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Abstract

We give an abstract categorical treatment of P lonka sums and products using lax and oplax
morphisms of monads. P lonka sums with sup-semilattices as arities were originally defined as
operations on algebras of regular theories. It turns out that even more general operations are
available on the categories of algebras of semi-analytic monads. Their arities are the categories
of the regular polynomials over any sup-semilattice, i.e. any algebra for the terminal semi-
analytic monad. We also show that similar operations can be defined on the category of
algebras of any analytic monad. This time we can allow the arities to be the categories of
linear polynomials over any commutative monoid, i.e. any algebra for the terminal analytic
monad. There are also dual operations of P lonka products. They can be defined on Kleisli
categories of commutative monads.
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1 Introduction

When dealing with a specific kind of categories first question we might ask is ‘What kind of limits
and colimits they have?’. Both operations are defined via universal properties, thus, if they exist,
they are unique up to an isomorphism. However, in many circumstances we have interesting
operations on a category which are not given by universal properties, yet in a given context they
might be very useful. For example, one can equip a category with tensor product making it into
a monoidal category [B], [ML], [CWM]. Such a monoidal structure, if it exists, does not need to
be unique in any sense. If we deal with categories of models of first order theories, we can equip
them with ultraproduct operations [L]. These ultraproduct operations, even if they are not given
by universal properties, have received a very fruitful categorical treatment (c.f. [MM1], [MM2])
and proved to be useful in definability theory of first order logic, see [Z], [MM3].

The aim of this paper is to give a categorical treatment of P lonka sums (c.f. [Pl]). Originally,
P lonka sums were defined as operations on categories of algebras of regular equational theories
with arites being semilattices. They are related to the (strong) sup-semilattice decomposition of
semigroups [T], [JLM]. The latter perspective though puts more emphasis on decomposing of a
given algebra into simpler pieces rather than building more complicated algebras from simpler ones.
If L is a sup-semilattice considered as a (posetal) category and R is a monad on Set corresponding
to a regular equational theory, i.e. a semi-analytic monad (c.f. [SZ2]), then L-indexed P lonka sum
is a functor

⊔
L : EM(R)L −→ EM(R), i.e. an operation on the Eilenberg-Moore category of

the monad R. For F : L → EM(R) the operation associates an R-algebra whose universe is the
∗Corrections April 28, 2013
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coproduct
∐
l∈L F (l) (in Set) and we define the operations on this universe using the transition

homomorphisms F (l ≤ l′) : F (l) → F (l′) between the R-algebras. To calculate the value of an
n-ary operation f on elements ai ∈ F (li) for i = 1, . . . , n, we first move those elements ai to a
common place, that is to the algebra F (

∨
i li) applyingR-homomorphisms F (li ≤

∨
i li) to elements

ai and then we apply the operation f to those moved elements inside the R-algebra F (
∨
i li).

In categorical terms, P lonka sums are functors induced by lax morphisms of monads. If (T , η, µ)
is a monad on Set and C is a small category, then we have a monad (T̂ , η̂, µ̂) on SetC , the lift of
the monad T to SetC , defined by composition:

T̂ (F ) = T ◦ F, η̂F = ηF : F → T ◦ F, µ̂F = µF : T 2 ◦ F → T ◦ F

where η̂F is the component of the natural transformation η̂ at a functor F : C → Set and ηF is
the wiskering of the natural transformation η : 1Set → T along the functor F ; the same applies to
the definition of µ̂.

With this P lonka sum of arity C is a functor induced by lax morphisms of monads (
⊔
C , φ) :

T̂ → T whose functor part is the coproduct operation⊔
C

: SetC −→ Set

so that
F 7→

∐
c∈C

F (c)

The problem is what kind of monads T and what kind of categories C we should consider to get
such lax morphism of monads. We show that in case of semi-analytic monads the natural choice
for these arities are the categories of regular polynomials over sup-semilattices, i.e. the algebras
for the terminal semi-analytic monads. In case of analytic monads the natural choice for these
arities are the categories of linear polynomials over commutative monoids, i.e. the algebras for
the terminal analytic monads. There are also natural infinitary generalizations of these. In each
case, the category of the monads in question (analytic, semi-analytic, and their generalizations) is
a coreflexive subcategory in the category of all monads on Set and the P lonka sums have arities
being categories of some kind of polynomials over the algebras for the terminal monad in this
subcategory. Such P lonka sums can be considered an additional structure on a category. We show
that the preservation of P lonka sums by a functor between categories of algebras ensures that
the morphism of monads that induced it belonged to the appropriate subcategory of monads (c.f.
Theorems 5.5, 5.6, 7.2).

The reason why P lonka sums work well for semi-analytic monads is that in the corresponding
theories there is a good notion of an occurrence of a variable in a term. By this we mean that
if two terms are equivalent modulo such a theory the same variables occur in both of them. For
analytic monads P lonka sums work, in a sense, even better (i.e. the arities can be categories of
linear polynomials over monoids). This is due to the fact that in the corresponding equational
theories there is a good notion of a specific occurrence of a variable in a term. This means that
if two terms are equivalent modulo such a theory, each variable occurs in each of them the same
number of times and each occurrence of a variable on one side of an equation can be related to
an occurrence of the same variable on the other side. Moreover, if in such equations we substitute
any term just for the related occurrences of a variable on both sides, then we will still have an
equation.

As we said, the terminal objects in categories of analytic and semi-analytic monads play an
important role. They have yet another property with respect to other monads in the respective
categories. The commutative monoid monad distributes over any analytic monad in a canonical
way and the sup-semilattice monad distributes over any semi-analytic monad in a canonical way,
as well.

Looking at P lonka sums from that abstract point of view, it is clear that there can be, at least in
principle, dual operations of P lonka products on the categories of Kleisli algebras for monads. Such
monads seem to be even more rare, but surprisingly this kind of phenomena did already appear
in the literature (although dressed in a different setting). We will show that for any commutative
monad T there are operations of P lonka product with arities being finite sets. Note that the
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category of finitary commutative monads is a reflective subcategory of the category of all finitary
monads.

One can trace origin of P lonka sum in the construction of the (strong) semi-lattice decomposi-
tion of semi-groups [T]. Since its introduction in 1967, P lonka sum generated a substantial work
including some specializations like [DV] and generalizations [GP]. The generalization in [GP] is
considering transition morphisms between algebras that are more general than homomorphisms
yet give rise to an operation with interesting properties. However the author is unaware of any
categorical treatment of the notion in the literature.

The paper is organized as follows. In Section 2, we describe some subcategories of endofunctors
on Set and categories of monads over such categories. The only new result in this section is
the characterization of the infinitary generalizations of the category of semi-analytic functors and
monads. In Section 3, we describe the general setup for both P lonka sums and products. The
categories of regular and linear polynomials over algebras for semi-analytic and analytic monads
are described in Sections 4 and 6, respectively. P lonka sums on the categories of algebras for
semi-analytic monads and their infinitary generalizations are described in Section 5. P lonka sums
on the categories of algebras for analytic monads and their infinitary generalizations are described
in Section 7. In Section 8, some examples of concrete P lonka sums are presented. In Sections 9,
P lonka products are discussed shortly. Finally in Section 10, we discuss some distributive laws and
the properties of the composed monads.

