made precise by the concept of a
distributivity structure. In a strict world it would be a collection of equalities

2

(A⊗X)� (B ⊗X) = (A�B)⊗X
I� = I� ⊗X,

where I� is the unit of �. As usual, equalities must be replaced by natural
isomorphisms to obtain a useful concept.

To obtain the web monoid we consider F�(I⊗), the free �-monoid on the
⊗-unit, decide that the unit of the new multiplication is η : I⊗ → F�(I⊗),
and demand that “the new multiplication commutes with the free multiplica-
tion”. This is made precise by using the distributivity structure. The resulting
⊗-monoid structure is then unique. This result is called the “three tensors
theorem” (due to the role of coproducts – a third monoidal structure), and is
completely abstract. Its proof, apart from an educated guess for the new multi-
plication, is a quite messy inductive calculation. The web monoid encapsulates
the difficulty of seeing a new structure on the free monoid.

To construct our opetopic sets we must make this abstract machinery work
for the fibration of monoidal signatures, Sigma. This is where the combinatorial
problems of opetopic sets are identified and partitioned into small pieces. These
pieces are the two monoidal operations ⊗ and � and a distributivity structure
between them. How small are we talking about? We will illustrate this with an
example.

The amalgamation permutations for function replacement (the central oper-
ation in [HMP]) are the same, in a precise sense, as the amalgamation permu-
tations for the web monoid. Their definition in [HMP] is rather abstract and
indirect. We could give explicit recursive formulas for them. But we can say a
lot more. We know their origin – they arise because the free multiplication in
F�(I⊗) has nonstandard amalgamation. This in turn arises from the associa-
tivity of � – it has nonstandard amalgamation, and it must – to preserve the
“geometry” of opetopic sets. This can proved using the separation principle 3.6,
a trick inspired by the constructions in [HMP, part II]. Finally, the construction
of � reflects our geometrical intuition. On a more mundane level � is uniquely
determined if we want corollary 5.15 to be true (it is needed to compare our
work to [KJBM]). Thus the complexity of function replacement is reduced to the
associativity of a monoidal structure. That is two levels of recursion less. The
construction of � is still quite involved, but completely explicit and ultimately
manageable.

The rest of the structure is comparatively simple, and merely allows � to
exist (and distribute over ⊗) – we have not distributed the difficulties evenly
among our structures. Once the basic combinatorial widget � is in place, a com-
pletely formal theory takes over. We have seen that� generates the nonstandard
amalgamation in the web monoid, and this is the only nontrivial ingredient in
our definition of opetopic sets. This can also be seen clearly in section 5. In
that section not once must we consider any combinatorial formulas – and there
are plenty such formulas to go around. We only need to know they are there,
and are a consistent part of our formalism.

3

There is one more thing which can be seen in section 5. It is the central role of
monoidal signatures. All the fibrations used by us, and in the slice construction
are closely related to them, but only Sigma “sees everything” properly. It sees
the two kinds of inputs which give rise to the two structures ⊗ and �, it sees
free monoids in the fibrations used in the slice construction, and even its action
on these fibrations is very nearly the same as one of its monoidal structures ⊗.
This probably sounds vague, and the reader will have to read section 5 to see
what to make of these claims.

In appendix C we answer a very natural question, which has somehow man-
aged to escape consideration in the other approaches: In the end, can we get
rid of the amalgamation permutations? This is a sensible question, since many
monoids with nonstandard amalgamation are isomorphic to ones with stan-
dard amalgamation. The answer is no: the web monoid is not isomorphic to a
monoid with standard amalgamation, even if we begin with standard amalga-
mation. Our example consists of pictures, and should easily adapt to all other
approaches.

1 Lax Monoidal Fibrations

We will need the theory of lax monoidal fibrations from [Zaw10], for which
the reader is referred there. The theory of fibrations can be found in [Str08].
Morphisms which are called “cartesian” in [Str08] will be called “prone” in this
paper.

A lax monoidal fibration can be briefly defined as a lax monoid in the 2-
category of fibrations over some category B, fibered functors (not morphisms
of fibrations!), and fibered natural transformations. Monoids are to be under-
stood as using the ordinary product in the underlying 1-category. We will be
concerning ourselves with strong monoidal fibrations, that is those in which α, λ
and ρ are isomorphisms. The conventions on the direction of these arrows are
therefore a matter of convenience. We will specify them here, but unfortunately
no choice is optimal for the entire paper. The conventions in [Zaw10], however,
are uniquely determined by the examples therein.

Conventions. If E → B is a functor, then the preimage of O ∈ B will be
denoted E/O, to be read “E over O”. If this functor is the codomain fibration
C·→· → C, then this notation agrees with taking slices of C. Thus if O ∈ C then
C/O means the ordinary slice, and we will never write C·→·/O.

In a lax monoidal fibration the coherence isomorphisms will have the follow-
ing directions:

αA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C
λA : I ⊗A→ A
ρA : A→ A⊗ I

A pullback (in Cat) of a fibration is a fibration. The same is true for lax
monoidal fibrations. The following lemma states that any algebraic structure is

4

preserved by pullback. It is exceedingly useful.

Lemma 1.1. Let F : B′ → B be a functor. Then the operation E 7→ F ∗E,
of pulling back along F extends to a 2-functor F ∗ : Fib(B) → Fib(B′), which
preserves finite products in the underlying 1-category.

Proof. F ∗ extends to fibered functors by the universal property of pullbacks.
Preservation of composition and identities also follows directly from this uni-
versal property.

We extend F ∗ to natural transformations by hand. If f, g : E → F are two
functors over B, and τ : f → g is a fibered natural transformation, then:

- F ∗E is given by pairs (b′, e), b′ ∈ B′, e ∈ E , which project to the same
object in B. Likewise for morphisms.

- F ∗f is given by (b′, e) 7→ (b′, f(e)). Likewise for morphisms.

- We define F ∗τ(b′,e) = (1b′ , τe) (which is a morphism in F ∗F).

It is then obvious that F ∗τ is fibered, natural, and that F ∗ preserves com-
position of natural transformations.

Products in the 1-category underlying Fib(B) are computed as pullbacks in
Cat over B, since any pullback of a fibration is a fibration, and we are using
fibered functors as morphisms, so our hom-sets coincide with the ones in Cat/B.
Preservation of binary products follows since both F ∗E ×B F and F ∗E ×B′ F ∗F
compute the limit (in Cat) of the diagram

E F

B′ BF

Preservation of the terminal object is obvious.

Corollary 1.2. The pullback of a lax monoidal fibration is naturally a lax
monoidal fibration.

Proof. The 2-functor from the above lemma provides the necessary structure.
The coherence conditions hold, because composites of natural transformations
are preserved (and equality also – trivially so).

Remark 1.3. According to the definitions in [Zaw10] the canonical projection
F ∗E → E is a strict monoidal functor over F : B′ → B.

We can now see that the fibers of a lax monoidal fibration are lax monoidal
categories, by considering the pullbacks along functors 1 → B, which give the
fibers of a fibration. Similarly, morphisms over a given one can be multiplied,
by considering pullbacks along functors from the category 2 = (· −→ ·). It
was also noted in [Zaw10] that the reindexing functors are lax monoidal. Their

5

strongness is equivalent to ⊗ being a morphism of fibrations. This will never
happen in our examples.

We will need a few facts about universal properties in fibrations.

Lemma 1.4 (cf. lemma 5.5 in [Zaw10]). Consider U :M→ E, a morphism of
fibrations over B. Let X ∈ E/O. Then a vertical arrow X → U(M) is universal
from X to U if and only if it is universal from X to the restriction of U to
M/O.

Proof. Using prone morphisms we can reduce morphisms between fibers to mor-
phisms in the fiber overO, where we assumed universality. The other implication
is trivial.

The fibration of diagrams of type D ∈ Cat is the pullback of ED → BD along
the constant diagram functor ∆ : B → BD, see [Str08]. Then ∆E : E → ED
factors into a morphism over B, which we will still call the constant diagram
functor, followed by the canonical projection. A fibered colimit of an object F
of such a fibration is a vertical universal arrow from F to the constant diagram
functor ∆E (considered over B), as usual.

Corollary 1.5. If the fibration E → B has a type of colimit (eg. coproducts,
pushouts, filtered colimits) fiberwise, then it has the fibered version of this type
of colimit.

If a fibration has a type of colimit fiberwise, then taking the colimit extends
to a functor on the fibration of diagrams of the given type.

Proof. The needed universal property follows immediately from lemma 1.4, since
the constant diagram functor E → ∆∗ED (again, considered over B) preserves
prone morphisms. The second statement is a formal consequence of the first.

Note that the condition in this corollary refers only to fibers. It is there-
fore stable under pullback. Thus existence of fibered colimits is stable under
pullback.

The fibered slice. We will need one more general construction for lax monoidal
fibrations. It is needed exclusively for section 5.

Recall that if C is a monoidal category and M ∈Mon(C) is a monoid, then
the slice category C/M is also naturally a monoidal category, with monoidal

product ofA→M andB →M defined by the composite A⊗B →M⊗M µ−→M ,
where ⊗ is the product in C and µ is multiplication in M . The unit is the unit of
the monoid e : I → M , and there are obvious correct choices for the coherence
isomorphisms. If C has pullbacks, these categories are fibers of the monoidal
fibration C ↓ U over Mon(C), where U : Mon(C)→ C is the forgetful functor.

This construction has a fibered analogue. Let E be a monoidal fibration over
B, and let E(·→·) be the fibration of diagrams of type · → · in E . There is an
obvious functor (cod) : E(·→·) → E sending each arrow to its codomain. If E has
pullbacks then this functor is a fibration – the fibered analogue of a fundamental

6

fibration. As before let U : Mon(E)→ E be the forgetful functor. The structure
we are looking for is the pullback of (cod) along U ,

E � U E(·→·)

Mon(E) E

U∗(cod)

U
(cod)

which is a fibration over Mon(E). Its fibers are precisely all the categories of the
form EO/M , where O ∈ B, EO is the fiber of E over O, and M is a monoid in EO.
The above discussion gives us a monoidal structure on E � U . Concretely the

monoidal product of A→M and B →M is given by A⊗B →M⊗M µ−→M (as

before) and the unit functor is I(M) = I(O)
e−→ M , the unit of multiplication

in M .

2 The Three Tensors Theorem

In this section we will construct the monoid which will do the heavy lifting in
our definition of opetopic sets. It was first discovered by the authors in the
context of monoidal signatures, but the abstract construction given here has
several advantages. The most obvious one is generality and conceptual clarity.
But the most important one is simplicity – the original construction consisted
almost entirely of checking whether one page-long term is equal to another. It
was quite unreadable.

2.1 Free Monoids in Monoidal Fibrations

The main theorem asserts the existence of a certain extra structure on a free
monoid. Its construction will use an explicit construction of this free monoid,
which will be given here. The basic ideas behind this construction seem have
been first stated explicitly in [Ada74]. A very general account of such construc-
tions has been given in [Kel80]. We will follow the very brief and readable [BJT,
Appendix B], and refer the reader there for all the calculations omitted here.
The context there is a single monoidal category, but the calculations adapt to
monoidal fibrations verbatim.

Let E be a strong monoidal fibration over B, that is we assume α, λ and ρ
to be isomorphisms. We wish to construct a fibered left adjoint to the forgetful
functor U : Mon(E)→ E . We assume the following:

a) E has fiberwise finite coproducts1 and filtered colimits.

b) The monoidal product ⊗ preserves fibered filtered colimits in both vari-
ables, and fibered binary coproducts in the left variable.

1Binary coproducts would suffice, but this would ruin the name of our main theorem.

7

The condition a) is stable under pullback, and gives us fibered filtered col-
imits, by corollary 1.5.

Let X ∈ E/O. We define

X0 = IO
Xn+1 = IO t (X ⊗Xn),

where IO is the unit of ⊗ in the fiber over O and t is the coproduct. We have
arrows

in : Xn → Xn+1

i0 : IO → IO tX is the coprojection
in+1 = 1 t (1⊗ in).

We define X∞, the universe of the free monoid on X, as the colimit of the Xi:

X∞ = lim−→(X0 → X1 → X2 → X3 → · · ·)

To define multiplication we define the morphisms µn,m : Xn ⊗Xm → Xn+m:

µ0,m = λXm : IO ⊗Xm → Xm

and for n ≥ 1 we have

Xn ⊗Xm ' (IO t (X ⊗Xn−1))⊗Xm ' Xm t (X ⊗Xn−1)⊗Xm,

and define

µn,m = (im,n+m, jn+m(1⊗ µn−1,m)) : Xm tX ⊗Xn−1 ⊗Xm → Xn+m,

where im,n+m : Xm → Xn+m is the inclusion (the composite of the appropriate
ik), and jk : X ⊗Xk−1 → Xk ' I tX ⊗Xk−1 is the coprojection.

By the fact that ⊗ preserves filtered colimits, and the (easily checked) com-
patibility of the µn,m we may pass to the colimit µ : X∞ ⊗ X∞ → X∞ of
the maps in+m,∞ ◦ µn,m : Xn ⊗ Xm → X∞, where in+m,∞ : Xn+m → X∞
is the canonical map to the colimit. We also have the unit of our monoid
η : I = X0 → X∞, given again by the canonical map to the colimit.

This construction is functorial in X. Consider a morphism f : X → Y over
u : O → Q in B. We set

f0 = Iu : X0 = IO → IQ = Y0

fn+1 = Iu t f ⊗u fn−1.

Again, the (obvious) compatibility implies the existence of a morphism f∞ :
X∞ → Y∞ (we define t and f∞ using remark 1.5), and it can be checked that
it is a monoid homomorphism over u, with respect to µ and η.

8

Theorem 2.1. If E has fiberwise finite coproducts and ⊗ preserves fibered fil-
tered colimits in both variables and binary coproducts in the left variable, then
the free monoid functor is X 7→ F(X) = (X∞, µ, η) on objects, and f 7→ f∞ on
morphisms.

Proof. All the calculations in [BJT] clearly apply in each fiber, and η is natural
in the entire fibration. The universality of η in the entire fibration follows from
lemma 1.4, since the forgetful functor from monoids is always a morphism of
fibrations.

We will require some additional facts about the above construction. They
were discovered in the course of the proof of the main theorem, but a very similar
phenomenon was used in [HMP, part 2] under the name “unique readability.”
If the structures under consideration are multicategories or operads, then the
free monoids consist of trees2 or terms. We will now see that we can “identify”
the first vertex in these trees or function symbol in these terms.

Proposition 2.2. Under the assumptions of theorem 2.1 the multiplication in
the free monoid µ : X∞⊗X∞ → X∞ has a vertical section ŝ : X∞ → X∞⊗X∞,

which factors as X∞
s−→ X1 ⊗X∞

i⊗1−−→ X∞ ⊗X∞, where i : X1 → X∞ is the
canonical map.

In fact the components of the map s (see the proof) will be more important
than either s or ŝ, which are only necessary for the application of the bootstrap
lemma 2.9.

Proof. We write µ1,∞ : X1 ⊗X∞ → X∞ for the colimit of µ1,m : X1 ⊗Xm →
Xm+1, from the construction above, with respect to m. Hence µ1,∞ ◦ 1 ⊗
im,∞ = im+1,∞ ◦ µ1,m, where ik,∞ is the canonical map Xk → X∞. Also
µ1,∞ = µ ◦ i1,∞ ⊗ 1, as is easily seen by composing both sides on the right with
1⊗ im,∞. We will construct s : X∞ → X1⊗X∞ such that µ1,∞ ◦ s = 1X∞ , and
define ŝ via the commutative diagram

X∞ X1 ⊗X∞ X∞

X∞ ⊗X∞

s µ1,∞

ŝ µ

i1,∞ ⊗ 1

Since ⊗ preserves filtered colimits, it suffices to construct a compatible family
of maps sm : Xm → X1 ⊗Xm−1, for m > 0, such that µ1,m−1 ◦ sm = 1Xm . We
have

2With additional structure of course. Note also, that vertices of these trees represent
operations and leaves represent inputs, and these are different parts of the structure – we are
not dealing with ordinary graphs!

