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Abstract

We construct explicitly the weights on the simplicial category so that the colim-
its and limits of 2-functors with those weights provide the Kleisli objects and the
Eilenberg-Moore objects, respectively, in any 2-category.

MS Classification 18A30, 18A40 (AMS 2010).

1 Introduction

It is well know that monads in 2-categories correspond to 2-functors from the simplicial
category ∆. It is also well known that the Kleisli and the Eilenberg-Moore objects can be
build as weighted (co)limits, c.f. [St2]. In this paper we construct explicitly the weights
Wr and Wl on ∆ so that the Wr-weighted colimits provide the Kleisli objects and the
Wl-weighted limits provide the Eilenberg-Moore objects in any 2-category D.

2 Partial simplicial category Π

Let ∆ be the usual (algebraists) simplicial category. The objects of ∆ are finite linear
orders denoted by n = 〈n,≤〉 = 〈{0, . . . , n − 1},≤〉, for n ∈ ω. The morphisms of ∆ are
monotone functions. For n ≥ 1 and 0 ≤ i < n, the morphism

σni : n+ 1 −→ n

is an epi that takes value i twice. For n ≥ 0 and 0 ≤ i ≤ n, the morphism

δni : n −→ n+ 1

is a mono that misses the value i. We usually omit the upper index when it can be read
from the context. These morphisms satisfy the following simplicial identities. For i ≤ j

δiδj = δj+1δi σjσi = σiσj+1

and

σjδi =


δiσj−1 if i < j
1 if i = j, j + 1
δi−1σj if i > j + 1

It is well known, c.f [CWM], that the morphisms σi and δi generates ∆ subject to the
above relations.
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The partial simplicial category Π has the same objects as ∆ but the morphisms in Π
are partial monotone functions. Clearly, the morphism σi and δi of ∆ are morphism in
Π as well, and they satisfy the same simplicial identities. For n ≥ 0 and 0 ≤ i ≤ n, the
morphism

τni : n+ 1 −→ n

is an epi not defined on i. For i ≤ j we have

τjτi = τiτj+1

Moreover, the morphisms σi, δi, and τi satisfy the following identities in Π that, together
with the above identities, will be called partial simplicial identities.

τjσi =


σiτj+1 if i < j
τjτj+1 if i = j
σi+1τj if i > j

τjδi =


δiτj+1 if i < j
1 if i = j
δi−1τj if i > j

We have

Lemma 2.1. Every morphism f : n→ m in Π can be expressed in a canonical form as

f = δir . . . δi1σj1 . . . σjsτk1 . . . τkt (1)

with i1 < . . . < ir, j1 < . . . < js, and k1 < . . . < kt, m− n = r − s− t.

Proof. This can be easily seen directly or using the partial simplicial identities.

Theorem 2.2. The category Π is generated by the morphisms σi, δi, and τi subject to the
partial simplicial identities.

Proof. The partial simplicial identities hold in Π. Moreover, every morphism in Π can be
written in a canonical form. Finally, two different canonical forms represent two different
morphisms in Π.

Remark. The category Π is a strict monoidal category with the monoidal structure
defined by the coproduct. Moreover, the inclusion functor ∆→ Π is a strict morphism of
strict monoidal categories.

3 The categories Πl and Πr and the multiplication functors

As the category ∆ is a strict monoidal category it can be considered as 2-category with one
0-cell ∗, and then the tensor becomes the composition of 1-cells. We denote this 2-category
by ∆.

The left partial simplicial category Πl is a subcategory of Π with the same objects as
Π. A morphism f : n → m from Π is in Πl iff for any i ≤ j ∈ n, if f(j) is defined so is
f(i). In other words the morphisms of Π are generated by the morphisms in ∆ and the
morphism τnn : n + 1 → n for n ∈ ω. Note that τnn = idn + τ0

0 . In Πl Lemma 2.1 holds
with an additional condition that ki+1 = ki + 1 and kt = n− 1.

We have a left multiplication 2-functor

Wl : ∆→ 2Cat

such that
Wl(∗) = Πl, Wl(n) = n+ (−), Wl(f) = f + (−)
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for f : n → m ∈ ∆. Thus Wl can be seen as an action od ∆ on Πl by tensoring on the
left. Clearly, Πl is closed with respect to such operations.

Dually, we have the right partial simplicial category Πr, a subcategory of Π with the
same objects as Π. A morphism f : n→ m from Π is in Πr iff for any i ≤ j ∈ n, if f(i) is
defined so is f(j). In other words the morphisms of Π are generated by the morphisms in
∆ and the morphism τn0 : n + 1 → n, for n ∈ ω. Note that τn0 = τ0

0 + idn. In Πl Lemma
2.1 holds with a additional condition that ki+1 = ki + 1 and k1 = 0.