Preliminary notions and notation

In the paper we shall use category theory as well as 2-category theory language. We use the theory
of monads in the abstract setting of 2-categories, including morphisms of monads, distributive
laws, Eilenberg-Moore and Kleisli objects, and the theory of monoidal categories and monoidal
monads (c.f. [Beck], [St], [BW], [Le] [CWM]).

ω denotes the set of natural numbers. A cardinal number is the least ordinal of the given
cardinality. Thus any n ∈ ω is a cardinal number. If α is a cardinal number, then (α] = {1, . . . , α}.
Sα is the symmetric group, i.e. the group of permutations of the set (α]. We write Xα for the set
of functions from (α] to X. The set Xα is interpreted as X(α] and it has a (natural) right action
of the permutations group Sα by composition. When Sα acts on the set A on the right and on the
set B on the left, the set A⊗α B is the usual tensor product of Sα-sets.

Acknowledgment

The author want to thank the anonymous referee for useful suggestions concerning presentation of
the paper.

2 Coreflective subcategories of the categories of monads

The categories of (finitary) analytic monads AnMnd and semi-analytic monads SanMnd are
(non-full) subcategories of the category Mnd of finitary monads on Set. They are categories of
monoids in monoidal categories An, San, End of analytic, semi-analytic, and all finitary endo-
functors on Set, respectively. The analytic functors were introduced in [J], the semi-analytic
monads were introduced in [M] under the name of collection monads. The categories An, San,
AnMnd and SanMnd where studied extensively in [SZ1], [SZ2].

Both kinds of functors have two characterizations: one abstract and one very concrete. Let S
be the skeleton of the category of finite sets and surjection whose objects are sets {1, . . . , n}, for
n ∈ ω, B its subcategory with the same objects whose morphisms are bijections only.

An analytic functor in An is a finitary endofunctor on Set weakly preserving wide pullbacks.
More concretely, A is an analytic functor iff there is a functor A : B → Set and a natural
isomorphism

A(X) ∼=
∑
n∈ω

Xn ⊗n An

where X is a set and Xn ⊗n An is the quotient of the product of a right Sn-set Xn with the left
Sn-set An.
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A semi-analytic functor San is a finitary endofunctor on Set preserving pullbacks along monos.
More concretely, R is a semi-analytic functor iff there is a functor R : S → Set and a natural
isomorphism

R(X) ∼=
∑
n∈ω

[
X
n

]
⊗n Rn

where X is a set and
[
X
n

]
⊗n Rn is the quotient of the product of a right Sn-set

[
X
n

]
of

injections from (n] to X with the left Sn-set Rn. For more details see [SZ2]. The categories An
and San are coreflective in Mnd. If T is a finitary endofunctor in End, then its reflection in An
is, for any set X, given by

an(T )(X) =
∑
n∈ω

Xn ⊗n T (n)

and in San is given by

san(T )(X) =
∑
n∈ω

[
X
n

]
⊗n T (n)

The categories An and San have terminal objects, the functors∑
n∈ω

Xn ⊗n 1 and
∑
n∈ω

[
X
n

]
⊗n 1

respectively. The morphisms in An are weakly cartesian natural transformations and the mor-
phisms in San are semi-cartesian natural transformations, i.e. the natural transformations such
that the commuting naturality squares for injections are pullbacks.

The categories An, San, End are (strictly) monoidal and the inclusion functors An→ San→
End are strictly monoidal functors. Thus the right adjoints an and san are lax monoidal functors.
In particular, they preserve terminal object and so do the induced right adjoint functors between
the categories of monoids, i.e. suitable monads. The terminal monad in AnMnd is the monad for
commutative monoids C, and the terminal monad in SanMnd is the finite power-set monad i.e.
the monad for sup-semilattices L.

These concepts have various infinitary generalizations. We can replace the category of finitary
endofunctors End by the category Endκ of κ-accessible endofunctor, where κ is an infinite regular
cardinal or ∞ (End∞ is the category of all accessible functors), or even the category MND of all
endofunctors on Set. For each category Endκ, End∞, END there is a corresponding (concrete)
notion of analytic and semi-analytic functor (Anκ, An∞, AN, Sanκ, San∞, SAN) and monad
(AnMndκ, AnMnd∞, ANMND, SanMndκ, SanMnd∞, SANMND).

LetBκ denote the category of cardinal numbers smaller than κ with bijections. An object A of
Anκ is, up to an isomorphism, given by a functor A : Bκ → Set so that for any set X

A(X) ∼=
∑

α∈Cardκ

Xα ⊗α Aα

where Cardκ is the set of objects of Bκ, i.e. the set of all cardinal numbers smaller than κ. The
morphisms in Anκ are those induced as above by morphisms in SetBκ , i.e. the categories Anκ
and SetBκ with κ regular are equivalent. It can be shown that the objects of Anκ are κ-accessible
functors that preserve wide pullbacks (c.f. [AV]), and that the morphisms in this category are
weakly cartesian natural transformations. The categories An∞ and AN are the same and it is the
’sum’ of all the categories Anκ with κ regular cardinal.

The infinitary generalizations of semi-analytic functors haven’t been considered yet, but they
are also quite natural. Let Sκ denote the category of cardinal numbers smaller than κ with
surjections, S∞ the category of all cardinal numbers with surjections. An object R of Sanκ is, up
to an isomorphism, given by a functor R : Sκ → Set so that for any set X

R(X) ∼=
∑

α∈Cardκ

[
X
α

]
⊗α Rα

The morphisms in Sanκ are induced by morphisms in SetSκ , so that the categories Sanκ and
SetSκ with κ regular cardinal are equivalent.
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The category San∞ is the ’sum’ of all the categories Sanκ with κ regular cardinal. An object
R of SAN is, up to an isomorphism, given by a functor R : S∞ → Set, so that for any set X

R(X) ∼=
∑

α∈Card

[
X
α

]
⊗α Rα (1)

Card is the class of all cardinal numbers. Note that this sum is well defined as for α > card(X) the

set
[
X
α

]
of injections from (α] to X is empty. The categories San∞ and SetS∞ are equivalent.

The following theorem provides a characterization of the above categories.

Theorem 2.1. The objects of the category Sanκ, where κ is either regular cardinal or ∞, are κ-
accessible functors that preserve pullbacks along monos and wide pullbacks of monos. The objects of
the category SAN are functors that preserve pullbacks along monos and wide pullbacks of monos.
The morphisms in these categories are semi-cartesian natural transformations.

Proof. We shall prove the characterization for Sanκ where κ is any regular cardinal. The other
two cases are similar and can be easily deduced.

Thus, by an argument analogous to the one given in the proof of Proposition 2.1 of [SZ2], we
need to identify the image of Kan extension functor SetSκ → END. This is a ‘lift’ of the proof of
Theorem 2.2 of [SZ2] from κ = ω to any regular cardinal κ. On one hand, if an endofunctor R on
Set is defined by the formula (1), then it easy to see that it preserves wide pullbacks of monos. On
the other hand, if an endofunctor F on Set is κ-accessible and preserves wide pullbacks of monos,
then for any set X and any x ∈ F (X) there is the least cardinal α necessarily smaller then κ and
the least subobject F : (α] −→ X and y ∈ F (α] such that F (f)(y) = x. With these observations
the rest can be easily deduced form the proof of Theorem 2.2. in [SZ2]. �

Having the above characterization it is clear now that all the categories of functors considered
above are closed under composition of their objects. For the explicite formulas for the coefficient
functors of the composed functors in categories An and San the reader can consult [SZ1] and
[SZ2]. Thus we have described a diagram of (strictly monoidal) categories and functors.