9

Xn = I tX ⊗Xn−1

X1 ⊗Xn−1 = (I tX ⊗ I)⊗Xn−1 ' Xn−1 tX ⊗Xn−1,

and define

sn = I tX ⊗Xn−1

i0,n−1t1X⊗Xn−1−−−−−−−−−−−→ Xn−1 tX ⊗Xn−1.

In these terms µ1,n−1 is easily found to be

µ1,n−1 = (in−1,n, jn(1X ⊗ 1Xn−1
)) = (in−1,n, jn).

We can now calculate µ1,n−1 ◦ sn:

(in−1,n, jn) ◦ (i0,n−1 t 1X⊗Xn−1
) = (i0,n, jn),

which is the identity I tX ⊗Xn−1 → Xn. The compatibility condition for sn
is implied by the stronger condition

1⊗ in−1 ◦ sn = sn+1 ◦ in.

Expanding the definitions, it asserts the commutativity of the square

I tX ⊗Xn Xn tX ⊗Xn

I tX ⊗Xn−1 Xn−1 tX ⊗Xn−1

i0,n t 1

1 t 1⊗ in−1

i0,n−1 t 1

in−1 t 1⊗ in−1

which is obvious. We may therefore pass to the colimit, and conclude the
proof.

We will call the maps s, ŝ, constructed above, the canonical sections of µ, or
unique readability morphisms. The following technical lemma is needed in the
proof of the main theorem. It asserts a kind of coherence of s with respect to
multiplication.

Lemma 2.3 (Coherence lemma). The following diagram commutes (for n > 0)

Xn ⊗Xm Xn+m X1 ⊗Xn+m−1

(X1 ⊗Xn−1)⊗Xm X1 ⊗ (Xn−1 ⊗Xm)

µn,m sn+m

sn ⊗ 1 1⊗ µn−1,m

α−1

10

Proof. We use the coherence theorem to ignore the coherence isomorphisms.
Since Xn ⊗Xm is the coproduct I ⊗Xm tX ⊗Xn−1 ⊗Xm it suffices to check
the commutativity on each factor. Since any sk is the identity on the second
factor it is easy to see that both second factors are j ◦ (1⊗ µn−1,m), where j is
the coprojection as in the construction of µ.

The second factor can be calculated as follows. The lower way is straightfor-
ward. It is µn−1,m◦i0,n−1⊗1, which is (by the unit laws for µ) im,n+m−1 : Wm →
Wn+m−1. The upper way unfortunately mixes the components, so we must un-
wind one more level of definition. The relevant component of µn,m is im,n+m,
which is 1t1⊗im−1,n+m−1. Composing it with sn+m = (i0,n+m−1, 1X⊗Xn+m−1

)
yields i0,n+m−1 t 1⊗ im−1,n+m−1 = im,n+m−1, as required.

Remark 2.4. From now on we will occasionally abuse notation and write ik
for any of the maps ik,l. The codomain will always be clear form context.

2.2 Distributivity of Monoidal Structures

For any category C the category of endofunctors End(C) is strict monoidal
under composition of functors. The monoidal structure is composition in dia-
grammatic order (that is (x)f ◦ g means ,,first apply f to x, then g to (x) f”,
but only if f and g are objects of End(C)). If in addition C was itself monoidal,
we obtain functors C → End(C) which send each X ∈ C to either X ⊗ (−)
or (−) ⊗ X. We will always be interested in the latter functor, which we will
denote by R. Interestingly these functors are always monoidal in a natural way.
Namely we have

(A)(−)⊗ (X ⊗ Y) = A⊗ (X ⊗ Y)

(A)(−)⊗ (X) ◦ (−)⊗ Y = (A⊗X)⊗ Y,

and a natural isomorphism between these two is given by α−1
A,X,Y . The unit iso-

morphism is given by the appropriate components of ρ. The coherence diagrams
for this monoidal functor are the defining coherence diagrams of a monoidal cat-
egory (as in [Mac98]), with some morphisms replaced by their inverses.

If � is yet another monoidal structure on C, then we can also define a
monoidal category End�(C) of strong �-monoidal endomorphisms of C, as fol-
lows. The identity functor 1C has an obvious monoidal structure, and will serve
as a unit. The monoidal structure is composition of monoidal functors. It is
easy to see that the horizontal composite of monoidal transformations is again
monoidal, and so we can take as arrows the monoidal natural transformations.
This category is of course still strict monoidal.

There is an obvious strict monoidal functor U : End�(C)→ End(C), which
forgets the additional data.

11

Definition. Let C be a category, and suppose we are given two strong monoidal
structures on C, denoted (�, I�, α�, λ�, ρ�) and (⊗, I⊗, α⊗, λ⊗, ρ⊗). As above,
let R denote the functor X 7→ (−)⊗X. A distributivity structure of ⊗ over �
is given by a lift of R to End�(C) along U , as a monoidal functor:

End�(C)

C End(C)
R

UR̃

which means that we require R = U ◦ R̃ as monoidal functors.
We can unravel this definition and state it explicitly as extra data and prop-

erties for C. First, every functor R(X) = (−) ⊗X becomes �-monoidal. This
gives us isomorphisms

ϕA,B,X : (A⊗X)� (B ⊗X)→ (A�B)⊗X

ψX : I� → I� ⊗X

which make R(X) into a �-monoidal functor (which is R̃(X)). Of course for
every morphism f in C, the natural transformation R(f) = (−)⊗f is required to
be �-monoidal (giving R̃(f)). Second, since we require equality of R and U ◦ R̃
as monoidal functors, we see that the isomorphisms (α⊗)−1 : R̃(X) ◦ R̃(Y) →
R̃(X ⊗ Y) and ρ⊗ : 1C → R̃(I⊗) giving the monoidal structure of R̃ become
�-monoidal natural transformations. These properties are written as diagrams
in appendix A. Conversely, natural transformations3 ϕA,B,X and ψX subject
to the coherence diagrams in the appendix determine a unique distributivity
structure.

Remark 2.5. We will never consider more than one distributivity structure at
a time, so we will abuse language and say that “⊗ distributes over �”, as if this
were a property, and keep all the structure implicit. We will never change the
notation for the elements of a distributivity structure introduced above.

Remark 2.6. There are as many variations of this definition as there are ver-
sions of End�(C). We could use lax functors, comonoidal ones, or lift the
functor L(X) = X ⊗ (−). The choice is dictated by the application. For exam-
ple, the main theorem is still true if lift R to left-unital monoidal functors, that
is those which preserve only λ� but not necessarily ρ�.

Fibered distributivity. There is no difficulty in stating the fibered equiva-
lent of this definition – simply replace endofunctor categories with exponential
fibrations. We will be working with bifibrations, so the theory of [Zaw10, sec-
tion 4] can be applied. For this reason we limit the definition of a distributivity

3Note that at this point it is not clear that ϕ and ψ are natural in X. This is demonstrated
in the appendix.

12

structure to the case of bifibrations. Since none of our monoidal structures will
be morphisms of fibrations, we must use exponential fibrations computed in the
category of fibrations and fibered functors, not morphisms of fibrations. This
does not change the diagrammatic form of the definition, but only the fact that
ϕ and ψ become fibered natural.

Observe that a distributivity structure on a fibration restricts to a distribu-
tivity structure on each fiber.

Example. Let (C,⊗) be a monoidal category with finite coproducts, and sup-
pose that ⊗ preserves them in the left variable. Then the natural maps

A⊗X tB ⊗X → (A tB)⊗X
0 → 0⊗X

are isomorphisms which define a distributivity structure of ⊗ over t. All the
conditions are satisfied because of universality.

The preservation of products also defines a distributivity structure, but the
directions of the natural arrows are comonoidal rather than monoidal.

2.3 The Main Theorem

We say that a category (or fibration) C admits the free monoid construction if
the assumptions of theorem 2.1 are true in C. A strong monoidal structure on
C will be called nice if it preserves binary coproducts in the left variable and
filtered colimits in both. All the categories and fibrations under consideration
will have three monoidal structures – two arbitrary nice ones, and the coproduct.

Theorem 2.7 (The Three Tensors Theorem). If C admits the free monoid
construtions, �,⊗ are nice monoidal structures on C and ⊗ distributes over �,
then there is a unique ⊗-monoid structure on F�(I⊗), the free �-monoid on
the ⊗-unit, such that the unit of the adjunction F� a U�, ηI⊗ : I⊗ → F�(I⊗)
is the unit of the multiplication ν : F�(I⊗)⊗F�(I⊗)→ F�(I⊗), which in turn
makes the following main diagram commute (we abbreviate F�(I⊗) to W):

(W ⊗W)� (W ⊗W) W �W

(W �W)⊗W

W ⊗W W

ν � ν

ϕW,W,W

µ⊗ 1W

µ

ν

In the above diagram µ is the free multiplication in F�(I⊗).

13

The resulting monoid (W, ν, η) is called the web monoid, because in our
applications its elements look like webs. The proof will demonstrate slightly
more – the multiplication is determined by the unit conditions and the main
diagram, and its associativity follows from the construction. Obviously F�(I⊗)
exists by the assumptions of the theorem, and is given by the construction of
theorem 2.1.

The main diagram states that ν and µ commute. We need the distributivity
structure to explain how we can apply µ and ν to a single object in both orders
(for more on this point see the next to last paragraph in section 5). This property
is analogous to [HMP, part II, lemma 4], which states, in a restricted case, that
multiplication in the free monoid commutes with function replacement.

We will actually need the fibered version of the above theorem, which asserts
that in a fibered context the formation of W can be turned into a functor.

Theorem 2.8 (Fibered Three Tensors Theorem). If in the assumptions of the-
orem 2.7 each concept is replaced with its fibered analogue, then the conclusion
is the existence of a unique ⊗-monoid structure on the functor F�(I⊗(−)) (of
the base category) whose unit is the unit of the fibered free �-monoid adjunction
and whose multiplication makes the main diagram commute.

The free monoid construction is, by corollary 1.5, stable under pullback.
Likewise, a fibered distributivity structure restricts to an ordinary distributivity
structure in each fiber. Thus the functorW takes each O ∈ B to the web monoid
in the fiber over O. The only new assertion of the fibered version is that the
morphisms W(u) = F�(I⊗(u)), for u : O → Q ∈ B are homomorphisms with
respect to the new multiplication.

2.4 Essential Steps in The Proof of The Main Theorem

We must check that ν is unique, construct it, and verify the conditions of the
theorem. We will do the first two of these steps here, and carry out the remaining
calculations in the appendix. These steps contain the key, and only idea of the
proof.

As ⊗ preserves filtered colimits we need only determine compatible com-
ponents νn : Wn ⊗ W → W, where Wn is the n-th stage of the construction
of W = F�(I⊗) from theorem 2.1. We will prove that these components are
uniquely defined by the conditions of the theorem and define ν using these
components. We begin with a lemma.

Lemma 2.9 (Bootstrap lemma). If the following diagram commutes,

14

A B

C

D E

f

g

h

k
l

where h is an isomorphism and k has a section s, then

l = g ◦ f ◦ h−1 ◦ s

In addition, if k is an isomorphism, then the diagram commutes if and only if
the above equation holds.

The proof is trivial. Applying this lemma to the main diagram and the
canonical section ŝ of the free multiplication µ : W �W → W we obtain the
equation:

ν = µ ◦ (ν � ν) ◦ ϕ−1 ◦ ŝ
which must be satisfied by ν, but is unhelpful until we precompose it with
in,∞ ⊗ 1 :Wn ⊗W →W ⊗W, and obtain the following diagram:

(W1 ⊗W)� (Wn−1 ⊗W) (W ⊗W)� (W ⊗W) W �W

(W1 �Wn−1)⊗W (W �W)⊗W

Wn ⊗W W ⊗W W

ν � ν

ϕ−1

ŝ⊗ 1

µ

ν

ϕ−1

sn ⊗ 1

in ⊗ 1

(i1 � in−1)⊗ 1

ν1 � νn−1

νn

The boundary of this diagram provides an inductive definition of νn, starting
from ν1. The unnamed arrow is (i1 ⊗ 1) � (in−1 ⊗ 1), and all the i maps
should have an additional ∞ subscript (omitted for readability). This diagram
is commutative if ν exists. The top and bottom “bigons” or “biangles” are
commutative, since by definition νn = ν◦in,∞⊗1, and � is a functor. The upper
small rectangle is commutative by naturality of ϕ. To prove commutativity of
the lower small rectangle note the diagram

15

W1 �Wn−1 W1 �W W �W

Wn W W

1� in−1 i1 � 1

sn s

in 1

ŝ

which is the lower small rectangle with s added in the middle. The left square
commutes since s is by definition the limit of 1� in−1,∞ ◦ sn. The right square
commutes by proposition 2.2 (this is how we defined ŝ).

So far we have obtained that if ν exists, then the νn must satisfy

νn = µ ◦ (ν1 � νn−1)ϕ−1(sn ⊗ 1), (1)

which means that any candidate for ν is uniquely determined by ν1. The equa-
tion immediately gives the compatibility condition νn ◦ in⊗1 = νn−1 – just add
Wn−1 ⊗W in the lower left corner of the diagram above, two analogous small
rectangles above it, and use induction. We define ν0 = ν1 ◦ i0.

We will show in the appendix that ν1 is uniquely determined by the unit
conditions. We note that

W1 ⊗W ' (I� t I⊗)⊗W ' I� ⊗W t I⊗ ⊗W

Thus the map ν1 is determined by what happens on both of these components.
The calculations in the appendix give these components as

ν1 = (i0ψ
−1
W , λ⊗W)

Where i0 : I� →W.

Proposition 2.10 (Uniqueness of ν). If ν exists, then it is the colimit of the
arrows νn :Wn⊗W →W, with ν0, ν1 defined above, and νk defined by induction
using equation 1, for k > 1.

Proof. ν is determined by the family νn = ν◦in,∞⊗1. The calculations above (or
in the appendix, in the case n = 1) determine these components uniquely.

Definition 2.11 (The definition of ν). We define ν : W ⊗ W → W as the
colimit of the arrows νn :Wn ⊗W →W.

We are now left with checking that this definition works. As already indi-
cated, this is done in the appendix, since it consists of tedious inductive calcu-
lations.

3 Fibrations of Signatures

We will now introduce the structures among which the three tensors theorem
was first discovered and applied. They are based on signatures with nonstandard

16

amalgamation. Familiarity with ordinary multisorted signatures is not required,
but will help greatly.

A few remarks about the approach of [HMP] are in order. The structures
used there are very similar to ours – if not for the two levels, they would be
exactly monoids in the fibration of signatures with amalgamation. The end
results (the web monoid and the multicategory of function replacement) differ in
annoying details, but the same problem must be overcome in their construction.
It is the fact that replacing function symbols in a formal composite with formal
composites results in very complicated shuffling among the surviving function
symbols, regardless of the conventions chosen to extract the symbols from a
formal composite. Indeed an example is given in appendix C which shows
that shuffling must occur, that is, nonstandard amalgamation is necessary, and
follows from the “geometry” we wish to preserve. In [HMP] this is dealt with
by requiring the construction to be functorial, and defining the permutations
only in cases in which they are trivially determined (all the function symbols
are distinct). We can give explicit recursive formulas for these bijections in all
cases, and functoriality follows from this.