We have a right multiplication 2-functor

Wr : ∆→ 2Cat

such that
Wr(∗) = Πr, Wr(n) = (−) + n, Wr(f) = (−) + f

for f : n → m ∈ ∆. Thus Wr can be seen as an action od ∆ on Πr by tensoring on the
right. Clearly, Πr is closed with respect to such operations.

4 Monads as 2-functors

The 2-functors T : ∆→ D correspond bijectively to monads in the 2-category D.
Suppose (C, T, η, µ) is a monad in D on C. We define a 2-functor T as follows:

T(∗) = C, T(0) = 1C , T(n) = Tn,

T(δ00) = η, T(δni ) = Tn−iηT i , T(σ1
0) = µ, T(σni ) = Tn−i−1µT i ,

The equations
T(σi) ◦T(σi) = T(σi) ◦T(σi+1)

hold, as the consequence of the associativity of the multiplication µ ◦ Tµ = µ ◦ µT . The
equations

T(σi) ◦T(δi) = 1 = T(σi+1) ◦T(δi)

hold, as the consequence of the unit axiom µ ◦ Tη = 1 = µ ◦ ηT . The remaining simplicial
equations hold as a consequence of the Middle Exchange Law (MEL).

On the other hand, having a 2-functor T : ∆ → D, we get a monad
(T(∗),T(1),T(δ00),T(σ1

0)).
Let 2Cat be the 3-category of 2-categories. As 2Cat(∆,D) is the 2-category of monads

in D with strict morphisms, we can think of ∆ as a 2-category representing monads with
strict morphisms in 2-categories.

5 The 2-functor SubeqT and the Eilenberg-Moore objects

For a given monad (C, T, η, µ) in a 2-category D we define a 2-functor

SubeqT : Dop −→ Cat

as follows. For a given 0-cell X in D, the category SubeqT (X) has as objects pairs (U, ξ)
such that U : X → C is a 1-cell in D, ξ : TU → U is a 2-cell in D such that in the diagram

T 2U TU-
µU

-T (ξ)
U

-ξ

�
ηU
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we have
ξ ◦ ηU = 1U , ξ ◦ T (ξ) = ξ ◦ µU .

In such case, we say that (U, ξ) subequalizes the monad T . A morphism τ : (U, ξ)→ (U ′, ξ′)
is a 2-cell τ : U → U ′ such that the square

U U ′-
τ

TU TU ′-T (τ)

?
ξ

?
ξ′

commutes. The 2-functor SubeqT is define on 1- and 2-cells in the obvious way, by com-
position.

Recall, from [St1], see [Z] for the notation, that the 2-category D admits Eilenberg-
Moore objects if the embedding ι

D Mnd(D)-ι
�

EM

has a right 2-adjoint ι a EM . Mnd(D) is the 2-category of monads in D with lax
morphisms of monads and transformations of lax morphisms. We have a 2-functor

Mnd(ι(−), T ) : Dop −→ Cat (2)

sending 0-cell X in D to the category Mnd(ι(X), T ) of lax morphisms from the identity
monad on X to the monad T and transformations between such morphisms.

The following definition is a ’monad by monad’ version of the previous one. We say
that the monad T admits Eilenberg-Moore object iff the 2-functor Mnd(ι(−), T ) is repre-
sentable.

A simple verification shows

Lemma 5.1. The 2-functors SubeqT and Mnd(ι(−), T ) are naturally isomorphic.

6 The 2-functor ConeWl
(T)

Let T : ∆ → D be a 2-functor and T be the monad corresponding to T. We define a
2-functor

ConeWl
(T) : Dop −→ Cat

of Wl-cones over T. We will show that the 2-functor ConeWl
(T) is isomorphic to the

2-functor SubeqT .
Fix a 0-cell X in D. An object of ConeWl

(T)(X) is a 2-natural transformation

λ : Wl −→ D(X,T(∗))

with only one component the functor λ∗ also denoted λ. The 2-naturality means that the
square

Πl D(X,T(∗))-
λ

Πl D(X,T(∗))-λ

?

m+(−)

?

n+(−)
f+(−)
=⇒

?

D(X,T(m))

?