An Anκ-

San Sanκ-

6 6

An∞-

San∞-

6

AN-=

SAN-

6

End Endκ-

6 6

End∞-

6

END-

6

All the functors are (strictly monoidal) inclusions. Horizontal inclusions are full. All the categories
but An∞ = AN and San∞ are coreflective in all the categories that contain them. All the
categories but An∞ = AN and San∞ have terminal objects which are the values of the right
adjoints to the inclusion on the terminal object in END.

The above diagram lifts to the diagram of monoids in those categories and we get the following
categories of monads with functors being again inclusions

AnMnd AnMndκ-

SanMnd SanMndκ-

6 6

AnMnd∞-

SanMnd∞-

6

ANMND-=

SANMND-

6

Mnd Mndκ-

6 6

Mnd∞-

6

MND-

6
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If a monoidal category has a terminal object 1, then there is a unique structure of a monoid
on 1 and this monoid is the terminal monoid. Therefore all the above categories of monads but
AnMnd∞ = ANMND and SanMnd∞ have terminal objects. The terminal object in AnMnd
is the monad for commutative monoids and the terminal object in AnMndκ is its ’less than κ’
version. The terminal object in SanMnd is the monad for sup-semilattices and the terminal object
in SanMndκ is its ’less than κ’ version. The terminal object in SANMND is the power-set monad
i.e. the monad for sup-lattices.

3 A general setup for P lonka sums and products

Let CAT denote the 2-category of possibly large categories, functors, and natural transformations.
Let MNDlax and MNDoplax denote the 2-categories of monads in CAT as 0-cells, with lax and
oplax morphism of monads as 1-cells, and with transformations of lax and oplax morphism of
monads as 2-cells, respectively. Let EM : MNDlax −→ CAT denote the 2-functor of Eilenberg-
Moore object, and K : MNDoplax −→ CAT denote the 2-functor of Kleisli object (c.f. [St]).

Let S = (S, η, µ) be a monad on a complete and cocomplete category A. If C is a small
category, then S lifts to a monad Ŝ on the functor category AC (see introduction for details of the
definition of Ŝ) so that the diagonal functor

δA : A −→ AC

is a strict morphism of monads S → Ŝ. As δA has both adjoints ColimA,C a δA a LimA,C , it
induces an oplax morphism of monads (ColimA,C , ψC) : Ŝ → S and lax morphism of monads
(LimA,C , ψl) : Ŝ → S.

The exponentiation 2-functor (−)C : CAT → CAT commutes with Eilenberg-Moore objects
in CAT. Thus the functor EM(δA) between Eilenberg-Moore categories induced by the strict
morphism of monads δA factorizes via the diagonal functor δEM(S) as follows

EM(S) EM(S)C-
δEM(S)

EM(Ŝ)-'

As (LimC , ψl) is the right adjoint to δA in MNDlax, the functor EM(LimC , ψl) is the right adjoint
to EM(δA) in CAT and it factorizes as

EM(Ŝ) EM(S)C-' EM(S)-LimC

LimC is nothing but the functor of taking limits of S-algebras indexed by the small category C.
This is a way we can explain why categories of Eilenberg-Moore algebras are complete whenever
the categories over which they are defined are.

As it is well-known, the situation with Kleisli algebras is very different. Typically, the Kleisli
category is not cocomplete even if the category over which it is defined is1. This is due to the fact
that the exponentiation 2-functor (−)C : CAT→ CAT does not commute with Kleisli objects, in
general. It does if the index category C is discrete. So the above argument can be repeated only
in case C is a discrete category, i.e. in such case the functor K(ColimA,C , ψc), the left adjoint to
K(δA), factorizes as

K(Ŝ) K(S)C-' K(S)-ColimC

and ColimC is the usual coproduct of free algebras. This is a way we can explain why categories
of Kleisli algebras have coproducts, but not all colimits in general, whenever the categories over
which they are defined have either coproducts or even all colimits.

The natural transformation ψc is a natural isomorphism i.e. (ColimC , ψc) is a strong morphism
of monads iff S preserves C indexed colimits. IfA = Set, S is finitary and this holds even for (finite)
discrete categories C, it implies that all the operations in the equational theory corresponding to
the monad S are unary. Thus such monads are very rare and mostly uninteresting. However, if a

1For example, for finitary monads in Set Kleisli categories have all (small) coproducts, but almost never co-
equalizers. Any Eilenberg-Moore algebra is a coequalizer of a (canonical) parallel pair of morphisms between free
algebras.
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monad S has some additional good properties (like being analytic or semi-analytic on A = Set),
it may happen that for some small category C the functor

⊔
C : AC −→ A, the composition of

functors

AC i∗−→ Aob(C)

∐
−→ A

induced by functors between small categories C i←− ob(C) !−→ 1, can be equipped with a natural
transformation λC : S ◦

⊔
C −→

⊔
C ◦Ŝ so that (

⊔
C , λC) : Ŝ → S is a lax morphism of monads.

Each such lax morphism of monads induces in turn an operation on the category of Eilenberg-Moore
algebras ⊔

C : EM(S)C ∼= EM(Ŝ) −→ EM(S)

In a special case these operations are what is called P lonka sum on the category of algebras of a
regular equational theory. If S is a semigroup monad, C is a sup-semilattice and F : C → EM(S)
is a functor, then F is what is called a strong sup-semilattice decomposition of the semigroup⊔
C(F). Thus such lax morphisms of monads induce additional operations on the categories of

Eilenberg-Moore algebras that we shall call (generalized) P lonka sums.
Dually, the natural transformation ψl is an isomorphism iff S preserves C indexed limits. Such

monads are even more rare. But, again, if a monad S has some additional good properties, it may
happen that for some small categories C the functor

d
C : AC −→ A, the composition of functors

AC i∗−→ Aob(C)

∏
−→ A

induced by functors between small categories C i←− ob(C) !−→ 1, can be equipped with a natural
transformation ρC :

d
C ◦Ŝ −→ S ◦

d
C , so that (

d
C , ρC) : Ŝ → S is an oplax morphism of

monads. Each such oplax morphism of monads induces in turn an operation on the category of
Kleisli algebras l

C : K(S)C ∼= K(Ŝ) −→ K(S)

By analogy we shall call such operations P lonka products.

Remark. For any ultrafilter U on any set I we have an ultraproduct functor SetI
[U ]−→ Set, see

[MM1] for details. If T is a finitary monad on Set and Ŝ its lift to SetI , then [U ] : Ŝ −→ S is a
strong monad morphism, as a consequence of  Loś theorem. It induces the ultraproduct operation
on the category of S-algebras.