We will not write down these formulas however, since the results are quite
unTEX-able, and do not seem to be of interest. The reader may extract them
from the abstract construction of ν in the three tensors theorem and the defi-
nitions given here.

The operad of symmetries. This ordinary operad will provide us with the
combinatorics necessary for our description of opetopic sets. Using it system-
atically will allow us to minimize our computational effort. Let Sn be the n-th
symmetric group. The operad of symmetries S has the Sn as the sets of n-ary
operations, and composition is defined by ([Lei04]):

σ ∗ (ρ1, . . . , ρn)(k1 + . . .+ ki−1 + j) = kσ−1(1) + . . .+ kσ−1(σ(i)−1) + ρi(j),

where σ ∈ Sn, ρi ∈ Ski , and 1 ≤ i ≤ n, 1 ≤ j ≤ ki
This just means that we permute n disjoint blocks according to σ, and apply

ρi in the block that was i-th in the beginning. Contrary to what has been claimed
in the literature, the operation ∗ is not a homomorphism of groups, much less
so an obvious one.

It will be convenient to adopt a notation which allows us to compute com-
positions of permutations of the form σ ∗ (ρ1, . . . , ρn) in certain cases. First we
will assume the number of blocks is fixed and equal to n. We will then write
(i, j) for the j-th entry in the i-th block. For each block the number of entries
is arbitrary. Thus, by definition, we have

σ ∗ (ρ1, . . . , ρn)(i, j) = (σ(i), ρi(j))

This will allow us to compose such permutations easily, but only if the block
lengths match. This will never be a problem, since we will always know that
this happens a priori.

17

With this notation in hand we can prove

Lemma 3.1. If σ, σ′ ∈ Sn and ρi, ρ
′
i are permutations, such that the domains

of ρi and ρ′σ(i) are equal, then

σ′ ∗ (ρ′1, . . . , ρ
′
n) ◦ σ ∗ (ρ1, . . . , ρn) = (σ′ ◦ σ) ∗ (ρ′σ(1) ◦ ρ1, . . . , ρ

′
σ(n) ◦ ρn)

Proof. The assumptions allow us to use the double index notation. We have

σ ∗ (ρ1, . . . , ρn)(i, j) = (σ(i), ρi(j))

applying σ′ ∗ (ρ′1, . . . , ρ
′
n) to this (this is where we use the assumptions on the

domains) yields

(σ′(σ(i)), ρ′σ(i)(ρi(j)))

concluding the proof

Note that we can also compute inverses with this notation. We have

σ ∗ (ρ1, . . . , ρn)−1(i, j) = (σ−1(i), ρ−1
σ−1(i)(j)).

Again, we note that this formula is valid only if j has a proper range for every i
(in this case, j ranges over the domain of ρ−1

σ−1(i)). This will never be a problem

in our calculations.
We will occasionaly use longer indices, for example (i, j, k), but we will not

calculate with them. However such calculations would be justified, since S is
associative.

3.1 Signatures with Amalgamation

Notation. Let [n] = {0, . . . , n}, and (n] = {1, . . . , n} for n ∈ N. In particular
[n] = [0] ∪ (n] and (0] = ∅. For a set O we define O†n = O[n], O∗n = O(n] and
O† =

⋃
n∈NO

[n], O∗ =
⋃
n∈NO

(n]. Thus O∗ is the set of ordered lists of elements

of O, and O† is the set of lists with an additional element at the beginning.
Sn, the n-th symmetric group, for n > 0, acts on O†n i O∗n on the right by

precomposition (the lists are functions on [n]), leaving 0 fixed.
If d : [n] → O is a list, then we denote its restrictions of positive numbers

by d+ : (n] → O, and its restriction to [0] by d− : [0] → O. This establishes
a bijection 〈(−)−; (−)+〉 : O† → O × O∗. We have an obvious functor (−)† :
Set→ Set.

The category of signatures with amalgamation. It will be denoted Siga.
Its objects are set maps ∂ : A → O†. They will usually be referred to by their
domain, leaving the map, which is called the typing function, implicit. For
a ∈ A we denote ∂a := ∂(a) : [n]→ O and |a| := n, which is called the arity of
a. For morphisms (A, ∂,O) → (B, ∂,Q) we take triples (f, σ, u) (denoted just

18

by f henceforth), where f : A → B and u : O → Q are functions, and for any
a ∈ A, σa is a permutation (n]→ (n], where n = |a|, which makes the following
diagram commute.

[n] [n]

O Q

σa

∂a

u

∂f(a)

The fibration of signatures with amalgamation is defined by the functor
pa : Siga → Set, which sends ∂ : A→ O∗ to O, and each morphism (f, σ, u) to
u. Prone morphisms arise from pullbacks along u† (take all σ to be the identity),
like in a fundamental fibration.

Here is some intuition. The elements of A are function symbols, like in
any ordinary signature considered in logic or universal algebra. The arities
determine how many inputs every function symbol has. The elements of O are
called sorts or types. For example the signature of “rings and modules” would
have two types – one for the elements of a ring, and another for the elements of
a module, as well as function symbols that define ring and module operations,
one of which allows the ring to act on the module.

The morphisms are defined in such a way as to allow us to specify, for each
function symbol, how its inputs are related to the ones in its image. This in-
formation is specified in the permutations σa, and is required to be compatible
with type changes (i.e. the u map). These permutations are called amalgama-
tion permutations, and if they are nontrivial we say that we are dealing with
nonstandard amalgamation. Otherwise we will say that the morphism is strict,
or has trivial or standard amalgamation.

Cocompleteness properties of Siga. Signatures without amalgamation have
very nice (co)completeness properties – they are cocomplete and have most lim-
its. Unfortunately the addition of amalgamation permutations spoils some of
these properties, as the following example shows.

Let A be a signature with one binary function symbol, over a singleton set
O = {∗}. Then we have two obvious morphisms A → A – the identity, and a
morphism which permutes the inputs of our function symbol. Since permuta-
tions are invertible, these two morphisms are not equalized or coequalized by any
other morphism. Therefore Siga does not have all equalizers or coequalizers.

Fortunately signatures with amalgamation are nice enough for all the con-
structions we will deal with.

Proposition 3.2. The fibration Siga has the following (co)completeness prop-
erties:

1. All pullbacks (fibered or not).

2. Small coproducts (fibered or not).

19

3. All (small) fibered filtered colimits.

Proof. We leave the first two items as a warmup exercise. The construction of
fibered filtered colimits unfortunately requires some work.

By corollary 1.5 we may restrict our attention to individual fibers. We
will consider the fiber Siga/O. There is a forgetful functor U : Siga/O →
Set/O, which forgets the input types, but not the output (it corresponds to the
projection O† ' O × O∗ → O). The category Set/O is obviously cocomplete.
We will use it to build our colimits.

Consider a filtered diagram F : D → Siga/O. Each signature is the coprod-
uct of countably many signatures consisting of all the n-ary function symbols
of the original signature, for n ∈ N. Morphisms preserve arity, so this is also
true for the entire diagram F . We may therefore assume that all the values of
F consist of signatures with function symbols of a fixed arity n ∈ N.

By cocompleteness U ◦ F has a colimiting cone τ : U ◦ F ·−→ X in Set/O.
We will show that it can be lifted to a cone in Siga/O. The fact that any such
lift is colimiting is trivial, since permutations are invertible.

If all the values of F are empty, the colimit is empty, and we are done. We
may assume that F has nonempty values. Since all the function symbols in the
values of F are n-ary, we declare that each element of X is also an n-ary symbol.
We must define the typing of each symbol, and the permutation amalgamations
of the components of the colimiting cone. For each x ∈ X (which exist, since F
has nonempty values) consider its inverse image in the diagram U ◦ F – those
function symbols, which map to x under the components of the colimiting cone.
These inverse images are disjoint, and therefore we can consider them separately.

Choose an f ∈ F (d) which maps to x under τd. We declare that the amal-
gamation permutations of τd are the identity for f . This gives us a typing of
x. This also determines the amalgamation permutations of all other symbols
which map to x – the diagram is filtered, and permutations are invertible, so
considering only the permutations we can get anywhere in the inverse image
of x starting from f . Such a procedure may result in a contradiction – and it
does in the example we gave above for nonexistence of coequalizers. But in our
case the diagram is filtered, so any two parallel morphisms are equalized by a
third one, and no contradiction can arise. Any two potentially different ways for
getting from f to another symbol have equal amalgamation permutations.

The monoidal structure. We will now define the monoidal fibration struc-
ture on our signatures. We begin by defining the two fibered functors.

Siga ×Set Siga Siga Set

Set

⊗ I

pa ×Set pa 1Set
pa

If A and B are signatures over O, then we set

20

A⊗O B = {〈a, bi〉i∈(|a|] : a ∈ A, bi ∈ B, ∂a(i) = ∂bi(0), for i ∈ (|a|]},

which is to be thought of as the signature of formal composites of symbols from
A and B. Note that we allow |a| = 0, which means a nullary formal composite
(no bi)

4. For the typing we set

∂A⊗OB〈a,bi〉i∈(|a|]
= [∂−a , ∂

+
bi

]i∈(|a|] : [

|a|∑
i=1

|bi|] −→ O.

This means that the output type of 〈a, bi〉 is the output type of a, and the input
types are those of the bi placed side by side, in order of increasing i.

For morphisms f, g over u : O → Q we set

f ⊗u g(〈a, bi〉i∈(|a|]) = 〈f(a), g(bσ−1
a (j))〉j∈(|f(a)|]

(σ ⊗u τ)〈a,bi〉i∈(|a|] = σa ∗ (τb1 , . . . , τb|a|),

where ∗ is composition in the operad of symmetries. This defines a functor by
lemma 3.1.

For the unit we set I(O) = ∂IO : O → O†, which assigns to every o ∈ O the
unary typing with constant value o. This defines a fibered functor in an obvious
way.

We can now give a little more intuition. The “transformation rule” we have
chosen for our tensor product, that is the definition of f ⊗ g, follows from the
fact that the amalgamation permutations σ specify how the inputs of a function
symbol are mapped to its image under the morphism. Then the definition of
σ⊗ τ represents a natural way to combine the actions of these permutations on
a formal composite. This is the defining feature distinguishing signatures with
amalgamation from ordinary ones, and easily results in some rather baroque
formulas5, which we have done our best to avoid.

Monoids with respect to this structure give us a way to factually compose
formal composites. Returning to our example of rings and modules we see
that this would give a multiplication table between ring and module operations,
which could encode the usual axioms for rings and modules. No nonstandard
amalgamation would be necessary. The category of actions of this monoid along
the tautologous action of Siga on cod : Set→ → Set (see section 5, or [Zaw10])
would then be equivalent to the category of (all) modules.

We still need to define the coherence isomorphisms α, λ, and ρ. They are
given by

4Without such composites associativity fails, among many other important things.
5Footnotes 7 and 8 should give a sense of exactly how baroque they can get!

21

αA,B,C(〈a, 〈bi, ci,j〉〉) = 〈〈a, bi〉, ci,j〉
λA(〈1∂Aa (0), a〉) = a

ρA(a) = 〈a, 1∂Aa (1), . . . , 1∂Aa (n)〉,

and all the permutations taken to be the identity. The double index (i, j) is
ordered lexicographically.

Theorem 3.3. The structure given above defines a strong monoidal structure
on the fibration Siga.

Proof. The only nontrivial thing to prove is the naturality of α. This means we
must check the commutativity of the following diagram.

A⊗O (B ⊗O C) (A⊗O B)⊗O C O

A′ ⊗Q (B′ ⊗Q C ′) (A′ ⊗Q B′)⊗Q C ′ Q

αA,B,C

αA′,B′,C′
f ⊗u (g ⊗u h) (f ⊗u g)⊗u h u

where all the morphisms f, g and h are over u : O → Q. The amalgamation
permutations of these morphisms will be denoted σ, τ and δ, respectively.

The two ways of going around the diagram give us

〈〈f(a), g(bσ−1
a (i))〉, h(cσ⊗τ−1

〈a,bi〉
(i,j))〉

and amalgamation permutations (σ ⊗ τ)⊗ δ〈〈a,bi〉,ci,j〉, and

〈〈f(a), g(bσ−1
a (i))〉, h(cσ−1

a (i),τ−1
b
σ
−1
a (i)

(j))〉

with amalgamation permutations σ ⊗ (τ ⊗ δ)〈a,〈bi,ci,j〉〉.
The equality of the amalgamation permutations follows from the associativ-

ity of ∗ – the multiplication in the operad of symmetries. The terms are equal,
since

σ ⊗ τ−1
〈a,bi〉(i, j) = (σ−1

a (i), τ−1
b
σ
−1
a (i)

(j))

by the formula for inverses we gave when discussing the operad of symmetries.

Remark 3.4. This structure is neither left nor right closed (considering it fiber-
by-fiber). It is not left closed because A⊗ (−) does not preserve coproducts. For
right closedness it is easy to see that if A consists of a single symbol, then for
any X the maps A → X form a free Aut(A)-set. Taking X = Hom(B,C) for
suitable A,B and C yields a contradiction since the set of maps A ⊗ B → C
need not admit a free Aut(A) action.

22

3.2 Monoidal Signatures with Amalgamation

Consider the functor U : Mon(Siga)→ Set, which maps every monoid M to its
underlying set of function symbols and every homomorphism of monoids u to the
underlying function. The fibration of monoidal signatures with amalgamation
is defined as the pullback of Siga along U ,

Sigma Siga

Mon(Siga) Set

pma

U
pa

By corollary 1.2 this is a monoidal fibration. The monoidal structure is defined
by exactly the same formulas as the one for Siga, but the set of types (formerly
O) remembers that it is a monoid (denoted M).

The entire fibration is also almost exactly the same as Siga. The only dif-
ference is that types form a monoid in Siga (over some set of types in Set).
We will continue to speak about function symbols and amalgamation permuta-
tions in this context. Note that Sigma inherits all the fibered (co)completeness
properties of proposition 3.2, since they are pullback-stable.

The main point of this construction is that when the types form a monoid,
a new monoidal structure appears, and we can define a distributivity structure.
Before we do so, however, we need some preparation.

The separation principle. We will often need to verify equality of certain
natural transformations. The problem can be split into two parts – check equal-
ity on function symbols, and on permutation amalgamations. The first part is
usually easy, but the second part is often intractable – the formulas are just too
complicated (see for example the calculations in appendix B and try to compare
the amalgamation permutations for condition I).

The separation principle is inspired by the construction of the multicate-
gory of function replacement in [HMP], where the permutations are completely
avoided (at a cost of definiteness of the construction). We will settle for a lit-
tle less. We will exploit naturality to get rid of the second part. Establishing
naturality will be difficult enough. We note the following trivial lemma.

Lemma 3.5. If in the following diagram in Sigma (or Siga) the morphisms h
and k are strict, then for a ∈ A we have σa = θh(a), where σ are the amalga-
mation permutations of f and θ are the permutations of g.

A B

A′ B′

f

h
g

k

23

We will consider the following construction. Let M ∈ Mon(Siga) be a
monoid. We can construct a new monoid MN over the same set of types as
follows. The universe of MN is M ×N, the typing is defined by projecting onto
M : M × N→M → O†. The unit is the composite I →M 'M × {0} ↪→MN,
and multiplication is defined by

µMN〈(f, n0), (g1, n1), . . . , (gk, nk)〉 = (µM (f, g1, . . . , gk),

k∑
i=0

ni)

The fact that these formulas define a monoid follows from the fact that N is a
monoid in Set. Obviously the projection map π : MN →M is a homomorphism
of monoids. It will be essential in applications that this homomorphism is strict.
In fact we have defined a functor, and π is a natural transformation, but this
will be irrelevant in our arguments.

