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Abstract

We show that the problem ‘whether a finite set of regular-linear axioms defines a
rigid theory’ is undecidable.

2010 Mathematical Subject Classification 03D35, 03C05, 03G30, 18C10, 18C15
Keywords: Equational theory, interpretation, undecidable problem, word problem for
monoid

1 Introduction

In [SZ] it was shown that the category of polynomial monads is equivalent to the category
of rigid equational theories, solving a problem stated in [CJ2]. A linear-regular theory
is an equational theory that has as a set of axioms equations of terms s = ¢ such that
the variables occurring in s and t are the same and each of them occurs once. For ex-
ample the theory of monoids, commutative monoids, and monoids with anti-involution
are linear-regular. Recall that the theory of monoids with anti-involution has three func-
tion symbols e, i, m of arity 0, 1, 2, respectively, contains the usual axioms for monoids,
and additionally the equations i(i(z1) = 1 and i(m(x1,x2)) = m(i(z2),i(x1)). A linear-
regular theory is rigid if and only if for any term ¢(x1,...,z,) and permutation o € S, if
T t(w1,...,20) = HTe1)s - -, To(n)) then o is an identity permutation. In other words,
T is rigid if any (proper) permutation of variables changes the meanings of terms in 7.
For example, the theories of monoids and monoids with anti-involution are rigid but the
theory of commutative monoids is not as it contains the axiom m(xi,z2) = m(x2,z1).
Rigidity refers to provability in 7" and hence it is a global property concerning a linear-
regular theories. In this paper we show that the problem whether an equational theory T
with finite set of linear-regular axioms is rigid, is undecidable.

2 Preliminaries

When dealing with equational theories we follow mostly the terminology of [BN]. However,
we want to specify what variables might occur in a term, and for this reason we deal with
terms in context. We call an ‘equation’ what in [BN] is called an ‘identity’.

By an equational theory we mean a pair of sets T' = (L, A), L = U,ec,, Ln and L, is
the set of n-ary operations. The sets of operations of different arities are disjoint. The set
Tr(L,2") of terms of L in context & = (x1,...,x,) is the usual set of terms over L built
with the help of variables from . We write ¢ : " for the term ¢ in context ™. Thus
all the variables occurring in ¢ are among those in Z". The set A is a set of equations in
context t = s : ", i.e. both t : & and s : ™ are terms in context, n € w.



If we do not specify explicitly the context of a term then we mean that the context
consists of variables explicitly occurring in the term. As in [BN] we often think of a term
as a tree labeled by functions symbols and variables. A derivation consists of a finite
number of rewrite steps. One rewrite step replaces a part of a term tree that matches a
substitution of one side of an equation in T by the same substitution of the other side of
that equation. For details see [BN] definition 3.1.8. When possible, a simple derivation
will be presented as a sequence of equations.

A morphism of equational theories, an interpretation, I : T — T = (L', A’), is a set
of functions I, : L, — Tr(L',Z") for n € w. Moreover, we require that I preserves the
equations, i.e. for any t = s: 2" in A we have

A I(t) = I(s) : 2

where A’ = (or 7" I) is the provability in the equational logic from axioms in the set of
axioms A’ (or theory 7). I is the extension of I,’s to functions I, : 7r(L,2") — Tr(L', ")
for n € w as follows. We usually drop index n in I,,.

I(w: ") =ax;: 2"

fori=1,...,n,n €wand

I(f(tl,...,tk)::E'"):I(f)(xl\f(tl),...,xk\f(tk)):fn

for f € L and t; € Tr(L,z") for i = 1,...,k. On the right-hand side, we have a simul-
taneous substitution of terms t;’s for variables z;’s. We identify two such interpretations
Iand I' : (L, A) — (L', A) iff they interpret all function symbols as provably equivalent
terms, i.e.

A RIf)=T(f): 3"

for any n € w and f € L,. An interpretation I : T — T" is conservative iff for any equation
incontext s =¢: 2" in T T'+1I(s)=1I(t): 7" then T+ s =1t:2".
Z" is linear-reqular if every variable in Z™ occurs in t exactly

is linear-regular iff both s : " and ¢ : " are linear-regular

A term in context t :
once. An equation s =t :
terms in contexts.