4 Category of regular polynomials over an algebra

Let R = (R, η, µ) be a semi-analytic monad (c.f. [SZ2]), R : S → Set a functor such that for any
set X

R(X) =
∑
n∈ω

[
X
n

]
⊗n Rn

By [SZ2], R is the functor part of a regular operad, i.e. a monoid in the monoidal category SetS

with the substitution tensor. We define a functor

CPRr : EM(R) −→ Cat

associating to an R-algebra (A,α : R(A) → A) a category of regular polynomials CPRr (A,α) as
follows. The objects of CPRr (A,α) are elements of A. A morphism in CPRr (A,α) is an equivalence
class of triples

[~a, i, r]∼ : ~a(i)→ α([~a, r]∼)

where ~a : (n]→ A is an injection, i ∈ (n], r ∈ Rn, for some n ∈ ω. Note that [~a, r]∼ is an element
of R(A). We identify triples

〈~a ◦ σ, i, r〉 ∼ 〈~a, σ(i), R(σ)(r)〉

where σ ∈ Sn. The identity morphism is

[a, 1, ι]∼ : a→ α([a, ι]∼) = a
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where ι ∈ R1 is the unit of the regular operad R. The composition is defined by the substitution
of regular terms into regular terms possibly with normalization. In detail, the composite of a pair
of morphisms

~a(i) α(~a, r) = ~a′(j)-[~a, i, r]∼ α(~a′, r′)-[~a′, j, r′]∼

is

~a′′(i′′) α(~a′′, r′′)-[a′′, i′′, r′′]∼

where r ∈ Rn, r′ ∈ Rm; the function ~a′′ : (k] → A is the injection part for surjection-injection
factorization ~a′′ ◦ s : (n+m− 1]→ A of the function ~a′(j\~a) : (n+m− 1]→ A such that

~a′(j\~a)(l) =

 ~a′(l) if 1 ≤ l < j
~a(l − j + 1) if j ≤ l < n+ j
~a′(l − n+ 1) if n+ j ≤ l < n+m.

Thus ~a′(j\~a) replaces j in the domain of ~a′ by the whole function ~a. Such function might not be
an injection and ~a′′ is the injection part of it. i′′ = s(i + j − 1) ∈ (k], i.e. i′′ is the element in
(k] that correspond to i ∈ (n]. r′′ = R(s)((ι, . . . , r, . . . , ι) ∗ r′), i.e. the value under the action of
s : (n + m−] → (k] on the composition in the regular operad R of r′ with r placed into the j’s
place. This ends the definition of the category CPRr (A,α).

A homomorphism h : (A,α) −→ (A′, α′) induces a functor

CPRr (h) : CPRr (A,α) −→ CPRr (A′, α′)

so that the morphism [~a, i, r]∼ : ~a(i)→ α(~a, r) is sent to

[~a′, s(i), R(s)(r)]∼ : ~a′(s(i)) = h(~a(i))→ h(α(~a, r)) = α′(~a′, R(s)(r))

where ~a′ ◦ s is surjection-injection factorization of h ◦ ~a.
We note for the record

Fact 4.1. For any semi-analytic monad R, the above construction defines a functor

CPRr : EM(R) −→ Cat

associating to R-algebras their categories of regular polynomials. �

Remark. One can describe the category of polynomials CPRr (A,α) in terms of the regular
equational theory TR corresponding to the monad R as follows. Its objects are elements of the
algebra (A,α). A morphism from a to b is given by

1. a regular term of the theory TR in n variable r(x1, . . . , xn) (all the variables necessarily
explicitly occur in r);

2. a certain variable number i ∈ (n];

3. an injective function ~a : (n]→ A interpreting variable occurring in r(x1, . . . , xn);

4. the domain of the morphism a is equal to the interpretation of the i’th variable ~a(i);

5. the codomain of the morphism b is equal to the value of the term r(x1, . . . , xn) under the
interpretation of the variables ~a.

The composition of such morphisms is defined as (the most reasonable) substitution.
The reason why this definition works for semi-analytic monads is, as we explained in the

introduction, that in the corresponding regular equational theories there is a good notion of an
occurrence of a variable in a term.
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If τ : R → V is a morphism of semi-analytic monads, then the functors associating categories of
regular polynomials to those monads are related as follows. The morphism τ induces a ’forgetful’
functor EM(τ) : EM(V)→ EM(R) and we have a natural transformation

γτ : CPRr ◦ EM(τ) −→ CPVr : EM(V) −→ Cat

defined for a V-algebra (B, β) a functor

γτ(B,β) : CPRr (B, β ◦ τ) −→ CPVr (B, β)

constant on object, and sending morphism [~a, i, r]∼ : ~a(i) −→ β ◦ τ(~a, r) to the morphism

[~a, i, τn(r)]∼ : ~a(i) −→ β(~a, τn(v))

where n ∈ ω, r ∈ Rn and τn : Rn → Vn.

Infinitary case

It should be clear how to define the functor of associating to algebras for a monad R in SanMndκ,
SanMnd∞ or SANMND the category of (suitable infinitary) regular polynomials

CPR∞r : EM −→ Cat

in analogy with the finitary case. Note that we never consider regular polynomials of arity that
exceeds the cardinality of the algebra. The details are left for the reader.

5 P lonka sums of algebras for a semi-analytic monad

In this section we shall study operations of generalized P lonka sums on the categories of algebras
for semi-analytic monad indexed by categories of regular polynomials of algebras for another semi-
analytic monads.

Recall that if (S, η, µ) and (T, η′, µ′) are monads on categories C and D, respectively, then the
lax morphism of monads ([Beck], [BW]) (F, τ) : (S, η, µ) → (T, η′, µ′) is a functor F : C → D
together with a natural transformation τ : T ◦ F → F ◦ S satisfying

τ ◦ η′F = F (η), τ ◦ µ′F = F (µ) ◦ τS ◦ T (τ)

Let π : R → T be a morphism of semi-analytic monads, defined by a natural transformation
(denoted by the same letter) π : R → T in SetS. Let (A,α) be a T -algebra. Let us denote the
category of regular polynomials CPr(A,α) as A, for short. The monad R̂ is the lift of the monad
R to the category SetA (see introduction for details of the definition of R̂). We shall define a lax
morphism of monads induced by π and T -algebra (A,α)

(
⊔

(A,α), λ
π,(A,α)) : R̂ → R

We usually drop superscripts (A,α) and write R instead of π in λπ,(A,α) when it does not lead
to a confusion. We also write

⊔
A rather than

⊔
(A,α). Let F : A → EM(R) be a functor, and

F : A→ Set the composition of F with the forgetful functor. We shall define the component

λRF : R(
∐
a∈A

F (a)) −→
∐
a∈A
R(F (a))

of the natural transformation λR. Let [~x, r]∼ ∈ R(
∐
a∈A F (a)), where ~x : (n] →

∐
a∈A F (a) is an

injection, r ∈ Rn. Let p :
∐
a∈A F (a)→ A be the projection from the coproduct to the index set.