Let E be a fibration over Mon(Siga) and let F,G : E → Sigma be two
fibered functors. Consider the following two properties of F and G (which are
to hold for any M):

1. For any X ∈ E over M there is a prone morphism θ : Y → X over π such
that both F (θ) and G(θ) are strict morphisms.

2. For any (and hence every) prone morphism θ : Y → X over π the following
holds: for any f ∈ F (X) there is an f̃ ∈ F (Y) in the fiber over f (i.e.
mapping to f under F (θ)) whose typing is injective.

Pairs of functors possessing property 1 will be called agreeable. Functors with
property 2 will be called separated. All pairs of functors we will deal with will
be agreeable and separated, and this fact will always be very easy to check.

The notion of agreeability can be extended to any set of functors (we require
all of them to be strict on a single prone morphism). We will then say that
functors in this set are jointly agreeable.

Theorem 3.6 (The Separation Principle). Let E be a fibration over Mon(Siga),
let F,G : E → Sigma be two fibered functors, and let φ1, φ2 : F → G be two
fibered natural transformations whose components are equal on function symbols.
If F and G are agreeable and F is separated, then φ1 = φ2.

Proof. We must prove equality of all components. Since they are equal on
function symbols, we must check the equality of amalgamation permutations.
Consider an f ∈ F (X) and choose a prone θ over π for which both F (θ) and
G(θ) are strict. We have the following situation:

24

F (Y) G(Y)

F (X) G(X)

f̃

f

φ1
Y

φ2
Y

F (θ)
φ1
X

φ2
X

G(θ)

By separability there is an f̃ ∈ F (Y) in the fiber over f whose typing is injective.
We know that φ1

Y and φ2
Y are equal on f̃ . Their amalgamation permutations

on f̃ are uniquely determined, since its typing is injective. Thus they are equal.
Now lemma 3.5 implies that the amalgamation permutations are equal for f
also.

Remark 3.7. The separation principle is also true for Siga. Instead of con-
sidering MN we consider O × N for O ∈ Set.

Remark 3.8. There is considerable room in the above argument – one need not
consider MN, but some other monoid with infinite fibers over M . In our appli-
cations is also important that the projection π has standard amalgamation. The
choices we have made work in general and make the statement of the separation
principle short enough to be applicable.

Remark 3.9. A similar argument can be used to define natural transformations
between agreeable functors, when we know what to do on function symbols. This
is what is done in [HMP, part II] to construct multiplication in the multicategory
of function replacement.

The second monoidal strucutre �. Consider an object A ∈ Sigma over
a monoid M . It has a typing A → M†, and we can consider the output type
A → M† → M . Since M is a monoid over some set O, it has its own typing
M → O†. The composite A → M† → M → O† gives us a typing of A over O.
Thus every a ∈ A has two kinds of inputs and outputs. The ones just defined
will be called horizontal, the old ones will be called vertical. As a set we define

A�M B = A⊗O B,
which means

{〈̇a, bi〉̇ : ∂M∂Aa (0)(i) = ∂M∂Bbi (0)(0)},

where i ranges over (0, k] with k = |∂Aa (0)| (arity computed in M). We will use

the notation 〈̇ . . . 〉̇ and 〈. . .〉 to distinguish between elements of A �M B and
A⊗M B. To ease notation we will write ǎ for ∂Aa (0). We must define the typing
of this set, that is a function A�M B →M†. The output type is the composite

∂�,−
〈̇a,bi 〉̇

= A⊗O B →M ⊗O M
µ−→M,

25

where the arrows from A and B to M are the output types (considered as
morphisms in Siga with trivial amalgamation), used to define the horizontal
typing, and µ is multiplication in M . Using our notation we can write

∂�,−
〈̇a,bi 〉̇

= µ(ǎ, b̌i).

The inputs are just the inputs of a and bi concatenated in order

∂�,+
〈̇a,bi 〉̇

= [∂A,+a , ∂B,+b1
, . . . , ∂B,+bk

] : (n0 + n1 + . . . nk]→M

The reader should imagine that a and bi are arranged on a level surface
(“horizontally”) and all the vertical inputs (including those of a) are visible
“from above”, and are available in forming (A�M B)⊗M C.

We need to describe the values of � on morphisms. It is easy to see that a
morphism in Sigma is completely described by a quintuple (f, τ, u, σ, v), where
(u, σ, v) is a homomorphism of monoids M → N in Siga over some function v
in Set, and (f, τ) is a morphism in Siga from A→M† to B → N† over u. Let
f and f ′ be two such homomorphisms. We define

f � f ′(〈̇a, b1, . . . , bk 〉̇) = 〈̇f(a), f ′(bσ−1
ǎ (1)), . . . , f

′(bσ−1
ǎ (k))〉̇

as a function. The permutation τ � τ ′ is permutes the vertical inputs of the
formal composites according to τ for the inputs from a and τ ′ for inputs from
the bi, and places the blocks in which these inputs are arranged on the block
belonging to its image. Formally we define τ � τ ′ as follows

τ � τ ′〈̇a,bi 〉̇ = (1, σǎ) ∗ (τa, τ
′
b1 , . . . , τ

′
bk

).

where (1, σ) means the coproduct of the identity on the singleton and σ (con-
jugated by a translation to act on [2, k+ 1]). Using the same notation for more
general permutations we could have written

τ � τ ′〈̇a,bi 〉̇ = (τa, σǎ ∗ (τ ′b1 , . . . , τ
′
bk

))

The entire morphism f � f ′ is now the quintuple (f � f ′, τ � τ ′, u, σ, v).
The unit I� takes values I�(M), which are defined to be ∂I�(M) : O →

M† ' M ×M∗. The first factor is the output type, and ∂I�(M)(o) takes the
value e(o) on this factor, where e : O → M is the unit of multiplication in M .
The inputs are defined to be empty for all o ∈ O.

We must define the coherence isomorphisms. Both ρ� and λ� are defined
analogously to the previous case, replacing 〈. . . 〉 with 〈̇ . . . 〉̇. They are given by

λA(〈̇1∂Mǎ (0), a〉̇) = a

ρA(a) = 〈̇a, 1∂Mǎ (1), . . . , 1∂Mǎ (|ǎ|)〉̇

26

We take the amalgamation permutations to be the identity, since the unit
I� has no vertical inputs. If it did there would be no bijection between the
inputs of both sides.

The only problem is the definition of α�. The problem is that M may have
nonstandard amalgamation. That is the multiplication M ⊗O M → M need
not be strict – it can mix the inputs according to some nontrivial permutation.
We have used it to define the horizontal typing. Because of this the naive
associativity isomorphism A� (B�C)→ (A�B)�C is not even well defined,
since the values it “should” have are not necessarily among the elements of
(A�B)� C.

The correct solution, for geometrical and other reasons6, is the following.
Denote by γ (more precisely γM) the amalgamation permutations of the mul-
tiplication map of M (that is of µ : M ⊗O M → M , which lives in Siga/O).
Define

α�A,B,C(〈̇a, 〈̇bi, ci,j 〉̇〉̇) = 〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇

as a function. We leave it to the reader to see that the term on the left is well
defined. Indeed, this is the only formula which works when the horizontal inputs
of 〈̇a, bi〉̇ are all distinct.

We must define the vertical amalgamation permutations. For this con-
sider a, bi and ci,j as formal variables. Let κ〈̇a,〈̇bi,ci,j 〉̇〉̇ be the permutation

which sends each formal variable on the list 〈̇a, 〈̇bi, ci,j 〉̇〉̇ to itself on the list

〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇. More precisely these lists are

〈̇a, 〈̇b1, c1,1, . . . , c1,l1 〉̇ . . . 〈̇bk, ck,1, . . . , ck,lk 〉̇〉̇
〈̇〈̇a, b1, . . . , bk 〉̇, cγ−1

〈ǎ,b̌i〉
(1,1), . . . , cγ−1

〈ǎ,b̌i〉
(k,lk)〉̇

To define the amalgamation permutations of α�, which we will denote by π,
we make κ act on blocks of the appropriate length (the length of the inputs of
each function symbol)

π〈̇a,〈̇bi,ci,j 〉̇〉̇ = κ〈̇a,〈̇bi,ci,j 〉̇〉̇ ∗ (1(|a|], . . . 1(|ck,lk |])

thus, each block of inputs “tracks” the position of its corresponding function
symbol. Again, this permutation is the only well defined one when all the inputs
of a, bi and ci,j are distinct. Therefore by the (proof of the) separation principle
it is the only formula that can be natural, given what we want to do with the
function symbols.

We will now prove that α� is natural and satisfies the pentagon identity.
The rest of the proof that (�, α, λ, ρ) defines a monoidal fibration structure is
very easy and formally identical to the corresponding part of the proof for ⊗ in
Siga.

6For example, the constructions in section 5 depend critically on this definition

27

Naturality of α�. We consider the diagram

A� (B � C) (A�B)� C M

A′ � (B′ � C ′) (A′ �B′)� C ′ N

α�A,B,C

α�A′,B′,C′
f � (g � h) (f � g)� h u

All three morphisms are over the homomorphism of monoids u. We will check
that they are equal as functions first, and then consider the amalgamation per-
mutations. Consider the term

〈̇a, 〈̇bi, ci,j 〉̇〉̇

Applying both ways to go around the diagram we obtain

〈̇〈̇f(a), g(bσ−1
ǎ (i))〉̇, h(cξ−1

1 (i,j))〉̇

and

〈̇〈̇f(a), g(bσ−1
ǎ (i))〉̇, h(cξ−1

2 (i,j))〉̇

Where σ are the amalgamation permutations of u, and ξ1 and ξ2 are given as
follows7:

ξ1 = γN〈 ˇf(a), ˇg(b
σ
−1
∂a

(i)
)〉 ◦ σ ⊗ σ〈ǎ,b̌i〉

ξ2 = σµ(ǎ,b̌i)
◦ γM〈ǎ,b̌i〉

Their equality follows from the fact that u is a homomorphism of monoids –
this is the equality required from the amalgamation permutations of a homo-
morphism.

We are left with proving that the amalgamation permutations are equal,
thus we must prove that

π〈̇f(a),〈̇g(b
σ
−1
ǎ (i)

),h(c
σ⊗σ−1

〈ǎ,b̌i〉
(i,j)

)〉̇〉̇ ◦ τ � (δ � ζ)〈̇a,〈̇bi,ci,j 〉̇〉̇ =

(τ � δ)� ζ〈̇〈̇a,bi 〉̇,cγ−1

〈ǎ,b̌i〉
(i,j)
〉̇ ◦ π〈̇a,〈̇bi,ci,j 〉̇〉̇

Both these permutations permute the input blocks of the function symbols
a, bi and ci,j , and apply some permutation inside each block. This follows from
our definitions of π and β �χ. We will prove their equality in two (concurrent)

7The “check” symbol over the lowermost index a was replaced by ∂ due to TEX-nical issues.

28

steps: we will show that the block permutations are equal, and then that the
same permutation is applied inside each block.

To see the equality of block permutations we argue for each function symbol.
The argument for a is trivial. The arguments for bi are similar to (and simpler
than) the arguments for ci,j . We will therefore only consider those last symbols.

Each ci0,j0 is part of a larger symbol 〈̇bi0 , ci0,j 〉̇. Let us analyze what both sides
do to this block and its elements.

The left permutation applies δ � ζ〈̇bi0 ,ci0,j 〉̇ to the input block of this larger

symbol, and moves it to its position in 〈̇f(a), 〈̇g(bσ−1
ǎ (i)), h(cσ⊗σ−1

〈ǎ,b̌i,〉
(i,j))〉̇〉̇ (i.e.

applies (1, σǎ) to the input blocks). In particular ζci0,j0 is applied to our input

block, and it is placed on the block of h(ci0,j0) in 〈̇f(a), 〈̇g(bσ−1
ǎ (i)), h(cσ⊗σ−1

〈ǎ,b̌i,〉
(i,j))〉̇〉̇.

The final π moves the block to its position in 〈̇〈̇f(a), g(bσ−1
ǎ (i))〉̇, h(cξ−1

2 (i,j))〉̇,
with ξ2 given above.

The right permutation breaks up this bigger block, since π is applied first. By
definition of π, the input block of ci0,j0 is moved to its position in 〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇.

Then we must apply (τ�δ)�ζ〈̇〈̇a,bi 〉̇,cγ−1

〈ǎ,b̌i〉
(i,j)
〉̇. Looking at the definition, we see

that ζci0,j0 is applied to our block, and then all the blocks (including those of a
and bi, which are permuted by (1, σǎ) before this) are permuted by (1, σµ(ǎ,b̌i)

).
This means that the input blocks of ci,j are permuted by σµ(ǎ,b̌i)

. This means

that our block lands on the block of h(ci0,j0) in 〈̇〈̇f(a), g(bσ−1
ǎ (i))〉̇, h(cξ−1

1 (i,j))〉̇.
But we know that ξ1 = ξ2. Therefore the block permutations are equal.

We have also seen that ζci0,j0 is applied to our block in both cases. Thus both
permutations are equal.

The pentagon identity. Since we have established naturality, we can apply
the separation principle 3.6. All the functors in the pentagon diagram are
jointly agreeable and separated – their values on prone morphisms (which are
constructed by pullback, as in Siga) are strict. To see separability consider a
term

〈̇a, 〈̇bi, 〈̇ci,j , di,j,k 〉̇〉̇〉̇
label the inputs of a by consecutive natural numbers, starting with 0, then label
the inputs of b1 with consecutive numbers after the ones used for a. Repeat
this process until the last di,j,k is reached. Label the outputs so as to maintain
composability. This defines the needed lift. By the separation principle we are
reduced to checking the pentagon identity on function symbols.

After some amount of calculation we find that we must compare

〈̇〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇, d(1⊗γ)−1

〈ǎ,〈b̌i,či,j〉〉
◦γ−1

〈ǎ,µ(b̌i,či,j)〉(i,j,k)〉̇

and8

8Is five levels of indexing baroque enough?

29

〈̇〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇, d(γ⊗1)−1

〈〈̇ǎ,b̌i 〉̇,či,j〉
◦γ−1

〈µ(ǎ,b̌i),č
γ
−1

〈ǎ,b̌i〉
(i,j)

〉(i,j,k)〉̇

which comes down to the equality

(1⊗ γ)−1
〈ǎ,〈b̌i,či,j〉〉

◦ γ−1
〈ǎ,µ(b̌i,či,j)〉

= (γ ⊗ 1)−1
〈〈ǎ,b̌i〉,či,j〉

◦ γ−1
〈µ(ǎ,b̌i),čγ−1

〈ǎ,b̌i〉
(i,j)
〉

This equality is satisfied by the amalgamation permutations of µ by virtue of
associativity.

3.3 Distributivity for Monoidal Signatures

We can now define the distributivity structure on Sigma which will give us the
web monoids used in the definition of opetopic sets. To define a distributivity
structure we need only specify ϕA,B,X and ψX , which satisfy certain coherence
conditions.

By definition, ϕA,B,X : (A⊗X)� (B ⊗X)→ (A�B)⊗X maps the term

〈̇〈a, x0,1, . . . , x0,l0〉, 〈b1, x1,1, . . . , x1,l1〉, . . . , 〈bk, xk,1, . . . , xk,lk〉〉̇

to

〈〈̇a, b1, . . . , bk 〉̇, x0,1, . . . , x0,l0 , x1,1, . . . , x1,l1 , . . . , xk,1, . . . , xk,lk〉

with trivial amalgamation permutations.
ψX : I� → I� ⊗X is defined by

1o 7→ 〈1o,−〉

for o ∈ O (the set of types of M). The (−) represents an empty list, since the
vertical inputs of elements of I� are empty.