D(X,T(n))D(X,T(f))
=⇒
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commutes, for any f : m → n in ∆. Put T = T(1) and λ(0) = U : X → T(∗). We have
with f as before

λ(m) = λ(m+ 0) = T(m) ◦ λ(0) = TmU,

λ(f) = λ(f + 0) = T(f) ◦ λ(0) = T(f) ◦ U

Moreover, putting λ(τ0
0 ) = ξ : TU → U , we have

λ(τnn ) = λ(idn + τ0
0 ) = T(idn) ◦0 T(τ0

0 ) = T(idn) ◦0 ξ =

= T(id1) ◦0 . . . ◦0 T(id1) ◦0 ξ = idT ◦0 . . . ◦0 idT ◦0 ξ = Tn(ξ)

Thus λ is uniquely determined by U and ξ. The equations

τ0
0 ◦ δ10 = 1, τ0

0 ◦ τ1
1 = τ0

0 ◦ σ1
0

implies that (U, ξ) subequalizes the monad T . On the other hand, if (U, ξ) subequalizes T
then we can define a 2-natural transformation λ : Wl → D(X,T), as follows. The functor

λ = λ∗ : Πl −→ D(X,Π(∗))

is defined so that
λ(0) = U, λ(τ0

0 ) = ξ

and for 2-naturality of λ we have

λ(n) = TnU, λ(f) = T(f)U , λ(τnn ) = Tn(ξ)

Then it is easy to verify that λ respect all the equations in Πl.
A morphism in ConeWl

(T)(X) between two 2-natural transformations is a modification
ν : λ → λ′ with one component ν∗, denoted also ν, that is a natural transformation so
that, for any n ∈ ω, the square

Πl D(X,T(∗))

Πl D(X,T(∗))

?

n+(−)

?

D(X,T(n))

-λ

-
λ′

ν ⇓

-λ

-
λ′

ν ⇓

commutes. As we have
νn = ν(n+0) = Tn(ν0)

the modification ν is uniquely determined by ν0 : U → U ′ = λ′(0). The square

λ(0) λ′(0)-
ν0

λ(1) λ′(1)-ν1

?
λ(τ0

0 )
?
λ′(τ0

0 )

commutes as it is the naturality of ν∗ : λ∗ → λ′∗ on τ0
0 .

On the other hand, any 2-cell ν0 : U → U ′ in D such that
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U U ′-
ν0

TU TU ′-T (ν0)

?
ξ

?
ξ′

extends to a natural transformation from λ∗ to λ′∗, i.e. a modification ν from λ to λ′.
The 2-functor ConeWl

(T) is defined on 1- and 2-cells in the obvious way.
Constructing this functor we have in fact proved

Lemma 6.1. The 2-functors SubeqT and ConeWl
(T) are naturally isomorphic.

7 The Eilenberg-Moore objects

Theorem 7.1. Let (C, T, η, µ) be a monad in a 2-category D and T : ∆ → D the corre-
sponding 2-functor. Then T admits Eilenberg-Moore object iff T has a Wl-weighted limit.
If it is the case then the Eilenberg-Moore object for T and the Wl-weighted limit of T are
isomorphic.

Proof. By Lemmas 5.1 and 6.1, the 2-functors Mnd(ι(−), T ) and ConeWl
(T) are naturally

isomorphic. So if one is of representable so is the other and the representing objects are
isomorphic. The representation of the first give rise to the Eilenberg-Moore object for T ,
and the representation of the second give rise to the Wl-weighted limit of T.

From the above theorem we get immediately

Corollary 7.2. Any 2-category D admits Eilenberg-Moore object iff it has all Wl-weighted
limit of 2-functors from ∆.

8 The Kleisli objects

Clearly, all the above considerations can be dualised. In this case we get results relating
Kleisli objects and the Wr-weighted colimits of 2-functors from ∆.

We note for the record

Theorem 8.1. Let (C, T, η, µ) be a monad in a 2-category D and T : ∆ → D the corre-
sponding 2-functor. Then T admits Kleisli object iff T has a Wr-weighted colimit. If it is
the case then the Kleisli object for T and the Wr-weighted colimit of T are isomorphic.

Corollary 8.2. Any 2-category D admits Kleisli object iff it has all Wr-weighted colimit
of 2-functors from ∆.

9 Appendix: Weighted limits in 2-categories

We recall the definition of weighted limits in 2-categories in detail.

The 2-functor D(X,T)

For two 2-functors between 2-categories as shown1

1There are some foundational problems that one should address. For example, it is desirable that the
2-category I be small. But we will be ignoring this issues believing that the reader can fix all these problem
on its own, the way she or he likes most.
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I Cat-W I D-T

we are going to describe the W -weighted limit of T.
For any 0-cell X in D we can form a 2-functor

I Cat-D(X,T)

j D(X,T(j))

i D(X,T(i))

?

f

?

gα
=⇒

?

D(X,T(f))

?

D(X,T(f))D(X,T(α))
=⇒

-

of ’homming into’ T.
The category D(X,T(i)) consists of 1- and 2-cells in D from X to T(i).
The functor

D(X,T(i)) D(X,T(j))-D(X,T(f))

is a whiskering along the 2-cell T(f):

X T(i)
-r

-
s
γ ⇓ - X T(j)

-T(f) ◦ r

-
T(f) ◦ s

T(f)(γ) ⇓

The component of the natural transformation

D(X,T(f)) D(X,T(g))-D(X,T(α))

at r : X → T(i) is

T(f) ◦ r T(g) ◦ r-T(α)r

The naturality of D(X,T(f))

T(f) ◦ s T(f) ◦ r-
T(α)s

T(f) ◦ r T(g) ◦ r-T(α)r

?