Let ~a◦s be a surjection-injection factorization of p◦~x as in the diagram below. Moreover, we have
a unique function ~x′ making the triangle in the middle commute, where κa : F (a) →

∐
a∈A F (a)

is the injection into coproduct. To explain the right hand square in the diagram below, note that
[~a,R(s)(r)] ∈ R(A) and hence

π([~a,R(s)(r)]) = [~a, πm(R(s)(r))] ∈ T (A)

9



We put
b = α([~a, πm(R(s)(r))])

and, for i ∈ (n], we have a morphism

ψi = [~a, s(i), πm(R(s)(r))] : ~a(s(i)) −→ b

in the category A. The morphism ~z ◦ g is a surjection-injection factorization of [F (ψi)]i∈(n] ◦ ~x′.
This explains the construction of the diagram

(m] (n]�
s

A

6
~a

(k]-
g

F (b)
6
~z

∐
a∈A F (a)�p

∐
i∈(n] F (~a(s(i)))�

[κ~a(s(i))]i∈(n] -
[F (ψi)]i∈(n]

@
@

@@I

�
�
���

~x ~x′

Finally, we put
λRF ([~x, r]∼) = [~z,R(g)(r)]∼

A simple verification shows

Proposition 5.1. (
⊔
A, λ

R) : R̂ → R is a lax morphism of monads. �

Lifting the above morphism of monads, we obtain T -indexed P lonka sum of R-algebras, i.e.
for any T -algebra (A,α) we obtain an operation

SetCPr(A,α) Set-⊔
A

EM(R)CPr(A,α) ∼= EM(R̂) EM(R)-
⊔
A

?

UCPr(A,α)

?

U

The following proposition explains how P lonka sums interact with lax morphisms of semi-
analytic monads.

Proposition 5.2. Let

R V-τ

T
π@
@R π′��	

be a commuting triangle in the category of semi-analytic monads, (A,α) a T -algebra. Then we
have a commuting square

R V�
(1, τ)

R̂ V̂� (1, τ̂)

?

(
⊔
A, λ

R)
?

(
⊔
A, λ

V)

of lax morphisms of monads, where transformations λR and λV are induced by morphism π and
π′, respectively.

Proof. Let us fix a T -algebra (A,α) and A = CPr(A,α). We shall denote the natural trans-
formations in SetS that give rise to τ , π, π′ by the same letters. We need to show that the square
of functors and natural transformations in Nat(SetA, Set)

(2)
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R ◦
⊔
A V ◦

⊔
A

�
τ(
⊔
A)

⊔
A ◦ R

⊔
A ◦ V-

⊔
A(τ)

6
λR

6
λV

commutes.
Let F : A→ Set be a functor. An element [~x, r]∼ of R ◦

⊔
A(F ) is represented by a pair 〈~x, r〉

such that for some n ∈ ω, ~x : (n]→
⊔
a∈A F (a) is an injection and r ∈ Rn. Let ~a, s, ~x′, b, ψi, g, ~z

be as in the definition of λRF ([~x, r]∼) above. Thus⊔
A(τ)(λR([~x, r]∼)) = τF (b)([~z,R(g)(r)]∼) = [~z, τm(R(g)(r))]∼ (3)

As τ is a natural transformation and π′ ◦ τ = π, for i ∈ (n], the morphism ψi in A is equal to
the morphism

ψ′i = [~a, s(i), π′m(V (s)(τn(r)))]∼ : ~a(s(i)) −→ b

Thus
λV(τ(

⊔
A)([~x, r]∼)) = λV([~x, τn(r)]∼)) = [~z, V (s)(τn(r))]∼ (4)

Now from (3) and (4) it follows that the square (2) commutes. �

Lifting Proposition 5.2 to the categories of Eilenberg-Moore algebras, with the notation as
above, we obtain that regular interpretations of regular theories induce morphisms of algebras that
preserve P lonka sums. Thus we have

Corollary 5.3. The functor between categories of algebras EM(τ) : EM(V) → EM(R) induced
by the semi-analytic natural transformation τ : R → T preserves T -indexed P lonka sum, i.e. for
any T -algebra (A,α) the square

EM(R) EM(V)�
EM(τ)

EM(R)A EM(V)A�EM(τ)A

?

⊔
(A,α)

?

⊔
(A,α)

commutes, up to a canonical isomorphism, where A = CPr(A,α). �

From Proposition 5.2 we also have

Corollary 5.4. Let

R V-τ

T
π@
@R π′��	

be a commuting triangle in the category of semi-analytic monads, (A,α) a T -algebra A =
CPr(A,α). Let F : A → EM(V) be a functor, F = UV ◦ F : A → Set. Then the two R-algebra
structures on

∐
a∈A F (a)

11



R(
∐
a F (a))

λRF

�
�

�
�
�	

τ∐
a
F (a)

@
@
@
@
@R

∐
a V(F (a))

∐
a V(F (a))

∐
aR(F (a)) V(

∐
a F (a))

?

∐
a τF (a)

?

λVF

∐
a F (a)

∐
a ξa

@
@
@
@
@R

∐
a ξa

�
�

�
�
�	

coincide. �

In order to make these sums independent of a given monad T and particular morphisms π and
π′, we can take as T the terminal semi-analytic monad, that is, the monad L of sup-semilattices. In
such a way we have equipped any category of algebras for a semi-analytic monadR with a canonical
system of P lonka sums indexed by the categories of regular polynomials over sup-semilattices. By
Proposition 5.1, the semi-analytic morphism of semi-analytic monads induces a functor between
categories of algebras that preserves P lonka sums. In fact, this property characterizes semi-analytic
morphisms of semi-analytic monads, i.e. the converse of Corollary 5.4, and hence also Proposition
5.1, is also true. We have

Theorem 5.5. Let τ : R → V be an arbitrary lax morphism of monads between semi-analytic
monads. Then τ is a semi-cartesian iff the induced functor EM(τ) between categories of algebras
preserves P lonka sums.

Proof. The ‘only if’ part is just Proposition 5.2.
To see the converse, for a lax morphism of monads τ : R → V we shall define a natural

transformation σ : R → V such that σ̂ = τ . Let us fix r ∈ Rn, n ∈ ω. Then [1(n], r]∼ ∈ R(n] and
we have

τ(n]([1(n], r]∼) = [~x, v]∼ ∈ V(n]

where ~x : (m]→ (n] is an injection and v ∈ Vm, for some m ∈ ω. To end the proof

1. we show that m = n and hence ~x is a permutation;

2. we put σn(r) = V (~x)(r) and show that σ : R→ V so defined is a natural transformation;

3. finally we show that σ̂ = τ .

Let X ⊆ (n] be the image of ~x is (n]. Let F : P(n] −→ EM(V) be a functor sending y ∈ P(n]
to the one-element algebra ({Y }, ξY ). Thus we have a commuting diagram

P(n] EM(V)-F

F

@
@
@
@
@@R
Set
?

UV

EM(V)-EM(τ)

UR
�

�
�

�
��	

with F being an inclusion functor. Note that
∐
Y ∈P(n]{Y } = P(n].

Let {−} : (n] → P(n] be the singleton morphism i.e. {−}(i) = {i}, for i ∈ (n]. Since EM(τ)
preserves P lonka sums andτ is a natural transformation, we have a commuting diagram
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?

R({−})

?

V({−})

V(n]

R((n])

τ(n]

@
@
@
@
@@RR(P(n])

λRF

�
�

�
�

��	

τP(n]

@
@
@
@
@@R

∐
Y V({Y })

∐
Y V({Y })

∐
Y R({Y }) V(P(n])

?

∐
Y τ{Y }

?