Theorem 3.10. The above definitions give Sigma a distributivity structure of
⊗ over �.

The proof of this theorem consists of checking the coherence conditions listed
after the definition of a distributivity structure (and drawn as diagrams in ap-
pendix A). This is done in appendix B.

Using this theorem and the main theorem 2.8 we obtain a section W :
Mon(Siga)→Mon(Sigma,⊗) of the fibration of ⊗-monoids in monoidal signa-
tures. It associates to each ordinary monoid M ∈ Mon(Siga) the correspond-
ing web monoid W(M) ∈ Mon(Sigma,⊗). Since (Sigma,⊗) is a pullback of
(Siga,⊗), the web monoid is naturally a monoid in Siga (we can forget that
M is a monoid after forming W(M)). If we wish to emphasize the difference
between these two structures we will write |W(M)| for the image in Siga. We
will not be consistent about this, however.

30

The name “web monoid” comes from the fact that its elements look like
webs, at least in some circumstances. In any case the pasting diagram monoids
Sn (defined below) can catch flies of dimension n+ 1.

4 The Category of Opetopic Sets

An opetopic set X is given by

1. A sequence of objects Xn ∈ Siga/Xn−1, each in the fiber over the previous
one (considered as a set), for n ∈ N>0. By definition X0 is a set.

2. A sequence of monoids Sn ∈Mon(Siga)/Xn, for n ∈ N.

3. A sequence of strict morphisms Xn+1
ϑXn−−→ Sn in Siga/Xn, equipped with

prone arrows (in Mon(Siga))

1 S0 W(Sn) Sn+1

{∗}† X†0 S†n X†n+1

ξX−1

∂S0

(∃!)†

ξXn

∂Sn+1

(ϑXn)†
∂W(Sn)

A morphism f : X → Y of opetopic sets is a sequence of functions fn :
Xn → Yn, for n ∈ N, such that:

1. The morphism fn+1 : Xn+1 → Yn+1 is well defined as a strict morphism
in Siga over fn, for n ∈ N>0.

2. The induced homomorphisms f̄n : Sn → Tn make the following diagrams
commute

31

1 S0

1 T0

{∗}† X†0

{∗}† Y †0

ξX−1

1

f̄0

∂S0

f†0
(∃!)†

1

(∃!)†
∂T0

ξY−1

W(Sn) Sn+1

W(Tn) Tn+1

S†n X†n+1

T †n Y †n+1

ξXn

W(f̄n)

f̄n+1

∂Sn+1

f†n+1
(ϑYn)†

∂W(Sn)

f̄†n

(ϑXn)†

∂W(Tn)

∂Tn+1

ξYn

and

Sn Xn+1

Tn Yn+1

ϑXn

fn+1

ϑYn

f̄n

considered in Set, for n ∈ N

32

5 Comparison with “Polynomial functors and
opetopes”

We will now compare the web monoid for monoidal signatures with the “Baez-
Dolan slice construction” as defined in [KJBM]. The answer is that |W(M)| is
the result of the slice construction on M . To formally state the answer we need
to recall some facts and definitions from [Zaw10].

Polynomial endofunctors. Let O ∈ Set. A polynomial functor over O is
a finitary functor preserving wide pullbacks Set/O → Set/O. A morphism
of polynomial functors is a cartesian natural transformation. This gives us
a category Poly(O) of polynomial functors over O. These categories naturally
assemble into a fibration of polynomial functors over Set, denoted Poly→ Set.

The identity functor is polynomial and polynomial endofunctors can be com-
posed. This give Poly the structure of a strict monoidal fibration. In fact it is
a monoidal subfibration of the exponential fibration Exp(Set) (the exponential
object in Cat/Set of the codomain fibration with itself).

Monoids in this fibration are exactly the polynomial monads – monads whose
underlying functor is polynomial and whose structure morphisms are cartesian.

The action of Siga on the basic fibration. An action of a monoidal fi-
bration on another fibration is defined exactly like an action of a monoidal
category on another category, but everything is fibered (functors too – we still
do not require preservation of prone morphisms). The definition is spelled out
in detail in [Zaw10]. Signatures with amalgamation act on the basic fibration
cod : Set·→· → Set as follows. If A ∈ Siga/O and (X → O) ∈ Set/O then we
define

A ? X = {(a, x1, . . . , x|a|) : ∂Aa (i) = d(xi) for i = 1, . . . , |a|}

again, we allow |a| = 0 above. The structure morphism d? : A?X → O is given
by

d?(a, x1, . . . , x|a|) = ∂Aa (0)

The action of ? on morphisms is defined in an obvious way. This defines an
action

Siga ×Set Set·→· Set·→·

Set

?

pa × cod cod

The exponential adjoint of this action repa : Siga → Exp(Set) is given by
A 7→ A ? (−). It is described by the following theorem

Theorem 5.1. repa : Siga → Poly is an equivalence of monoidal fibrations.

33

The proof is given in [Zaw10, section 6]. We will often identify a signature
with its associated functor.

Note that if we forget that an object of Siga has inputs (but not the output!)
we obtain an object of Set·→·, since O† ' O×O∗ gives a decomposition of the
typing into (output, inputs) – forgetting the second factor leaves us with a map
A → O, which is an object of Set·→·. This defines a fibered forgetful functor
U : Siga → Set·→·

We can also construct a fibered functor − : Set·→· → Siga, which defines
the vertical inputs to be empty. This is neither a left nor right adjoint to U . We
will call X the sterile signature associated to X. This gives us a useful formula
for the action.

Lemma 5.2. A ? X = U(A⊗X).

Proof. We have equality of the defining formulas for both sides.

In fact, defining the action this way might be a good idea.
Note that there are no morphisms from between sterile and non-sterile sig-

natures, and that − is fully faithful.

Corollary 5.3. ? preserves coproducts in the left variable and filtered colimits
in both

Proof. Looking at lemma 5.2 we see that − is cocontinuous and ⊗ preserves the
listed colimits. U trivially preserves coproducts and preserves filtered colimits
by their construction, which was given in 3.2.

The slice construction from [KJBM]. There are no fibrations in [KJBM],
and thus we will be forced to restrict our discussion to individual fibers. This
means we loose functoriality of the web monoid in the argument monoid M .
We will fix this in a moment, but first we will give the original construction.

Recall that the slice of a monoidal category by a monoid is naturally a
monoidal category. Let M ∈ Mon(Poly(O)) be a polynomial monad over O.
We obtain a natural monoidal structure on Poly(O)/M . Then monoids over
M are the same as monoids in Poly(O)/M .

Note that free polynomial monads (free monoids) on a polynomial functor
exist. They can be constructed using theorem 2.1. An explicit construction can
be found in [KJBM]. The same is true for monoids Poly(O)/M .

Remark 5.4. In fact Mon(Poly(O)/M) is monadic over Poly(O)/M .

Lemma 5.5. Poly(O)/M is equivalent to Set/M

Here we treat M as the corresponding set of function symbols given by
theorem 5.1.

Proof. By theorem 5.1 Poly(O)/M is equivalent to (Siga/O)/M . We will see
in theorem 5.13 (when we restrict to fibers) that this category is equivalent to
Set/M .

34

Of course in the above proof the fact that M is a monoid plays no role. It
is only needed to construct the monoidal structure on Poly(O)/M .

We can now give the slice construction. Let M ∈ Mon(Poly(O)) be a
polynomial monad. The category Poly(O)/M is monoidal and has a free
monoid functor. This gives rise to the free monoid monad TM : Poly(O)/M →
Poly(O)/M . By lemma 5.5 this is equivalent to a monad M+ : Set/M →
Set/M . This monad is polynomial (one can check this directly, but it will also
follow from our results).

Definition 5.6. The [KJBM] Baez-Dolan slice construction is the assignment
M 7→M+.

By remark 5.4 M+ is the “operad for operads over M”, as it should be.
We can now state the comparison theorem.

Theorem 5.7. For any M ∈Mon(Siga) we have an isomorphism

repa(|W(M)|) ' repa(M)+

Using theorem 5.1 to identify monoids in Siga with polynomial monads we
can write more clearly

|W(M)| 'M+

Formation of the web monoid is therefore very nearly identical to the Baez-
Dolan construction. However the construction of the web monoid is completely
different. Since (−)+ is not a functor, we can not say that the isomorphism in
the theorem is natural. We will see in a moment that when (−)+ is extended
to a functor by working with fibrations, then the isomorphism is natural.

We will need to reformulate theorem 5.7 in order to prove it. Note that
the equivalence between Poly and Siga is monoidal, and hence induces an
equivalence between polynomial monads and monoids in signatures. This in
turn gives an equivalence of fibered slices of these fibrations:

Siga � Usig ' Poly � Upoly
over the equivalence of monoid fibrations. The fibers of the fibered slice of
Poly are (by construction) exactly all the categories of the form Poly(O)/M ,
where M is a monoid in Poly(O). Thus we have assembled into a fibration all
the categories used in the Baez-Dolan construction. This fibration has a free
monoid monad, which will be denoted (−)+. The (−) stands for an argument
from the base: M+(X) is the free monoid in the fiber over M on X. This is the
natural way to extend the Baez-Dolan construction into a functor by working
with fibrations. It is also the same (up to equivalence) as the extension given
by hand in [KJBM]. At this point we will forget about polynomial functors and
work exclusively with signatures.

Theorem 5.13 gives us an equivalence of fibration which on fibers is exactly
the equivalence asserted in lemma 5.5. This allows us to carry out the Baez-
Dolan construction in all fibers at once. For this we need the pullback action

35

The pullback action. We defined Sigma as the pullback of Siga by the
functor Mon(Siga) → Set which sends a monoid M to its underlying set of
function symbols. We constructed a monoidal structure on it by a corollary
of lemma 1.1. But the lemma states much more – any algebraic structure can
be pulled back. In particular we can pull back an action of a lax monoidal
fibration, for example the action of Siga on the basic fibration. Thus we obtain
the following situation:

U∗Set·→· Set·→·

Sigma ×Mon(Siga) U∗Set·→· Siga ×Set Set·→·

Mon(Siga) Set

U∗?

U∗

?

cod

U∗cod

Again, the formula for U∗? is the same as the one for ?, but the set of types
(or the codomain of d : X → M) forms a monoid in Siga. We will denote the
pullback action by ? in the sequel, and also denote U∗U as U . This should not
cause any confusion. Note that the formula of lemma 5.2 is still true for the
pullback action, as is its corollary.

At this point it should be clear that the fiber of U∗Set·→· overM ∈Mon(Siga)
is isomorphic to Set/M , the slice of Set over the set of function symbols of M .
Theorem 5.13 gives an adjoint equivalence Siga � U ' U∗Set·→·, and hence
we can view the monad (−)+ as acting on the latter fibration. This allows us
to state the fibered version of the comparison theorem.

Theorem 5.8 (Comparison Theorem – Fibered Version). There is an isomor-
phism of monads W(−) ? (=) ' (−)+(=), where W is the web monoid functor.

The original comparison theorem 5.7 follows immediately from this one when
we apply the forgetful functor in each fiber to the pullback action and return
to the action of Siga on the fundamental fibration. This theorem makes it
clear that the proper base category for these constructions is not Set but rather
Mon(Siga), and this cannot be easily seen without using fibrations.

This theorem also neatly summarizes the differences between our approach
and that of [KJBM]. Their construction takes place in two different categories
(or fibrations). In each only one type of inputs is visible (vertical or horizontal
in our terminology). We have found a third fibration which sees both kinds
of inputs, and all the relevant structure in the two original fibrations. It is a
somewhat amusing fact that Sigma knows what free monoids look like in those
other fibrations.

The proof of theorem 5.8 takes the rest of this section.

36

5.1 Proof of The Comparison Theorem

The proof of theorem 5.8 will consist of establishing certain properties of the
pullback action, and an alternative description of U∗Set·→·.

An alternative description of U∗Set·→·. Our first result is that Siga � U
(the fibered slice) is equivalent to U∗Set·→·. The proof requires some prelimi-
nary constructions.

Lemma 5.9. For any M ∈ Siga/O there is a bijection {set maps X → M} '
{strict morphisms X →M over O}.

Proof. To a function X → M we assign a strict morphism, with X typed by

the composition X →M
∂−→ O†. Conversely, if the morphism is strict, then the

typing is defined by that formula, so we can forget it.

The full subfibration of Siga � U of strict objects is defined as follows.
Recall that the objects of Siga � U are morphisms A → U(M) in Siga over
some O ∈ Set, where M is a monoid in Siga/O. An object is called strict if the
morphism A→ U(M) is strict. This fibration will be denoted by Siga � Ustr.

Corollary 5.10. The subfibration of Siga � U of strict objects is isomorphic
to U∗Set·→·.

Proof. The above lemma defines a bijection on objects. A morphism between
strict objects has, by lemma 3.5, the same amalgamation permutations as the
morphism in the base, and can therefore be regarded as a function. Conversely
any function between strict objects can be made into a morphism by setting
the amalgamation permutations to what lemma 3.5 says they should be. These
constructions are clearly inverse to each other.

We will now show that the subfibration of Siga � U of strict objects is in
fact equivalent to Siga � U . We will use a functorial factorization for this
purpose. This construction was first used in [HMP] for monoids.

Consider a morphism f : A → B in Siga. We will factor it into two mor-

phisms A
ζf−→ A[f] → B, with the first morphism an isomorphism and the

second morphism strict. The construction is simple: A[f] is the same set as
A, but with typing defined by ∂A ◦ σ−1, which means ∂A[f](a) = ∂A(a) ◦ σ−1

a ,
where σ are the permutations of f , and ∂A is the original typing.

We now set the morphism ζf : A → A[f] to be the identity on function
symbols and have permutations given by σ. Obviously it is an isomorphism.
The second morphism acts as f on the function symbols, but is strict.

Recall that a functorial factorization is a section of the composition functor
C·→·→· −→ C→.

Lemma 5.11. The above construction uniquely defines a functorial factoriza-
tion on Siga and on Mon(Siga).

37

Proof. Since the morphisms are factorized into an isomorphism followed by some
other morphism, the middle of the factorization is uniquely defined by the com-
mutativity conditions. Functoriality is then trivial. It is also easy to check that
if we require the morphism ζf : A → A[f] to be an isomorphism of monoids,
then the middle factorization will also be a homomorphism if f was one.

In the second part of the argument the requirement that f is a homomor-
phism is important. It is quite surprising that one cannot transport monoid
structures in Siga along isomorphisms – the permutations of the isomorphism
may ruin associativity. The condition that transport is possible is easy to write
down, and satisfied by the permutations of monoid homomorphisms.

This functorial factorization is not fibered in any good sense – the first mor-
phism is always over the identity, and the second is over whatever the original
morphism was over.

Now let f : A → U(M) be an object of Siga � U . Then A[f] → U(M)
is a strict object. Since the factorization was functorial, this defines a fibered
functor fct : Siga � U → Siga � Ustr. There is also the obvious inclusion
i : Siga � Ustr ↪→ Siga � U

Theorem 5.12. The above functors form an adjoint equivalence over Mon(Siga).