T(f)(γ)
?

T(g)(γ)

follows from MEL, where

X T(i)
-r

-
s
γ ⇓ T(j)

-T(f)

-
T(g)

T(α) ⇓

This ends the definition of the 2-functor D(X,T).

7



The 2-functor of weighted cones

Using the above 2-functor(s) we can form the 2-functor ConeW (T) of W -cones over T.

Dop Cat-ConeW (T)

Y ConeW (T)(Y )

X ConeW (T)(X)

?

F

?

Gβ
=⇒

6

ConeW (T)(F )

6

ConeW (T)(G)
ConeW (T)(β)

=⇒

-

FixX inD. The category ConeW (T)(X) consists of 2-natural transformations between
2-functors W and D(X,T) and modifications between them.

The objects in the category ConeW (T)(X) are 2-natural transformations

?
I 3 f

?

g

i

j

α

⇒

W D(X,T)-λ

Wj D(X,T(j))-
λj

Wi D(X,T(i))-λi

?

Wf

?

WgWα
=⇒

?

D(X,T(f))

?

D(X,T(g))D(X,T(α))
=⇒

so that
D(X,T(α)) ◦ λi = λj ◦Wα

The morphisms in the category ConeW (T)(X) are modifications ν : λ→ λ′ or

W D(X,T)
-λ

-
λ′
ν ⇓

such that, for f : i→ j in I, the square

Wj D(X,T(j))

Wi D(X,T(i))

?

Wf

?

D(X,T(f))

-
λj

-
λ′j

νj ⇓

-λi

-
λ′i

νi ⇓

commutes, in the sense that

D(X,T(f)) ◦ νi = νj ◦Wf

This ends the definition of the category ConeW (T)(X).
The functor

ConeW (T)(X) ConeW (T)(Y )-ConeW (T)(F )
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sends the 2-natural transformation λ to the 2-natural transformation

W D(Y,T)-λ D(X,T)-D(F,T)

such that, for i in I,

Wi D(Y,T(i))-λi D(X,T(i))-D(F,T(i))

is a functor such that, for u : w → w′ in Wi, we have a diagram

X Y-
F T(i)

-λi(w)

-
λi(w′)
λi(u) ⇓

and the following equations

D(F,T(i)) ◦ λi(w) = λi(w) ◦ F

D(F,T(i)) ◦ λi(u) = λi(u)F
hold. Moreover, the functor ConeW (T)(F ) sends the modification ν

W D(Y,T)
-λ

-
λ′
ν ⇓

to the modification

W D(X,T)
-ConeW (T)(F )(λ) = λ̄

-
ConeW (T)(F )(λ′) = λ̄′

ConeW (T)(F )(ν) = ν̄ ⇓

such that, for i in I,

W D(X,T(i))
-λ̄i

-
λ̄′i

ν̄i ⇓

is a natural transformation such, that for w in Wi,

λ̄i(w) = λi(w) ◦ F λ′i(w) ◦ F = λ̄′i(w)-(ν̄i)w) = ((νi)w)F

is a morphism in D(X,T(i)).
The component, at the 2-natural transformation λ : W → D(X,T), of the natural

transformation

ConeW (T)(F ) ConeW (T)(G)-ConeW (T)(β)

is a modification D(β,T) ◦ λ, i.e. the composition

W D(Y,T)-λ D(X, T )
-D(F,T)

-
D(G,T)

D(β,T) ⇓

so that, at i in I, it is the natural transformation D(β,T(i)) ◦ λi

Wi D(Y,T(i))-λi D(X,T(i))
-D(F,T(i))

-
D(G,T(i))

D(β,T(i)) ⇓

so that, for w in Wi, it is a morphism in D(X,T)

λi(w) ◦ F λi(w) ◦G-λi(w)(β)

from the diagram

T(i)-λi(w)
X Y

-F

-
G

β ⇓
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The representation of the 2-functor ConeW (T)

The representation of the functor ConeW (T) is the W -weighted limit of the 2-functor T.
Thus it is an object LimW (T) together with a 2-natural isomorphism

D(−, LimW (T)) ConeW (T)-%

The image of the identity on LimW (T) is the limiting W -weighted cone

LimW (T) T-π

in ConeW (T)(LimW (T)). For any 0-cell X we have a correspondence via π

X LimW (T)
-L

-
L′

n ⇓

?

λ

?

λ′

T

���
���

�����

πν
⇒

or in another form, we have an isomorphism of categories

X LimW (T)
-L

-
L′

n ⇓ in D

X T
-λ

-
λ′

ν ⇓ in ConeW (T)(X)

natural in X.
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