λVF

∐
Y ξY

∐
Y ξY

@
@
@
@
@R

∐
Y ξY

�
�

�
�
�	

Evaluating two morphisms at [1(n], r]∼ ∈
[

(n]
n

]
⊗n Rn ⊆ R(n] after some calculations, we get

∐
Y

(ξY ◦ τ{Y }) ◦ λRF ◦ R({−})([1(n], r]∼) = (n]

and
(
∐
Y

ξY ) ◦ λVF ◦ τP(n] ◦ R({−})([1(n], r]∼) = (
∐
Y

ξY ) ◦ λVF ◦ V({−})([~x, v]∼) = X

Thus X = (n] and hence n = m, as required.
The verification of the naturality of σ : R → V we leave for the reader. We end by showing

that σ̂ = τ .
By definition of σ, we have for n ∈ ω and r ∈ Rn

τ(n]([1(n], r]∼) = [1(n], σn(r)]∼ = σ̂([1(n], r]∼)

Thus for any [~z, r]∼ ∈
[
Z
n

]
⊗n Rn ⊆ R(Z) we have

τZ([~z, r]∼) = τZ(R(~z)[1(n], r]∼) =

= V(~z)(τ(n]([1(n], r]∼)) = V(~z)(σ̂([1(n], r]∼)) =

= σ̂Z(R(~z)([1(n], r]∼)) = σ̂Z([~z, r]∼)

i.e. τ = σ̂. �

Remarks.
1.If (A,α) is an L-algebra, i.e. a sup-semilattice, then the posetal collapse of the category

CPr(A,α) is (A,≤) i.e. the partial order on the set A determined by the sup-lattice structure
(A,α). Clearly, we have a canonical functor CPr(A,α)→ (A,≤). The original definition of P lonka
sum on R-algebras is defined on functors F : CPr(A,α)→ EM(R) that factorize through (A,≤).

2. The inclusion of the category of semi-analytic monads into finitary monads on Set has a
right adjoint. This means that any finitary monad M on Set has its ’regular part’ given by

reg(M)(X) =
∑
n∈ω

[
X
n

]
⊗nM(n]
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Thus we have a canonical functor EM(M) −→ EM(reg(M)) induced by reg(M) → M. Hence
any functor F : C → EM(M) extends to a functor F : C → EM(reg(M)). Thus we can compute
P lonka sum of algebras for any monad except that the resulting algebra will satisfy only the regular
equations of the theory.

Infinitary case

The terminal monads in SANMND is the powerset monad, i.e. the monad for suplattices. We
can redo the whole story above in the infinitary case getting the analogous results. We just note
for the record one

Theorem 5.6. Let τ : R → V be an arbitrary lax morphism of monads between monads in
SANMND. Then τ is semi-cartesian iff the induced functor EM(τ) : EM(V)→ EM(R) between
categories of algebras preserves P lonka sums. �

An analogous result holds for monads in SanMndκ, for κ being regular cardinal.

6 Category of linear polynomials over an algebra

In this and the next sections we shall describe a parallel story to the one described in the previous
two sections for analytic monads. We shall concentrate on the subtle differences pertinent in this
case. As we saw in Section 2 analytic monads are more specific than semi-analytic ones. This has
the following consequences:

1. In this context, we have not only a notion of a variable that occurs in a term as in the regular
case but we can now count occurrences; this is why we can and we will take more subtle
category of polynomials, namely the category of linear polynomials.

2. The terminal analytic monad is the monad for the commutative monoids; thus we shall equip
(canonically) any category of algebra for an analytic monad with operations of P lonka sums
whose arities are categories of linear polynomials over commutative monoids.

3. As the series expansion of analytic functors are simpler than the expansions of semi-analytic
ones, the definition of the morphism of monads (natural transformation part) inducing P lonka
sums is simpler. But then the characterization results are analogous.

Let A = (A, η, µ) be an analytic monad, A : B→ Set a functor such that for set X

A(X) =
∑
n∈ω

Xn ⊗n An

A is the functor part of a symmetric operad, i.e. a monoid in the monoidal category SetB with
the substitution tensor. We define a functor

CPAl : EM(A) −→ Cat

associating to an A-algebra (X, ξ : A(X) → X) a category of linear polynomials CPAl (X, ξ) as
follows. The objects of CPAl (X, ξ) are elements of X. A morphism in CPAl (X, ξ) is an equivalence
class of triples

[~x, i, a]∼ : ~x(i)→ α(~x, a)

where, for some n ∈ ω, ~x : (n]→ X is a function, i ∈ (n], a ∈ An. We identify triples

〈~x ◦ σ, i, a〉 ∼ 〈~x, σ(i), A(σ)(a)〉

where σ ∈ Sn. The identity morphism is

[x, 1, ι]∼ : x→ ξ(x, ι) = x

where ι ∈ A1 is the unit of the symmetric operad A. The composition is defined by the substitution
of linear-regular terms into linear-regular terms (normalization is not needed). In detail, it is defined
as follows
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~x(i) ξ(~x, a) = ~x′(j)-
[~x, i, a]∼

ξ(~x′, a′)-
[~x′, j, a′]∼

-[x′′, i′′, a′′]∼

where a ∈ An, a′ ∈ An; the function ~x′′ = ~x′(j\~x) : (n+m− 1]→ X is defined so that

~x′(j\~x)(l) =

 ~x′(l) if 1 ≤ l < j
~x(l − j + 1) if j ≤ l < n+ j
~x′(l − n+ 1) if n+ j ≤ l < n+m.

Thus ~x′(j\~x) replaces j in the domain of ~x′ by the whole function ~x. a′′ = ((ι, . . . , a, . . . , ι) ∗ a′),
i.e. the composition in the symmetric operad A of a′ with a placed into the j’s place. This ends
the definition of the category CPAl (X, ξ).

A homomorphism h : (X, ξ) −→ (X ′, ξ′) induces a functor

CPAl (h) : CPAl (X, ξ) −→ CPAl (X ′, ξ′)

so that the morphism [~x, i, a]∼ : ~x(i)→ ξ(~x, a) is sent to

[h ◦ ~x′, i, a]∼ : h(~x′(i))→ h(ξ(~x, a)) = α′(~x′, a)

We note for the record

Fact 6.1. For any analytic monad A, the construction above defines a functor

CPRl : EM(A) −→ Cat

associating to A-algebras their categories of linear polynomials. �

Remarks.
One can describe the category of polynomials CPRl (X, ξ) as follows. Its objects are elements of

the algebra (X, ξ). A morphism from x to y can be described in a similar way as in the semi-analytic
case as follows:

1. a linear-regular term in n variable a(x1, . . . , xn) (all the variables necessarily explicitly occur
in a exactly once);

2. a certain variable number i ∈ (n] is chosen;

3. a function ~x : (n]→ X interpreting variables occurring in a(x1, . . . , xn);

4. the domain on the morphism x is equal to the interpretation of the i-th variable i.e. ~x(i);

5. the codomain of the morphism y is equal to the value of the term a(x1, . . . , xn) under the
interpretation of the variables ~x.

The composition of such morphisms is defined as (the most reasonable) substitution.
The reason why this definition works for analytic monads is, as we explained in the introduction,

that in the corresponding linear-regular equational theories there is a good notion of the number
of occurrences of a variable in a term.

Note that the category of linear polynomials of a monoid, as well as the category of regular
polynomials of sup-semilattices, have natural structure of a monoidal category with multiplication
(or sup) playing the role of the tensor.