Proof. Save the adjoint part, this is a purely formal consequence of having a
functorial factorization which factors a morphism into an isomorphism followed
by another morphism. Inclusion followed by factorization is the identity on
Siga � Ustr. A factorization followed by inclusion is isomorphic to the identity
functor on Siga � U by the following diagram:

A B

A[h] B[k]

M N

f

ζh
fct(f)

ζk

u

h k

The components ζh of the functorial factorization form an isomorphism from
the identity functor to the composite of factorization and inclusion.

For the adjunction we take the components ζ−1
h to be the counit – it is the

identity on function symbols, so we only need to worry about its amalgamation
permutations. The unit is the identity. The triangular identities are then state
that the following two composites are the identity

i(X)
1−→ i ◦ fct ◦ i(X)

ζ−1
i(X)−−−→ i(X)

fct(X)
1−→ fct ◦ i ◦ fct(X)

fct(ζ−1
X)

−−−−−→ fct(X)

38

They are true, since fct(ζ−1
h) is the identity by lemma 3.5 (or direct calculation),

and ζ−1
i(X) is the identity for strict objects X.

Combining this theorem with corollary 5.10 we have

Theorem 5.13. There is an adjoint equivalence Siga � U → U∗Set·→·.

A monoidal structure on U∗Set·→·. The fibration Siga � U is monoidal,
and we have shown that it is equivalent to Siga � Ustr ' U∗Set·→·. We can get
a monoidal structure on the latter fibration by the following general construction

Let C,D be categories (fibrations), and let F : C → D, G : D → C be an
adjoint equivalence of categories (fibrations) with counit and unit isomorphisms
ε : GF → 1C and η : 1D → FG. If C is monoidal, then we can make F and G
into a monoidal equivalence using the following natural formulas:

ID = F (IC)

A⊗D B = F (G(A)⊗C G(B))

αDA,B,C = F (ε−1
G(A)⊗G(B) ⊗ 1 ◦ αG(A),G(B),G(C) ◦ 1⊗ εG(A)⊗G(B))

λDA = η−1
A ◦ F (λCG(A) ◦ εI ⊗ 1)

ρDA = η−1
A ◦ F (ρCG(A) ◦ 1⊗ εI)

φ2,F
A,B = F (εA ⊗ εB) : F (A)⊗ F (B) = F (GF (A)⊗GF (B))→ F (A⊗B)

φ0,F = 1F (I)

φ2,G
A,B = ε−1

G(A)⊗G(B) : G(A)⊗G(B)→ G(A⊗B) = GF (G(A)⊗G(B))

φ0,G = ε−1
I : I → GF (I),

where the last four items define monoidal structures on F and G, respectively.

Theorem 5.14. The above construction defines a monoidal structure on D, F
and G, for which ε and η are monoidal transformations.

Proof. Exercise. Everything follows from naturality of various transformations
except (all) diagrams involving η, where the triangular identities are also needed.

We can calculate what this structure looks like in our case. For example
the units are unchanged, since they have only unary function symbols. The
associativity isomorphism is the following

αA,B,C(〈a, 〈bi, ci,j〉〉) = 〈〈a, bi〉, cγ−1
〈∂a,∂bi〉

(i,j)〉

For A,B,C in the fiber over M . ∂ denotes the structure morphisms to M , and γ
the amalgamation permutations of the multiplication map in M . This structure
will be denoted by ⊗.

39

Corollary 5.15. The functor U : (Sigma,�)→ (U∗Set·→·,⊗) is strict monoidal.

Proof. All the formulas for parts of both monoidal structures coincide.

This gives an alternative construction of Sigma – take Siga � U , strictify
and add vertical inputs. The construction by pullback is significantly more
efficient.

Now a (well-engineered) miracle happens. Consider the exponential adjoint
?̂ : U∗Set·→· → HomMon(Siga)(Sigma,U∗Set·→·) of the pullback action. We
have the following

Theorem 5.16. This adjoint lifts to (�,⊗)-monoidal functors:

Hom�,⊗Mon(Siga)(Sigma,U∗Set·→·)

U∗Set·→· HomMon(Siga)(Sigma,U∗Set·→·)
?̂

?̃

Proof. By lemma 5.2 (which is still true for Sigma by pullback) we have

?̂ = U∗ ◦R ◦ −,

where R is the functor X 7→ (−) ⊗X for Sigma, U∗ = HomMon(Siga)(1, U) is

the action of U by postcomposition, and − is the sterile signature functor.
Since we have a lift R̃ of R to End�Mon(Siga)(Sigma), and U is strict (�,⊗)-

monoidal we can define ?̃ by

?̃ = U∗ ◦ R̃ ◦ −

Concretely this gives us the following natural isomorphisms:

(A ? X)⊗ (B ? X)
φA,B,X−−−−−→ (A�B) ? X

〈(a, xi,j), (b1, xi′,j′), . . . , (bk, xi′′,j′′)〉 7→ (〈̇a, b1, . . . , bk 〉̇, xm,n)

I� ? X → I⊗

(1o,−) 7→ 1o,

which are given by formally the same formulas as distributivity for Sigma. They
give each functor (−) ?X the structure of a monoidal functor (Sigma/M,�)→
(U∗Set·→·/M,⊗) where X is over M .

Corollary 5.17. The pullback action has the following properties:

40

1. Every functor (−) ? X maps �-monoids in Sigma/M to ⊗-monoids in
U∗Set·→·/M , where X is over M .

2. F�(I⊗)?X ' F⊗(X). In particular this isomorphism maps multiplication

to multiplication µ
F�
I⊗
?X ' µF⊗X , and the units and counits: η

F�
I⊗
?X ' ηF⊗X

and εI⊗ ? X ' εX .

Proof. The first point is trivial. The second one follows from the formula for free
monoids in theorem 2.1, the fact that ? preserves filtered colimits and coproducts
in the left variable (pullback of corollary 5.3), and the fact that ? is an action,
which gives I⊗ ? X ' X. Thus (−) ? X maps the free �-monoid construction
in Sigma to the free ⊗-monoid construction in U∗Set·→·. Combining these
facts gives F�(I⊗) ? X ' F⊗(I⊗ ? X) ' F⊗(X) along with all the associated
structure.

Proposition 5.18. Let ϕ be the distributivity isomorphism in Sigma, φ the
isomorphism we defined above, and let a be the associativity isomorphism for
the pullback action. Then the following diagram commutes:

[A ? (Y ? X)]⊗ [B ? (Y ? X)] [(A⊗ Y) ? X]⊗ [(B ⊗ Y) ? X]

[(A⊗ Y)� (B ⊗ Y)] ? X

(A�B) ? (Y ? X) [(A�B)⊗ Y] ? X

a⊗ a

φA,B,Y ?X

φA⊗Y,B⊗Y,X

ϕA,B,Y ? X

a

Proof. Direct calculation. An entirely analogous calculation is done for diagram
II in appendix B.

The above diagram is analogous to diagram II in appendix A. Indeed φ is in
some sense ϕ and a is in some sense α⊗ for Sigma, just like ? is in some sense
⊗ by lemma 5.2. At this time we do not know how to make this analogy more
precise, because in forming a we need to know that the middle variable is in
Sigma, and the formula of 5.2 cannot possibly remember this.

Theorem 5.19. M+(−) ' W(M) ? (−) as monoids, naturally in M .

Proof. (−)+ acts as the free monoid monad on Siga � U , which is monoidally
equivalent to U∗Set·→· with the ⊗-structure, by theorem 5.13 and construction
of ⊗. Thus (−)+ is isomorphic to the free monoid monad on U∗Set·→·. By the
second point of the above corollary the universe of the web monoid acts as the
free ⊗-monoid monad on U∗Set·→·, and a natural isomorphism drops out.

41

We must check whether it is an isomorphism of monads. The units are
mapped to each other by definition – in both cases they are the unit of the
same adjunction (for W this follows again from corollary 5.17). This leaves
multiplication. We must check if ν ? X ◦ a is εF⊗(X) ' εF�(I⊗) ? X. Consider
the following diagram (we abbreviate W =W(M)):

F2
⊗(X)⊗F2

⊗(X) [(W ⊗W) ? X]⊗ [(W ⊗W) ? X] (W ? X)⊗ (W ? X) F⊗(X)⊗F⊗(X)

[W ? (W ? X)]⊗ [W ? (W ? X)] [(W ⊗W)� (W ⊗W)] ? X (W �W) ? X

(W �W) ? (W ? X) [(W �W)⊗W] ? X

W ? (W ? X) (W ⊗W) ? X W ? X

F2
⊗(X)

(ν ? X)⊗ (ν ? X)︸ ︷︷ ︸

'

a

µ ? 1

a

φ

' ⊗ '
a⊗ a

' ⊗ '

µ
F⊗
X

φφ
(ν � ν) ? X

ϕ ? X

(µ⊗ 1) ? X

µ ? X

ν ? X

µ
F⊗
F⊗(X)

The central square is just the main diagram starred with X. It commutes by the
definition of ν. The square above it commutes by naturality of φ. The rightmost
triangle commutes by corollary 5.17, as does the leftmost “bigon” or “biangle”.
The trapezoid commutes by proposition 5.18. The square below it commutes
by naturality. Since F⊗ is determined only up to natural isomorphism, the iso-
morphisms marked ' are irrelevant, and can be taken, for example, to be the
identity.

Thus we see that ν ? X ◦ a gives a natural homomorphism of monoids
F2
⊗(X) → F⊗(X). Since F⊗ is the free monoid monad, all such homomor-

phisms are determined by what they do to the unit ηF⊗(X). But by the unit
conditions for ν we see that ν ? X ◦ a ◦ ηF⊗(X) is the identity, as the following
diagram shows

42

F⊗(X) W ? X I⊗ ? (W ? X) (I⊗ ⊗W) ? X

F2
⊗(X) W ? (W ? X) (W ⊗W) ? X

F⊗(X) W ? X

' a

' a

η
F⊗
F⊗(X) η

F�
I⊗

? 1 (η
F�
I⊗
⊗ 1) ? X

'

λ�W ? X

ν ? X

The top left rectangle commutes by 5.17. The right bigon commutes by the
unit conditions for ν. The top right square commutes by naturality of a. The
isomorphisms ' are again irrelevant, and can be taken to be identities. The
unnamed isomorphism is the canonical one, given by the action ?. The dashed
arrow is determined by the other composites, and is the identity, by the left unit
condition for ?.

Only the counit can satisfy this equation, and thus ν ? X ◦ a = ε
F⊗
F⊗(X)

concluding the proof.

It should be clear from this argument that distributivity really does tell us
that ν commutes with µ. This is made literal by the pullback action, as we saw
above.

In fact we could check that all our identities hold before applying (−)?X (we
have a natural isomorphism F2

�(X) ' F�(X)⊗ F�(X)), but the way we have
set up the formalism, this would entail several more pages of direct calculation,
and a theorem or two.

A Proof of the Main Theorem

The Coherence Conditions. Here we will list, as promised, the coherence
conditions arising from the definition of distributivity.

• Condition I

43

(A⊗X)� ((B ⊗X)� (C ⊗X)) ((A⊗X)� (B ⊗X))� (C ⊗X)

(A⊗X)� (B � C)⊗X ((A�B)⊗X)� (C ⊗X)

(A� (B � C))⊗X ((A�B)� C)⊗X

α�

1� ϕB,C,X

ϕA,B�C,X

ϕA,B,X � 1

ϕA�B,C,X

α� ⊗ 1

• Condition II

(A⊗ (X ⊗ Y))� (B ⊗ (X ⊗ Y)) ((A⊗X)⊗ Y)� ((B ⊗X)⊗ Y)

((A⊗X)� (B ⊗X))⊗ Y

(A�B)⊗ (X ⊗ Y) ((A�B)⊗X)⊗ Y

α⊗ � α⊗

ϕA,B,X⊗Y

ϕA⊗X,B⊗X,Y

ϕA,B,X ⊗ 1

α⊗

• Condition III

A�B

(A⊗ I⊗)� (B ⊗ I⊗) (A�B)⊗ I⊗

ρ⊗ρ⊗ � ρ⊗

ϕA,B,I⊗

• Condition IV, for any morphism f : A⊗X → Y

(I� ⊗X)� (A⊗X) I� � Y

(I� �A)⊗X

A⊗X Y

ψ−1
X � f

ϕ

λ� ⊗ 1
f

λ�

44

• Condition V

I� ⊗ (X ⊗ Y) (I� ⊗X)⊗ Y I� ⊗ Y

I�

α⊗ ψ−1
X ⊗ 1

ψ−1
X⊗Y ψ−1

Y

• Condition VI
ψI⊗ = ρ⊗I�

• Condition VII

(A⊗X)� I� A⊗X

(A⊗X)� (I� ⊗X) (A⊗ I�)⊗X

ρ�

1� ψX
ϕA,I�,X

ρ� ⊗X

The conditions are listed in the form in which they are used in the proof.
They follow from the definition of distributivity: first, because R̃(f) is �-
monoidal for all morphisms it follows that φ and ψ giving the monoidal struc-
ture for R̃(X) are natural in X. Conditions I, IV and V II say that R̃(X) is
�-monoidal. Condition IV is the left unit condition combined with the natu-
rality of λ�. Conditions III and V I are the requirement that ρ : 1C → R̃(I⊗)
is an �-monoidal natural transformation. Conditions II and V say the same
for (α⊗)−1 : R̃(X) ◦ R̃(Y)→ R̃(X ⊗ Y).

Remark A.1. Condition V II will not be used in the proof. Thus the main
theorem is true if we lift R to EndL�(C), the category of left-unital �-monoidal
functors.

Determination of ν1 and ν0. In this paragraph we still suppose that ν exists.
We must proove that ν1 = (i0ψ

−1
W , λ⊗W) as claimed above. This follows from the

unit conditions. They are

I⊗ ⊗W W ⊗W W ⊗ I⊗

W

η ⊗ 1 1⊗ η

ν
λ⊗ (ρ⊗)−1

We can expand them to the following commutative diagram

45

W1 ⊗W W1 ⊗W1

I⊗ ⊗W W ⊗W W ⊗ I⊗ W1 ⊗ I⊗

W

1⊗ i1

i1 ⊗ 1
j ⊗ 1

λ

ν1

1⊗ j
i1 ⊗ 11⊗ η

ν
(ρ⊗)−1(i1 ⊗ 1)

where some of the original maps was omitted for readability. Maps labeled j
are coprojections of coproducts. They are factorizations of η (hence the com-
mutativity). We wish to determine the dotted arrow ν1. We note that

W1 ⊗W ' (I� t I⊗)⊗W ' I� ⊗W t I⊗ ⊗W

Thus the map ν1 is determined by what happens on both of these components.
The left unit condition immediately implies that the right component is mapped
to W by λ⊗W . To see what happens to I� ⊗W consider the top map composed
with 1⊗ j and the inclusion of I�⊗ I⊗ into W1⊗ I⊗. En easy calculation gives
that this is 1⊗η : I�⊗I⊗ → I�⊗W followed by the inclusion I�⊗W →W1⊗W.
We now look at the right unit condition. We obtain the diagram

I� I�

I� ⊗W I� ⊗ I⊗

I� ⊗W t I⊗ ⊗W I� ⊗ I⊗ t I⊗ ⊗ I⊗

W

1⊗ η t 1⊗ η

(?, λ⊗W)
i0(ρ⊗)−1 t (ρ⊗)−1η

ψW

1

ψI⊗
1⊗ η

We want to determine the map “?”. The unnamed maps are coprojections. On
the right components of the coproducts this diagram commutes by naturality
of λ⊗ and the condition λI⊗ = ρ−1

I⊗
. The second component of the diagonal

map is determined by the naturality of ρ⊗ applied to the inclusion I� =W0 →
W1 → W. The top square commutes by naturality of ψ. From this we obtain
the equation

? ◦ ψWψ−1
I⊗

= i0(ρ⊗I�)−1

from which follows, using coherence condition VI, that the map “?” is

i0 ◦ ψ−1
W : I� ⊗W =W0 ⊗W →W.