A simple ¢-substitution of a term in context t : £ along a function ¢ : (n] — (k] is a
term in context denoted ¢ -t : ¥ such that every occurrence of the variable z; is replaced
by the occurrence of z ;).

An equational theory T' = (L, A) is a linear-regular theory iff all the consequences of T’
are consequences of linear-regular consequences of T'. An interpretation is a linear-regular
interpretation iff it interprets function symbols as linear-regular terms.

A theory T' = (L, A) is a rigid theory iff it is linear-regular and for any linear-regular
term in context ¢ : " whenever A+t = ¢ -t : " then o is the identity permutation. 7 -¢
is the simple o-substitution of a term in context ¢ : £ along a permutation o € S,,.

The definitions of both linear-regular and rigid theories are such to make sure that if a
theory is isomorphic to a linear-regular (rigid) theory then it is also linear-regular (rigid).

"

3 Main result

If we find a linear-regular set of axioms of an equational theory T" we can be sure that T’
is linear-regular, (cf. [SZ]). However, it is not so easy to decide whether a given theory
is rigid. The main result of this paper says that even if we restrict ourselves to finitely



axiomatizable linear-regular theories it is still undecidable whether such theories are rigid
or not.
A term t(x1,...,2,) is flabby in T if it is linear-regular in variables x1,...,x, such
that
Tl_t(:L'l,...,l’n) :t(aca(l),...,xa(n)) (1)

for a non-identity permutation o € S,. A theory is rigid iff it does not contain flabby
terms.

Theorem 3.1. The problem whether an equational theory T = (L, A) in finite language
L with a finite set of linear-reqular axioms A is rigid is undecidable.

Proof. The word problem for monoids is undecidable; (cf. [M], [P]). We shall show
that it reduces to our problem. Below we sketch the construction of the reduction and an
argument showing that it is indeed a reduction. Then in a series of Lemmas proved in the
remaining part of the paper we shall make the sketched construction and argument more
precise.

First we define a simple theory Tj that is rigid, (cf. Lemma 3.2). For an arbitrary
instance of the word problem for monoids,

/\uizvil—u:v (2)

1EN

where u;, v;, u, v are words over a finite alphabet, we will define a theory 7" such that T is
rigid iff (2) does not hold.

An easy argument shows that if (2) holds then there is an obvious flabby term in T
and hence T is not rigid, (cf. Lemma 3.4).

Next we define a linear-regular interpretation I : Ty — T which is conservative iff (2)
does not hold, (cf. Lemma 3.5). The terms in the image of I : Tr(Ty) — Zr(T) are called
special and the set of special terms is denoted by Sp(T"). We construct a function

—

(=) :Tr(T) — Sp(T)

sending all terms of T' to the special terms such that

1. (/—\) is onto;

2. 1:/(\3) = I(s), for any s € Tr(Tp);

3. for t € Tr(T), the variables occurring in both terms ¢ and ¢ are the same and they
occur in the same order;

4. for t,t e Tr(T), f THt=1 then T+ { = #;

(cf. Lemma 3.6).

Having established the above, to get a contradiction, we shall assume that (2) does
not hold but 7T is still not rigid. Let t(x1,...,z,) be a flabby term in T" and o € S, such
that (1) holds. Then, by Lemma 3.6,

~

Tl_f(xh"'axn) = (xa(l)v"'axa(n)) (3)

holds. As I is onto there is a term s(x1,...,2y,) in Ty such that I(s)(z1,...,2,) =
t(x1,...,2,). Thus

w



and since [ is conservative

T() F s(xl, e ,[Bn) = 3(370'(1)7 ey acg(n)).

But this mean that s is a flabby term in Ty, contradicting rigidity of Tp. This ends the
proof of the theorem. O

Now, we fix for the rest of the paper the theory T constructed as in the (sketch of)
proof of Theorem 3.1 and we fill the details of the above argument.

The theory Ty contains three binary symbols [, 7, m and one equation

l(z1,22) = r(z2, 1) (4)
We have

Lemma 3.2. T} is a rigid theory.

Proof.