If τ : A → A′ is a morphism of analytic monads, then the functors associating categories of
linear polynomials to those monads are related as follows. The morphism τ induces a ’forgetful’
functor EM(τ) : EM(A′)→ EM(A) and we have a natural transformation

γτ : CPAl ◦ EM(τ) −→ CPA
′

l : EM(A′) −→ Cat

defined for a A′-algebra (X, ξ) a functor

γτ(X,ξ) : CPAl (X, ξ ◦ τ) −→ CPA
′

l (X, ξ)

constant on object, and sending morphism [~x, i, a]∼ : ~x(i) −→ ξ ◦ τ(~x, a) to the morphism

[~x, i, τn(a)]∼ : ~x(i) −→ ξ(~x, τn(a′))

where a ∈ An and τn : An → A′n.
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7 P lonka sums of algebras for an analytic monad

The theory of P lonka sums for the categories of algebras for analytic monads is parallel to the theory
of P lonka sums for the categories of algebras for semi-analytic monads described in Section 5. We
need to replace categories of regular polynomials by the categories of linear polynomials and the
terminal semi-analytic monad of sup-semilattices by the terminal analytic monad of commutative
monoids. As the details are very similar in both cases, we shall give the basic definition and state
some of the facts without proofs leaving the verification as an exercise.

Let π : A → T be a morphism of analytic monads, defined by a natural transformation (denoted
by the same letter) τ : A→ T in SetB. Let (Z, ζ) be a T -algebra. Let denote the category of the
linear polynomials CPl(Z, ζ) as Z. The monad Â is a lift of the monad A to the category SetZ.
We shall define a lax morphism of monads induced by π and R-algebra (Z, ζ)

(
⊔

(Z,ζ), λ
A,(Z,ζ)) : Â → A

We usually drop superscripts (Z, ζ) and write A instead of π in λπ,(Z,ζ) when it does not lead to
a confusion. We write

⊔
Z rather than

⊔
(Z,ζ). Let F : Z→ Set be a functor. We shall define

λAF : A(
∐
z∈Z

F (z)) −→
∐
z∈Z
A(F (z))

as
[~x, a]∼ 7→ [f ◦ ~x′, a]∼ ∈ A(F (b))

where ~x′ is a lift of ~x as before, the function f and element b ∈ Z will be described below and
are displayed in the diagram below. Since [~x, a]∼ ∈ A(

∐
z∈Z F (z)), it follows that for some n ∈ ω,

~x : (n]→
∐
z∈Z F (z) is a function and a ∈ An. Let p :

∐
z∈Z F (z)→ Z be the projection from the

coproduct to the index set. We put

b = ζ([p ◦ ~x, πn(a))])

and, for i ∈ (n], we have a morphism

ψi = [p ◦ ~x, i, πn(a)] : ~x(i) −→ b

in the category Z. The function f is

A
∐
a∈A F (a)�p

∐
i∈(n] F (~a(s(i)))�

[κ~a(s(i))]i∈(n]
F (b)-

f = [F (ψi)]i∈(n]

@
@

@@I

�
�
���

~x ~x′

(n]

A simple verification shows

Proposition 7.1. (
⊔
A, λ

A) : Â → A is a lax morphism of monads. �

Lifting the above morphism of monads, we obtain T -indexed P lonka sum of R-algebras, i.e.
for any T -algebra (A,α) we obtain an operation

SetCPl(A,α) Set-⊔
A

EM(R)CPl(A,α) ∼= EM(R̂) EM(R)-
⊔
A

?

UCPl(A,α)

?

U
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The analog of Proposition 5.2 holds verbatim for the lax morphisms of analytic monads. Thus
again in this case, whenever we have π : A → T a lax morphism of analytic monads, we have
operations of P lonka sums on the category of algebras for A whose arities are the categories of
linear polynomials over algebras for T . As the category of analytic monads has the terminal object,
the monad C for commutative monoids, we can make these sums independent of a varying analytic
monad T . We equip any category of algebras for an analytic monad A with a canonical system
of P lonka sums with arities being the categories of linear polynomials over commutative monoids
(i.e. algebras for the terminal analytic monad C). We have

Theorem 7.2. Let τ : A → A′ be an arbitrary lax morphism of monads between analytic monads.
Then τ is weakly cartesian iff the induced functor EM(τ) between categories of algebras preserves
P lonka sums. �

8 Some examples

1. Let τ : R → T be a morphism of semi-analytic monads. N is a R-algebra, M is a T -algebra.
Then P lonka sum is the usual binary product of algebras⊔

c∈C
F(c) ∼= N ×Alg(τ)(M)

where F : C = CPr(M) −→ Alg(S) is a constant functor with value N . For analytic monads
the analogous fact holds true.

2. Let h : M → N be a homomorphism of R-algebras for a semi-analytic monad R. Then on
the coproduct in Set of universes of M and N there is a structure R-algebra, the P lonka
sum over the 2-element sup-semilattice. The constants are interpreted in M . The operations
are interpreted in M if all arguments are in M , and in N after transferring the necessary
arguments from M to N by h, otherwise.

3. The following is a more elaborate example of a P lonka sum. It is inspired by the conversations
I had with F.W. Lawvere after my talk in Coimbra during the Workshop on Category Theory
in honor of George Janelidze, on the occasion of his 60th birthday.

(a) Theory MatR is the theory whose operations from n to m are m×n-matrices of elements
of a rig R. Neither theory of rigs nor MatR are regular theories, however the affine part
of MatR is a regular theory of convexity algebras denoted CV . It has one constant say ⊥
and those operations 〈r1, . . . , rn〉 : n→ 1 that

∑n
i=1 ri = 1, and ri 6= 0 for i = 1, . . . , n.

(b) Now let us fix R to be the rig of non-negative real numbers. Free algebra for CV on n
generators is an n-dimensional simplex (with one distinguished vertex ⊥).

(c) Fix any set Z. Let Ω denote the category of regular polynomials over the sup-semilattice
of finite subsets P<ω(Z). There is an obvious forgetful functor U : Ω→ Set sending the
morphism [i,

∑n
j=1 rjxj , X1, . . . , Xn] : Xi →

⋃
j Xj in Ω to the inclusion Xi →

⋃
j Xj .

The functor F : Ω→ Alg(CV ) is the composition of U with the free CV -algebra functor
F : Set→ Alg(CV ).

(d) The P lonka sum
⊔

Ω F is the disjoint sum of simplices spanned by ⊥ and finite subsets
of Z. The k-ary operations O~r given by an k-tuple ~r = 〈r1, . . . , rk〉 such that ri 6= 0
and

∑k
i ri = 1 in

⊔
Ω F is defined as follows. Let yi ∈ ∆Xi be elements of

⊔
Ω F, i.e.

yi =
∑
j∈Xi∪{⊥} s

i
j · xij for i = 1, . . . , k, and some sij ∈ R. Then

O~r(y1, . . . , yk) =
k∑
i=1

ri
∑

j∈Xi∪{⊥}

rij · xij

and it is clearly an element of ∆⋃
i
Xi

.
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4. There are some similarities between P lonka sums and graded rings. However there are dif-
ferences, as well. A graded ring is build from a (lax) monoidal functor from a monoid M
considered as a discrete monoidal category to abelian groups. For example the graded ring
of polynomials in n variables Z[x1, . . . , x1] arises in this way from the functor P : ω → Ab
sending n to the set of uniform polynomials of degree n, say Pn. The coherence transforma-
tions for this monoidal functor are multiplications ϕn,m : Pn × Pm −→ Pn+m and identity
ϕ̄ : Z→ Z = P0.