46

Note that these calculations also determine that ν0 = i0,∞ψ
−1
W , since this map

is ν1 precomposed with the inclusion I� ⊗ W → W1 ⊗ W, and we have just
determined exactly this composite.

From now on we use the definition 2.11 for ν since we have already showed
that it is the only possible choice. We still have to check that ν defines a
monoid and makes the main diagram commute. We will intensely use induction
- the first component will satisfy an appropriate equality, usually because of the
coherence conditions, and then all others will follow by applying the inductive
definition 1. The original condition will be recovered by applying the colimit
functor.

The unit conditions. The left unit condition holds as part of our definition
of ν, since it factors through ν1, which was defined in part by this condition.
This leaves the right unit condition. We will prove it using induction on n
starting with n = 1, which consists of the calculations above. For the inductive
step we need to check that

νn ◦ 1⊗ η = in(ρ⊗)−1.

Consider the following diagram:

(W1 ⊗ I⊗)� (Wn−1 ⊗ I⊗) (W1 ⊗W)� (Wn−1 ⊗W) W �W

(W1 �Wn−1)⊗W

Wn ⊗W W

(W1 �Wn−1)⊗ I⊗ Wn ⊗ I⊗

µ

ϕ−1
1,n−1

1⊗ η

sn ⊗ 1

1⊗ η
inρ
−1

sn ⊗ 1

νn

ϕ−1
1,n−1

(1⊗ η)� (1⊗ η) ν1 � νn−1

All the regions in it commute except possibly the small triangle below νn, which
we are investigating. This follows from the naturality of ϕ (note the abbreviation
we have introduced here) and the definition of νn. From this and the inductive
hypothesis we can calculate that

νn1⊗ η = inµ1,n−1(ρ−1 � ρ−1)φ−1
1,n−1(sn ⊗ 1)

using the explicit definition of µ given in theorem 2.1. Thus if we can check that

inµ1,n−1(ρ−1 � ρ−1)φ−1
1,n−1(sn ⊗ 1) = inρ

−1,

we would be done. But this comes down to the commutativity of

47

(W1 ⊗ I⊗)� (Wn−1 ⊗ I⊗) W1 �Wn−1 W �W W

(W1 �Wn−1)⊗ I⊗ W1 �Wn−1 Wn

Wn ⊗ I⊗ Wn

ρ−1 � ρ−1 i1 � in−1 µ

µ1,n−1
ϕ−1

1,n−1

ρ−1

1

ρ−1

sn ⊗ 1 sn
1

in

which follows from the definition of µ (top triangle), naturality of ρ⊗ (bottom
rectangle), coherence condition III (top rectangle), and proposition 2.2 – the
defining property of sn (bottom triangle).

Commutativity of the main diagram. We will consider the diagram

(Wn ⊗W)� (Wm ⊗W) W �W

(Wn �Wm)⊗W

Wn+m ⊗W W

νn � νm

ϕn,m

µn,m ⊗ 1W

µ

ν

and prove its commutativity by induction on n (for arbitrary m), starting with
n = 0. In this case µ0,m = λ⊗ is and isomorphism, and the second part of the
bootstrap lemma 2.9 tells us that we must prove

νm = µ((i0 ◦ ψ−1
W)� νm)ϕ−1

0,m(λ−1 ⊗ 1),

since ν0 = i0 ◦ψ−1
W . After the applying the unit condition for µ to the right side

of the above equation we find that it is

λ ◦ (ψ−1
W � νm)ϕ−1

0,m(λ−1 ⊗ 1).

But by coherence condition IV for ψ this is exactly νm, and we are done.
The inductive hypothesis is

µ(νn−1 � νm) = νn+m−1(µn−1,m ⊗ 1)ϕn−1,m

and we must show that

µ(νn � νm) = νn+m(µn,m ⊗ 1)ϕn,m.

48

Expanding the left side, we can calculate 9

µ(νn � νm) = (definition of νn)
µ([µ(ν1 � νn−1)ϕ−1

1,n−1(sn ⊗ 1)]� νm) = (functoriality of �)

µ((µ� 1) ◦ [(ν1 � νn−1)ϕ−1
1,n−1(sn ⊗ 1)]� νm = (associvativity of µ)

µ((1� µ) ◦ (α�)−1 ◦ [(ν1 � νn−1)ϕ−1
1,n−1(sn ⊗ 1)]� νm = (functoriality of �)

µ((1� µ) ◦ (ν1 � (νn−1 � νm)) ◦ (α�)−1 ◦ [ϕ−1
1,n−1(sn ⊗ 1)]� 1) = (inductive hypothesis)

µ(ν1 � νn+m−1(µn−1,m ⊗ 1)ϕn−1,m ◦ (α�)−1 ◦ [ϕ−1
1,n−1(sn ⊗ 1)]� 1),

similarly for the right side

νn+m(µn,m ⊗ 1)ϕn,m
=

µ((ν1 � νn+m−1)ϕ−1
1,n+m−1(sn+m ⊗ 1))(µn,m ⊗ 1)ϕn,m.

We will show that

ϕ−1
1,n+m−1(sn+m ⊗ 1))(µn,m ⊗ 1)ϕn,m

=
(1� (µn−1,m ⊗ 1))ϕn−1,m ◦ (α�)−1 ◦ [ϕ−1

1,n−1(sn ⊗ 1)]� 1.

This follows from the commutativity of the following diagram (specifically the
commutativity of the boundary)

(Wn ⊗W)� (Wm ⊗W) ((W1 �Wn−1)⊗W)� (Wm ⊗W) ((W1 ⊗W)� (Wn−1 ⊗W))� (Wm ⊗W)

(Wn �Wm)⊗W ((W1 �Wn−1)�Wm)⊗W (W1 ⊗W)� ((Wn−1 ⊗W)� (Wm ⊗W))

Wn+m ⊗W (W1 � (Wn−1 �Wm))⊗W (W1 ⊗W)� ((Wn−1 �Wm)⊗W)

(W1 �Wn+m−1)⊗W (W1 ⊗W)� (Wn+m−1 ⊗W)

ϕn,m ϕ1�(n−1),m

(sn � 1)⊗ 1

µn,m ⊗ 1 (α�)−1 ⊗ 1

(1� µn−1,m)⊗ 1

ϕ−1
1,n+m−1

ϕ−1
1,(n−1)�m

1� (µn−1,m ⊗ 1)

(α�)−1

1� ϕn−1,m

sn+m ⊗ 1

(sn ⊗ 1)� 1︸ ︷︷ ︸ ϕ−1
1,n−1 � 1︸ ︷︷ ︸

I

II

III

IV

This diagram commutes, since all the indicated regions commute. I and IV com-
mute by naturality of ϕ, II commutes by coherence condition I for ϕ, and III
commutes by the coherence lemma 2.3.

9Unfortunately the diagrams involved are simply too big to include here.

49

Associativity of ν. We will now check that ν is associative. Note that we
have not used this condition to define ν, so as we have said earlier, it is a
consequence of the main diagram and the unit conditions.

Lemma A.2. The composite νn◦(1⊗im) factors through in·m, as in the diagram

Wn ⊗Wm Wn ⊗W W

Wn·m

1⊗ im νn

νn,m in·m

Proof. By induction on n. For n = 1 we have ν1 = (i0ψ
−1
W , λW), and the claim

follows from the naturality of λ⊗, ψ and the fact that i0 = im ◦ i0 (recall our
abuse of notation). We obtain ν1,m = (i0ψ

−1
Wm

, λWm).
The inductive step immediately follows from this commutative diagram:

(W1 ⊗Wm)� (Wn−1 ⊗Wm) (W1 ⊗W)� (Wn−1 ⊗W) W �W Wm �W(n−1)m

(W1 �Wn−1)⊗Wm (W �W)⊗W

Wn ⊗Wm Wn ⊗W W Wnm

νn � νn−1
ϕ−1

sn ⊗ 1

µ

νn

ϕ−1

sn ⊗ 1

1⊗ im

1⊗ im µm,(n−1)m

inm

ν1,m � νn−1,m

The top arrow implements the inductive hypothesis, and the unnamed arrows
are the obvious ones.

We will show, by induction on n, for all m, the commutativity of

Wn ⊗ (Wm ⊗W) (Wn ⊗Wm)⊗W Wnm ⊗W

Wn ⊗W W

α⊗ νn,m ⊗ 1

1⊗ νm
νn

νnm

Passing to the limit gives the desired associativity law. For n = 0 we need to
show that

i0ψ
−1
Wm

(1⊗ νm) = νm((i0ψ
−1
Wm

)⊗ 1)α⊗,

which is an easy calculation following from the fact that ψ is natural (anything
on the right of ψ−1 can be canceled), and coherence condition V . The inductive
hypothesis to be used in passing from n− 1 to n is

50

ν(n−1)m(νn−1,m ⊗ 1)α⊗n−1,m = νn−1(1⊗ νm)

Again we calculate:

νn(1⊗ νm) = (definition of νn)
µ((ν1 � νn−1))ϕ−1

1,n−1(sn ⊗ 1)(1⊗ νm) = (naturality of ϕ)

µ((ν1(1⊗ νm)� νn−1(1⊗ νm)))ϕ−1
1,n−1,m⊗w(sn ⊗ 1) = (inductive hypothesis)

µ((νm(ν1,m ⊗ 1)α⊗1,m)� (ν(n−1)m(νn−1,m ⊗ 1)α⊗n−1,m))

ϕ−1
1,n−1,m⊗w(sn ⊗ 1) = (diagram below)

µ(νm � ν(n−1)m)ϕ−1
m,(n−1)m[(ν1,m � νn−1,m)⊗ 1]

(ϕ1,n−1,m ⊗ 1)α⊗1�(n−1),m⊗w(sn ⊗ 1)

The relevant diagram is

(W1 �Wn−1)⊗ (Wm ⊗W) ((W1 �Wn−1)⊗Wm)⊗W

(W1 ⊗ (Wm ⊗W))� (Wn−1 ⊗ (Wm ⊗W))

((W1 ⊗Wm)⊗W)� ((Wn−1 ⊗Wm)⊗W) ((W1 ⊗Wm)� (Wn−1 ⊗Wm))⊗W

(Wm ⊗W)� (W(n−1)m ⊗W) (Wm �W(n−1)m)⊗W

α⊗1�(n−1),m

ϕ−1
1,n−1,m⊗w

ϕ−1
1,n−1,m ⊗ 1

α⊗1,m � α
⊗
n−1,m

(ν1,m ⊗ 1)� (νn−1,m ⊗ 1) (ν1,m � νn−1,m)⊗ 1

ϕ−1
1⊗m,(n−1)⊗m

ϕ−1
m,(n−1)m

The top rectangle commutes by coherence condition II for ϕ. The bottom one
commutes by naturality of ϕ.

We will now calculate the left side of the associativity condition. To do this
we first calculate νn,m, using the diagram from the proof of lemma A.2:

νn,m = µm,(n−1)m(ν1,m � νn−1,m)ϕ−1
1,n−1,m(sn ⊗ 1).

Putting this into

νnm(νn,m ⊗ 1)α⊗n,m,

we obtain

νnm((µm,(n−1)m(ν1,m � νn−1,m)ϕ−1
1,n−1,m(sn ⊗ 1))⊗ 1)α⊗n,m.

Now consider the diagram:

51

(Wm ⊗W)� (W(n−1)m ⊗W) W �W

(Wm �W(n−1)m)⊗W

(Wn ⊗Wm)⊗W Wnm ⊗W W

νm � ν(n−1)m

ϕ−1
m,(n−1)m

µm,(n−1)m ⊗ 1

µ

νnmνn,m ⊗ 1

which is commutative by the commutativity of the main diagram. The unnamed
arrow is

[(ν1,m � νn−1,m)ϕ−1
1,n−1,m(sn ⊗ 1)]⊗ 1.

From this, we obtain that the left side of the associativity condition is

µ(νm � ν(n−1)m)ϕ−1
m,(n−1)m[(ν1,m � νn−1,m)ϕ−1

1,n−1,m(sn ⊗ 1)]⊗ 1 ◦ α⊗n,m,

which is the same as the the right side of the associativity condition, finishing
this part of the proof.

The fibered version. The only thing left to check in this version is that
the W(u) are homomorphisms with respect to ν. To see this, note that by
theorem 2.1 the map η is fibered and natural. This means that the units of W
are preserved across fibers. That theorem also tells us that the unit of µ and
µ itself are preserved, since F� is fibered, and taks values in the category of
�-monoids. The structure maps λ and ψ are preserved by assumption.

From this it follows that ν0 is preserved, by naturality of ψ and the fact that
i0 : I� →W is preserved:

I�(Q) W0(Q)⊗QW(Q) W(Q)

I�(O) W0(O)⊗OW(O) W(O)

ψW(Q)

ψW(O)

I�(u)

ν0(Q)

ν0(O)

W0(u)⊗uW(u) W(u)

i0(Q)

i0(O)

The bigons and the left square commute, as does the boundary of the diagram
(the outermost arrows). Since ψ are isomorphisms, the right square also com-
mutes. Similarly ν1 is preserved, since it is defined using λ⊗, ψ and i0, all of

52

which are preserved by assumption, and coproducts, for which the appropriate
equalities are easy to check (using corollary 1.5). The inductive step is taken
care of by the following lemma.

Lemma A.3 (Functoriality lemma). The following diagram commutes, for n >
0

W1(O)�OWn−1(O) W1(Q)�QWn−1(Q)

Wn(O) Wn−1(Q)

W1(u)�uWn−1(u)

sn(O) sn(Q)

Wn(u)

Proof. Expanding the definitions we have

Wn−1(O) t I⊗,O �Wn−1(O) Wn−1(Q) t I⊗,Q �Wn−1(Q)

I�,O t I⊗,O �Wn−1(O) I�,Q t I⊗,Q �Wn−1(Q)

i0,n−1(O) t 1 i0,n−1(Q) t 1

I�,u t I⊗,u �Wn−1(u)

Wn−1(u) t I⊗,u �uWn−1(u)︸ ︷︷ ︸

which commutes, since i0,n−1 is preserved, and the other vertical 10 components
are identities.

The preservation of νn now follows by induction from the following diagram

10In the pictorial and fibered sense!

53

(W1(O)�Wn−1(O))⊗W(O) W(O)�W(O)

Wn(O)⊗W(O) W(O)

Wn(Q)⊗W(Q) W(Q)

(W1(Q)�Wn−1(Q))⊗W(Q) W(Q)�W(Q)

(W1(O)⊗W(O))� (Wn−1(O)⊗W(O))

(W1(O)⊗W(O))� (Wn−1(O)⊗W(O))

I

IIO

IIQ

III

ϕ−1
1,n−1,O ν1(O)� νn−1(O)

ϕ−1
1,n−1,Q

ν1(Q)� νn−1(Q)

(W1(u)�Wn−1(u))⊗W(u)

sn(O)⊗ 1

Wn(u)⊗W(u)

νn(O)

sn(Q)⊗ 1

νn(Q)

W(u)

µ(O)

W(u)�W(u)

µ(Q)

The dotted arrow is (W1(u)⊗W(u))� (Wn−1(u)⊗W(u)). The reader should
imagine two of the main diagrams defining ν(O) and ν(Q), side by side, con-
nected by the variousWk(u). The picture above is a flattening of that situation.
We need to check the commutativity of the central square. To do this we check
that every other region commutes. I commutes by the functoriality lemma A.3,
applied to the left variable. IIO and IIQ commute by the definition of νn, and
III commutes by the fact thatW(u) are �-monoid homomorphisms, which they
are by definition. We now turn to unnamed regions, which should be obvious
if the reader followed our advice. The region defined by the dotted arrow, the
leftmost arrow in region I, and ϕ commutes by naturality of ϕ. The region de-
fined by the dotted arrow and the solid boundary of the diagram to the right of
it commutes by the inductive hypothesis. Hence the central square commutes.