The theory Tp is equivalent (in fact isomorphic) to a theory that has two binary function
symbols and no equations. Thus it contains no non-trivial equations. In particular it is
rigid. O

Let us fix an instance of the word problem for monoids. Let wu;,v;,u,v words over
the alphabet G = {g1,...,9n}, for i € m. The problem is to decide whether (2) holds
true. We define an equational theory T corresponding to this problem. The alphabet of
T consists of unary symbols from G and additionally one unary symbol a and one binary
symbol m. If w = g, ... g, is a word over G then w(z) denotes the corresponding term
Gky - - - Gk, (x) of T'. The axioms of T" are

ui(z1) = vi(x1) for ie€m (5)

and moreover
m(ua(zy), z2) = m(va(zs), 1) (6)

The following Lemma makes simple but useful observations concerning the derivations
in theory T

Lemma 3.3. 1. For any two words wi, we over G we have
/\ u=vFw =wy iff TFw(z)=waz1) (7)
em

where & on the left is the consequence relation in the theory of monoids.
2. The symbol a does not take part in any rewrite step over T concerning unary symbols.

3. Each rewrite step overT' concerns only unary symbols or it is performed on a subterm
with the root labeled m. In particular, no derivation changes the number of symbols
m. O

Remark. Last property says that in the derivations in T' we can trace the identity of
each symbol m. We are going to use it when arguing about derivations.

Lemma 3.4. If (2) holds then T is not rigid.



Proof. Let t(x1,x2) = m(ua(z1),x2). Then, using (6), (2), and 7, we have in T
t(x1,2) = m(ua(zy), x2) = m(va(xa), 1) = m(ua(xsz),x1) = t(re, 1)
i.e. t is flabby in 7', and T is not rigid. O
Now we define a linear-regular interpretation I : 7o — T as follows
I(l) = m(ua(zy), z2), I(r)=m(va(zy),xz2), I(m)=m(x1,x2).

Lemma 3.5. [ : Ty — T is a linear-reqular interpretation. It is conservative iff (2) does
not hold.

Proof. We have in T
I(1)(z1, 22) = m(ua(x1), 22) = m(va(ze), 1) = I[(1)(z2, 71)

and hence I is an interpretation.
If (2) holds then we have in T’

I(I(z1,22)) = m(ua(zr), 22) = m(va(zs), z1) = I(r(x1,2))

But clearly Ty t/ I(z1,22) = (21, 22). So I is not conservative.
Now, we assume that T I/ u(x) = v(x) and we shall show that I is conservative. Let
s, s’ be two terms in Tp such that

T+ I(s)=1I(s).

First, we want to show that the above equality can be deduced without use of the equations
(5). Let D be a derivation of I(s) = I(s') in T that contains minimal number of applica-
tions of equations (5). If D does not use (5), we are done. If the equation (5) is used in D,
it is used to either part of the string of unary symbols u or v of a subterm m(ua(ty),t2)
or m(va(ty),ta), respectively. Suppose the first rewrite step using the equation (5) in the
derivation D is applied to the subterm m(uc«(t1),t) rewriting it to some other subterm
m(u'a(ty),t2). The rewrite steps concerning the subterm with ‘this occurrence’ of m as
the root symbol will concern the subterms ' and ¢, to parts only and possibly m but
only if «' will be rewritten to either u or v. By assumption, u cannot be rewritten to
v, so it can only be rewritten back to u. In fact, as at the end of the derivation we get
a term of form I(s’) (with all strings of unary symbols from G being equal either u or
v), v’ has to be eventually rewritten back to u. But this means that we can shorten the
derivation D by eliminating all those rewrite steps from u to v/ and back to u again. As
this contradicts the minimality of D, we can assume that D contains only rewrite steps
that use the equation (6). But then the derivation D of I(s) = I(s') in T can be used
to build a derivation D’ of s = s’ in Ty. We need to change the rewrite steps using the
equation (6) in D to rewrite steps in the corresponding positions using the equality (4) in
D’. Thus Ty + s = s'. Since terms s, s’ where arbitrary, I is conservative. O

Special terms of T are terms in the image of the function I : Tr(Ty) — 7r(T). The
set of special terms is denoted by Sp(T"). The function

—

(=) :Tr(T) — Sp(7T)
is defined, for t = t(z1,...,x,) € Tr(T) as follows

ZT; ift = ZT;
t if t = g(t') where g € GU {a}

t = m(ua(ty), t2)  if t = m(wa(ty),t2) and T+ u(z) = w(z)
m(va(ty),ta) if t = m(wa(ty),t2) and T+ v(z) = w(x) and not (2)

1 m(
m(ty1,t2) if t = m(t1,t2), and none of the above applies.