9 P lonka products

The P lonka products are not as common as Ponka sums but they exists in the literature in a
different setup. We describe this briefly below.

Let (S, η, µ) be a monad on Set, (Ŝ, η̂, µ̂) be a lift of this monad on Set2, and 1 be the unique
monad on the terminal category 1 ∼= Set0. Clearly the category Set with binary products and the
terminal object is a monoidal category (Set,×, 1, α, λ, %). Let ϕ : ×◦Ŝ −→ S ◦× and ϕ̄ : 1→ S(1)
be two natural transformations.

Recall that MNDlax denotes the 2-category of monads, lax morphisms of monads, and trans-
formations of lax morphisms of monads. This category has finite products.

Then we have

Proposition 9.1. With the notation as above

1. If (S, ϕ, ϕ̄, η, µ) is a monoidal monad on (Set,×, 1, α, λ, %), then

(×, φ) : Ŝ → S and (1, ϕ̄) : 1→ S

are oplax morphism of monads and hence they induce P lonka products
l

I

: K(S)2 → K(S) and
l

∅

: 1→ K(S)

2. On the other hand, if (×, φ) and (1, ϕ̄) are oplax morphism of monads so that together with
(α, λ, %) constitute a monoidal category object on (S, η, µ) in MNDlax, then (S, ϕ, ϕ̄, µ, η, µ)
is an oplax monoidal monad on (Set,×, 1, α, λ, %) and K(S) is the Kleisli object for this
monad in MNDlax. �

Remarks. From the proposition above it follows that if S is a commutative monad (c.f [K],
[CJ]) then, for any finite set I, we have an oplax morphism of monads (

d
I , ψ) : SI → S (where

SI is a lift of S to SetI) and a P lonka product K(S)I → K(S) (Ŝ is the lift of S to SetI).
Note that the (finitary) commutative monads on Set form a full reflective subcategory of Mnd.

10 Distributive laws

There is yet another property that the terminal monads in AnMnd and SanMnd have in common:
they distribute over all the other monads in ‘their’ respective categories.

The sup-semilattice monad L lifts canonically to the category of algebras for any regular monad
due to the fact that it distributes over any semi-analytic monad R and the commutative monoid
monad C lifts canonically to the category of algebras for any analytic monad due to the fact that
C distributes over any analytic monad A. The former statement belongs to the folklore and the
latter might be new. We shall give precise formulas describing these distributive laws.

The theory of sup-lattices has exactly one regular operation of every arity n ∈ ω. To fix the
notation we denote such an n-ary operation as µn. The coefficient functor L : S → Set of the
corresponding semi-analytic monad L is the terminal object SetS, so that L(n) = {µn}. L is the
value of the right adjoint to the inclusion functor SanMnd → Mnd on the terminal monad in
Mnd. If R is another semi-analytic monad with the coefficient functor R : S → Set, then we
define the distributive law of L over R

ρR : R ◦ L −→ L ◦R
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as follows. Let RL,LR : S→ Set be the coefficient functors of the composition functors R◦L and

L ◦ R, respectively. Fix a set X and an element [~x;φ;µm1 , . . . , µmk ; r]∼ in
[
X
n

]
⊗n RLn, where

~x : (n]→ X is an injection, φ : (m]→ (n] is a surjection, m =
∑k
i=1mi and r ∈ Rk. We put

ρR,X([~x;φ;µm1 , . . . , µmk ; r]∼) = [~y;ψ; r, . . . , r;µM ]∼ ∈
[

X
k ·M

]
⊗k·M LRk·M

where r occurs on the right side M = m1 ·m2 · . . . ·mk times, ψ : (k ·M ]→ (n′], ~y : (n′]→ X is a
surjective-injective factorization of the function

f : (k ·M ] ∼= (k]× (m1]× . . .× (mk] −→ X

such that for 〈i, j1, . . . , jk〉 ∈ (k]× (m1]× . . .× (mk]

f(i, j1, . . . , jk) = φi(ji)

and φi(mi]→ X is the composition of φ with the obvious inclusion (mi]→ (m].
Since we allow in the above definition mi to be equal 0, so M can be equal 0 independently of

the values of other mi’s. This is why ρR does not need to be semi-analytic natural transformation
and hence L ◦ R does not need to be a semi-analytic monad. The situation can be improved
from that point of view if we drop the constant in L, i.e. if we look at the (regular) theory of
sup-semilattices without bottom element i.e. the monad L′ whose coefficient functor L′ : S→ Set
is as L except that L′(∅) = ∅. Then the above formulas do define a distributive law

ρ′R : R ◦ L′ −→ L′ ◦ R

which is semi-analytic and hence the monad L′ ◦ R is semi-analytic. Note that L′ is the value
of the right adjoint to the inclusion functor SanMnd → Mnd on the only proper submonad of
the terminal monad in Mnd, corresponding to the theory without any operations and having one
equation x1 = x2.

As we mentioned above, the commutative monoid monad C distributes over any analytic monad
A. Again, the theory of commutative monoids is the theory that has a unique analytic (this time)
operation µn of arity n, for every n ∈ ω. The coefficient functor C : B→ Set is the terminal object
in SetB. The distributive law

αA : A ◦ C −→ C ◦ A

is even simpler to define then ρR for semi-analytic monads. Fix a set X. For [~x;µn1 , . . . , µnk ; a]∼
in Xn ⊗n ACn we put

αA,X([~x;µn1 , . . . , µnk ; a]∼) = [~y; a, . . . , a;µN ]∼

where n =
∑k
i=1 ni, a occurs on the right side N = n1 · n2 · . . . · nk times, and the function

~y : (k ·N ]→ X is defined for 〈i, j1, . . . , jk〉 ∈ (k]× (n1]× . . .× (nk]

~y(i, j1, . . . , jk) = ~xi(ji)

and ~xi : (ni] → X is the composition of ~x with the obvious inclusion (ni] → (n]. Again the
distributive law αA is neither analytic nor even semi-analytic. If we consider the submonad of
C without the constant i.e. the monad for the commutative semigroups C′, then we shall get a
semi-analytic distributive law

α′A : A ◦ C′ −→ C′ ◦ A

given by essentially the same formulas as αA. Thus the monad C′ ◦ A is semi-analytic but not
analytic in general.

The verification of the above statements is easy but a bit tedious. We state it for the record.

Theorem 10.1. 1. The monads L and L′ for sup-semilattices and for sup-semilattices without
bottom distributes over any other semi-analytic monad R in a canonical way through the
distributive laws ρR and ρ′R, respectively. The distributive law ρ′R : R ◦ L′ −→ L′ ◦ R is
semi-analytic and the composed monad L′ ◦ R is again semi-analytic.
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2. The monads C and C′ for commutative monoids and for commutative semigroups distribute
over any other analytic monad A in a canonical way through the distributive laws αR and
α′A, respectively. The distributive law α′A : A◦C′ −→ C′◦A is semi-analytic and the composed
monad C′ ◦ A is semi-analytic. �

The extension of these result to the infinitary cases we leave for the reader.
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