The preservation of ν now follows from corollary 1.5. This completes the
proof of theorems 2.7 and 2.8.

54

B Coherence Calculations for Distributivity in
Sigma

We must check whether ϕA,B,X and ψX define a distributivity structure for
Siga. To do this we will show that they are natural and prove that they satisfy
all the coherence diagrams listed in appendix A. By the remarks following the
definition of distributivity this is what the definition comes down to.

Before we dive into the calculations two remarks are in order. First, condi-
tions III−V II are very easy. To make our point we will leave the last diagram
(which is unnecessary anyway) as a rather trivial exercise. The only real prob-
lem is the complexity of the terms in conditions I and II. Our calculations for
these conditions will look somewhat like a physicist’s version of tensor calculus –
crawling with indices. To ease our problems we will use the separation principle
– all the functors involved in these conditions are agreeable and separated (as
we will see).

Proposition B.1. ϕA,B,X and ψX are isomorphisms, fibered natural in all
variables.

Proof. The statement for ψ is obvious, as is the isomorphism part. We consider
naturality for ϕ:

(A⊗X)� (B ⊗X) (A′ ⊗X ′)� (B′ ⊗X ′)

(A�B)⊗X (A′ �B′)⊗X ′

M N

(f ⊗ h)� (g ⊗ h)

(f � g)⊗ h
ϕA,B,X ϕA′,B′,X′

u

where f, g and h are over the homomorphism u. The amalgamation permuta-
tions of these morphisms are denoted σ, τ, δ and θ respectively. We consider a
term

〈̇〈a, x0,k〉, 〈bi, xi,k〉〉̇

in (A⊗X)� (B ⊗X) and apply (f � g)⊗ h ◦ ϕA,B,X to it obtaining

〈〈̇f(a), g(bθ−1
ǎ (i))〉̇, h(xσ�τ−1

〈̇a,bi 〉̇
(i,k))〉 (2)

On the other hand we can apply (f ⊗ h)� (g ⊗ h) and obtain

〈̇〈f(a), h(x0,σ−1
a (k)〉, 〈g(bθ−1

ǎ (i)), h(xθ−1
ǎ (i),τ−1

b
θ
−1
ǎ (i)

(k))〉〉̇,

which ϕA′,B′,X′ maps to

55

〈〈̇f(a), g(bθ−1
ǎ (1)), . . . , g(bθ−1

ǎ (k))〉̇,
h(x0,σ−1

a (1)), . . . , h(x0,σ−1
a (l0)), h(xθ−1

ǎ (1),τ−1
b
θ
−1
ǎ (1)

(1)), . . . h(xθ−1
ǎ (k),τ−1

b
θ
−1
ǎ (k)

(lk))〉,

which is equal to term 2 by our definition of τ � δ (and the formula for inverses
in the operad of symmetries).

We must still prove that the amalgamation permutations are equal. This
means that

(σ ⊗ δ)� (τ ⊗ δ)〈̇〈a,x0,k〉,〈bi,xi,k〉〉̇ = (σ � τ)⊗ δ〈〈̇a,bi 〉̇,xi,k〉

Fortunately we can write out both sides in this case, using just our definitions.
The left side is

(1, θǎ) ∗ (σa ∗ (δx0,k
), τbi ∗ (δxi,k))

and the right side is

[(1, θǎ) ∗ (σa, τbi)] ∗ (δxi,k)

They are equal by the associativity of the operad of symmetries.

Let us see why all our functors are jointly agreeable. This is a simple
consequence of our formulas. Prone morphisms in Sigma are defined using
Set-pullback (just like in Siga), and are therefore strict, and the projection
π : MN → M is strict. Therefore all possible combinations of ⊗ and � on
these morphisms will have standard amalgamation – the formulas for amalga-
mation give identities if they are supplied only with identities. Nonstandard
amalgamation does not appear out of thin air, so to speak.

Separation can be seen, in some sense, in the same way. All our functors
are combinations of ⊗ and �, and the typing of their values is defined from the
typings of their arguments. Thus the arguments contain the simplest building
blocks of the terms we will consider. If our term is, for example 〈f, g1, . . . , gn〉 ∈
A ⊗ B, then the simplest building blocks are f and the gi. We can attach
consecutive natural numbers to the inputs of g1, bigger numbers to the inputs
of g2, and so on up to gn. We can attach numbers to outputs of gi to maintain
composability with f – in this case they can be arbitrary. This will define a
term in π∗A⊗ π∗B with injective typing mapping to the original one when we
forget the added numbers. This proves separability of the functor ⊗ for Sigma
(and Siga also). This procedure works for terms of arbitrary complexity, in
particular for those which are elements of our diagrams11.

We start with the easy diagrams (the last one is an exercise).

11Formally we should use induction on complexity of the terms, but this only obscures the
idea. An argument essentially equivalent to the separability of F� � F� can be found in
[HMP, part II, lemma 7]. It was not appreciated by the second author.

56

Condition III. An element of A�B is of the form

〈̇a, bi〉̇,

where i ranges over the horizontal inputs of a. The map ρ⊗ � ρ⊗ maps this to

〈̇〈a, 1∂Aa (j)〉, 〈bi, 1∂Bbi (j′)〉〉̇,

where j and j′ range over the vertical inputs. The map ϕ maps this to

〈〈̇a, bi〉̇, 1∂Aa (j), 1∂Bbi (j
′)〉,

which is exactly what ρ⊗ does to the original term. By separability we are
finished.

Condition IV. We start with

〈̇〈1∂Mǎ (0),−〉, 〈a, xi〉〉̇,

where (−) represents the empty list. There is only one a since 1∂Mǎ (0) is unary.
ϕ maps this to

〈〈̇1∂Mǎ (0), a〉̇, xi〉,

which λ� ⊗ 1 maps to

〈a, xi〉.

The final result of this way is thus f applied to the above term. The other way
around the diagram goes like this. Starting with the original term we obtain in
the first step

〈̇1∂Mǎ (0), f(〈a, xi〉)〉̇,

and then, applying λ�,

f(〈a, xi〉)

in the second step. Thus both ways agree.

Condition V. The condition says very little in our case. We start with

〈1o,−〉,

which is mapped by ψ−1 to 1o.
Alternately it is mapped by α⊗ to (surprise!)

〈〈1o,−〉,−〉,

and then by ψ−1 ⊗ 1 to

57

〈1o,−〉,

which the final ψ−1 maps to 1o, thus agreeing with the first way.

Condition VI. This is entirely trivial – there is only one way to add an empty
list to a unary term. We start with 1o ∈ I� and both ψ and ρ⊗ map it to

〈1o,−〉,

by definition for ψ, and for ρ⊗ because I� has no vertical inputs.
Now we turn to the more complicated cases

Condition II. We start with a rather unwieldy

〈̇〈a, 〈xi, yi,j〉〉, 〈bk, 〈x′i′ , y′i′,j′〉〉〉̇,

which ϕ maps to

〈〈̇a, bk 〉̇, 〈xi, yi,j〉, 〈x′i′ , y′i′,j′〉〉,

which after α⊗ becomes

〈〈〈̇a, bk 〉̇, xi, x′i′〉, yi,j , y′i′,j′〉.

The other way maps the original term by α⊗ � α⊗ to

〈̇〈〈a, xi〉, yi,j〉〉, 〈〈bk, x′i′〉, y′i′,j′〉〉〉̇,

and then by ϕ to

〈〈̇〈a, xi〉, 〈bk, x′i′〉〉̇, yi,j , y′i′,j′〉.

Applying the final ϕ⊗ 1 yields

〈〈〈̇a, bk 〉̇, xi, x′i′〉, yi,j , y′i′,j′〉,

in agreement with our previous calculation.

Condition I. Up to now we did not have to deal with any permutations acting
on terms (the other ones were taken care of by the separation principle). The
first condition is the hardest one because this is not true in its case. Fortunately
the permutations are manageable. We begin with

〈̇〈a, xi〉, 〈̇〈bk, xk,j〉, 〈ck,l, xk,l,m〉〉̇〉̇.

The last index of each instance of x ranges over the vertical inputs of a, bk or
ck,l. The indices k and (k, l) range over horizontal inputs of a and bk.

After applying 1� ϕ to this term we obtain

58

〈̇〈a, xi〉, 〈〈̇bk, ck,l〉̇, xk,j , xk,l,m〉〉̇,

which ϕ maps to

〈〈̇a, 〈̇bk, ck,l〉̇〉̇, xi, x1,j , x1,l,m, . . . , x2,j , x2,l,m, . . . 〉.

We must now determine what α� ⊗ 1 does to this term. This means looking at
the definition of the amalgamation permutations of α�, which we have denoted
by π:

π〈̇a,〈̇bi,ci,j 〉̇〉̇ = κ〈̇a,〈̇bi,ci,j 〉̇〉̇ ∗ (1(|a|], . . . 1(|ck,lk |]),

where κ is the permutation that implements the movements of the function
symbols between 〈̇a, 〈̇bi, ci,j 〉̇〉̇ and 〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇. Therefore α�⊗ 1 acts on

our term as follows

〈〈̇〈̇a, bk 〉̇, cγ−1

〈ǎ,b̌k〉
(k,l)〉̇, xi, xk,j , xγ−1

〈ǎ,b̌k〉
(k,l),m〉,

where γ are the permutation amalgamations of multiplication in M .
We must determine what happens when we take the other way around the

diagram. By our typing conventions α� maps our original term to

〈̇〈̇〈a, xi〉, 〈bk, xk,j〉〉̇, 〈cγ−1

〈ǎ,b̌i〉
(k,l), xγ−1

〈ǎ,b̌k〉
(k,l),m〉〉̇,

which ϕ� 1 makes into

〈̇〈〈̇a, bk 〉̇, xi, xk,j〉, 〈cγ−1

〈ǎ,b̌i〉
(k,l), xγ−1

〈ǎ,b̌k〉
(k,l),m〉〉̇.

Applying the final ϕ we obtain

〈〈̇〈̇a, bk 〉̇, cγ−1

〈ǎ,b̌i〉
(k,l)〉̇, xi, xk,j , xγ−1

〈ǎ,b̌k〉
(k,l),m〉,

as we should. This concludes the proof of theorem 3.10.

C Nonstandard Amalgamation is Necessary

The following remarkably simple example shows that the web monoid W(M)
need not be isomorphic to any monoid with standard amalgamation, even if
M is standard. Such an isomorphism amounts to being able to retype the
elements of the web monoid in such a way as to get standard amalgamation
for multiplication. The example consists purely of pictures, and hence applies
to most other constructions in the literature (for example the multicategory of
function replacement).

Consider a set O of three distinct types { circle, square, triangle } and a
signature M consisting of the following function symbols: {b, c, s, t, 1c, 1s, 1t}.
The symbol b (like binary) is binary, and its typing is arbitrary, but injective.

59

We have fixed one such typing in the pictures below. The symbols c, s, t are
unary of input and output type circle, square and triangle, respectively. The
unary symbols 1x are to be thought of as identities on their respective types (we
will want to consider M as a monoid). We will draw the nonidentity symbols
like this

The shapes indicate input/output types of the symbols. We will never draw the
identity symbols.

Note that M has, because of our typing choices, a unique structure of a
monoid in Siga (up to a choice of identities, one of which we have indicated),
and this monoid has standard amalgamation. Below we draw part of the mul-
tiplication table for M . It shows the result of computing µ(〈c, b〉), µ(〈b, 1t, s〉)
and µ(〈b, t, 1s〉), where µ is the multiplication map.

The web monoid W(M) consists of formal composites of these symbols (its
universe is F�(I⊗(M))). The list of input types of a formal composite is the
list of the symbols used to build it (in “tree order”, but this is irrelevant since
we will consider all the orderings), and its output type is its composite in M
(image under the counit).

Looking at the multiplication table for M , we see that in W(M) ⊗W(M)
the following elements are well-defined. Each formal composite on the right is

60

input to the central binary symbol in the formal composite on the left (again,
other inputs get identities):

and all of them compose to

(this ultimately follows from the definition of νn given in equation 1).
Consider the amalgamation permutations of multiplication in W(M). The

above composite has four distinct types – the list of function symbols used to
build it – as do the above elements ofW(M)⊗W(M) which compose to it. Thus

61

the permutation amalgamations are determined uniquely once we determine the
order in which these types are listed for all the four elements we are considering.
We must list them in such a way that all the amalgamations arising from the
above compositions can be taken to be the identity. But in the above elements
of W(M)⊗W(M) the binary symbol was listed next to each nonidentity unary
symbol (because of our convention for typing tensor products). The identity
permutation preserves the “was listed next to” relation. Thus if we want stan-
dard amalgamation the binary function symbol in the above formal composite
must have as neighbors all three unary symbols. Three neighbors in a list is one
neighbor too many – contradiction.

It is easy to see that the situation above actually arises in our opetopic sets.
Therefore some pasting diagram monoids must have nonstandard amalgama-
tion.

References

[Ada74] J. Adamek, Free algebras and automata realizations in the lan-
guage of categories, Commentationes Math. Universitatis Car-
olinae, Vol. 15, 1974, No. 4, pp. 589-602 (avaiable on line:
http://dml.cz/dmlcz/105583).

[HDA3] John C. Baez, James Dolan, Higher-Dimensional Algebra III: n-
Categories and the Algebra of Opetopes, Adv. Math. 135 (1998), 145-
206, available as arXiv:q-alg/9702014v1.

[BJT] Hans-Joachim Baues, Mamuka Jibladze, Andy Tonks, Cohomology of
monoids in monoidal categories, article in Operads: Proceedings of
Renaissance Conferences, Contemporary Mathematics 202, American
Mathematical Society, Providence 1997.

[HMP] Claudio Hermida, Michael Makkai, John Power, On weak higher di-
mensional categories I, part 1: J. Pure Appl. Alg. 154 (2000), 221-246,
part 2: J. Pure Appl. Alg. 157 (2000), 247-277, part 3: J. Pure Appl.
Alg. 166 (2002), 83-104.

[Kel80] G. Max Kelly, A unified treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves, and so on, Bull.
Austral. Math. Soc. 22 (1980), 1-84.

[KJBM] Joachim Kock, Andé Joyal, Michael Batanin, Jean-François Mascari,
Polynomial Functors and opetopes, Adv. Math. 224 (2010), 2690-2737,
available as arXiv:0706.1033v2 [math.QA].

[Lei04] Tom Leinster, Higher Operads, Higher Categories, London Mathemati-
cal Society Lecture Note Series 298, Cambridge University Press, Cam-
bridge 2004. Preprint available as arXiv:math/0305049v1 [math.CT].

62

[Mac98] Saunders Mac Lane, Categories for the Working Mathematician, Grad-
uate Texts in Mathematics 5, Springer-Verlag, New York 1998.

[Str08] Thomas Streicher, Fibered Categories à la Jean Bénabou, available at
http://www.mathematik.tu-darmstadt.de/∼streicher/FIBR/FibLec.pdf.gz.

[Zaw10] Marek Zawadowski, Lax Monoidal Fibrations, preprint available at
http://www.mimuw.edu.pl/∼zawado/papers.htm.

63