—

The following Lemma lists some properties of (—) that were used in the proof of the main
theorem.

Lemma 3.6. We have

—

1. (=) is onto;

—

2. I(s) = I(s), for any term s of Tp;

3. for any term t of T, the variables in terms t and t are the same and they occur in
the same order; t : T is a linear-regular term iff t : ™ is;

4. if THt=t thenT+1t="%, for any termst, ' in T.

Proof. 1. and 2. is obvious.

To show 3. one can verify by induction on the construction of terms that no clause in
the definition of (—) changes the variables or their order.

We shall show 4. by induction on the complexity of the term ¢. If ¢ is a variable then
the thesis is obvious.

If t = w(m(t1,t2)) where w is a (non-empty) sequence of unary symbols of 7" then, as
no derivation changes the number of symbols in terms, ¢ = w'(m(t],t)) where w' is a
sequence of unary symbols of T'. The derivation D from ¢ to t' consists of steps that either
change unary symbols over the first m in the term using equations (5) or does not involve
those symbols at all. Thus if we drop from the derivation D all the rewrite steps that
change symbols over the first m the resulting derivation proves w(m(t1,t2)) = w(m(t},t5))
never using symbols from w. Thus the same derivation proves also m(t1,te) = m(t},th).
Using inductive hypothesis we get

t=m(ts, t2) = m(t), th) = 7

If t = m(ty,t2) and ¢ = z(m(t),t,)), then by the above we can assume that the
sequence of the unary symbols z is empty. We have to consider three cases concerning the
form of the term ¢;:

1. t1 = w(a(s)) and T+ u(z) = w(z);
2. t1 =w(a(s)) and T Fv(z) = w(z);
3. t1 is not in the above form.

As the cases 1. and 2. are similar we shall consider cases 1. and 3 only.

We start with Case 3, as it is much simpler. In that case to the leading symbol m in
term ¢ the rule (6) is never applied. Thus all the derivations of 7't = ' can be split into
two separate derivations, one for T'+ t; = ¢} and one for T' b ty = t,. Thus again using
inductive hypothesis we get

o~ o~

t=m(h, b)) =m(t),t) =¥ O

It remains to consider Case 1. The term ¢ looks as follows

WA
A /i



Then the derivation D of ¢t = ¢’ has three kinds of rewrite steps:
1. using equation (6) to the root symbol m in the term;

2. using equations (5) to change something in the sequence of unary symbols over the
first « on the left;

3. using either kinds of equations to rewrite something in subterm s or ts.

The rewrite steps of the third kind are independent of the rewrite steps of the first and
second kind. Thus we can assume that we first do the rewrite steps of the first and second
kind and after that the rewrite steps of the third kind. It is also not difficult to note that
the rewrite steps of the first kind can be moved so that they are performed one after the
other. Any two rewrite steps of the first kind done one immediately after the other do
not change the term. We can eliminate all but possibly one rewrite step of the first kind
from D and still have a derivation of ¢ = t. Now we assume that D is a derivation with
at most one step of the first kind, in between the rewrite steps of the second kind, with
all the rewrite steps of the third kind at the end.

Thus we have two cases depending whether there is one rewrite steps of the second
kind or none. In both cases the term ¢’ is of form

s
A /A

If there are no rewrite step of the first kind in D then the derivation D consists of
three independent derivations in 1" of the equations

w=w, s=5, t2:t’2.

Thus using inductive assumption we get

— o~

T = m(u((3),t2) = m(u(a(s'), th) =t/

If there is one rewrite step of the first kind in D then the derivation D consists of two
independent derivations in 7" of the equations

s=45, to=t,.

and moreover two derivation of either w = u and v = w’ or, if T+ u = v, two derivations
w = v and u = w’. Between the latter two derivations there is one rewrite step of the first
kind. Again using inductive assumption we get

= m(u(a(3), &) = m@' (a(5),th)) = ¥

where

S u ifThFu=v
- v otherwise.
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