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Abstract

We introduce the notion of a positive face structure. The positive face
structures to positive-to-one computads are like simple graphs, c.f. [MZ], to
free ω-categories over ω-graphs. In particular, they allow to give an explicit
combinatorial description of positive-to-one computads. Using this description
we show, among other things, that positive-to-one computads form a presheaf
category with the exponent category being the category of principal positive
face structures. We also present the Harnik argument in this context showing
that the ω-categories are monadic over positive-to-one computads with the ’free
functor’ being the inclusion Comp+/1 → ωCat.
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1 Introduction

In this paper we present a combinatorial description of the category of the positive-
to-one computads Comp+/1. We show, that this category is a presheaf category and
we describe its exponent category in a very simple combinatorial way as the category
of positive principal face structures pFs+/1, see section 3. However the proof of
that requires some extended studies of the category of all positive face structures.
Intuitively, the (isomorphism classes of) positive face structures correspond to the
types of arbitrary cells in positive-to-one computads. The notion of a positive face
structure in the main notion introduced in this paper. We describe in a combinatorial
way, the embedding functor e : Comp+/1 → ωCat of the category of positive-to-
one computads into the category into the ω-categories as the left Kan extension
along a suitable functor j, and its right adjoint as the restriction along j. We
end by adopting an argument due to V.Harnik to show that the right adjoint to
e is monadic. This approach does not cover the problem of the cells with empty
domains which is important for both Makkai’s multitopic categories and Baez-Dolan
opetopic categories. However it keeps something from the simplicity of the Joyal’s
θ-categories, i.e. the category of positive face structures or rather the category of
positive computypes Ctypes+/1ω , the full image of the former in ωCat is not much
more complicated than the category of simple ω-categories, the dual of the category
of disks, c.f. [J], [MZ], [Be]. In this sense this paper may be considered as a step
towards a comparison of these two approaches.

Positive face structures

Positive face structures represent all possible shapes of cells in positive-to-one com-
putads. A positive face structure S of dimension 2 can be pictured as a figure
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and a positive face structure T of dimension 3 can be pictured as a figure
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They have faces of various dimensions that fit together so that it make sense to
compose them in a unique way. By Sn we denote faces of dimension n in S. Each

2



faces a has a face γ(a) as its codomain and a non-empty set of faces δ(a) as its
domain. In S above we have for a1

γ(a1) = x4 and δ(a1) = {x5, x6, x9}

and in T we have for β

γ(β) = b0 and δ(β) = {b1, b2, b3}

This is all the data we need. Moreover, these (necessarily finite) data satisfy four
conditions (see Section 3 for details). Below we explain them in an intuitive way.

Globularity. This is the main condition. It relate the sets that are obtained by
duble application of γ and δ. They are

γγ(a) = γδ(a)− δδ(a), δγ(a) = δδ(a)− γδ(a).

Let us look how it works for two faces a1 and β. In case of the face a1 we have

γδ(a1) = {s3, s4, s6}, δδ(a1) = {s4, s6, s7}

γγ(a1) = s3, δγ(a1) = {s7}

So we have indeed

δδ(a1)− γδ(a1) = {s4, s6, s7} − {s3, s4, s6} = {s7} = δγ(a1)

γδ(a1)− δδ(a1) = {s3, s4, s6} − {s4, s6, s7} = {s3} = {γγ(a1)}

Similarly for the face β we have

γγ(β) = y0, δγ(δ) = {y1, y4, y5, y6}

γδ(β) = {y0, y2, y3}, δδ(β) = {y1, y2, y3, y4, y5, y6}

and hence

γδ(β)− δδ(β) = {y0, y2, y3} − {y1, y2, y3, y4, y5, y6} = {y0} = {γγ(β)}

δδ(β)− γδ(β) = {y1, y2, y3, y4, y5, y6} − {y0, y2, y3} = {y1, y4, y5, y6} = δγ(β)

As we see in both cases a1 and β the first actual formula is a bit more baroque
(due to the curely brackets around γγ(a1), γγ(β)) that in the globularity condition
stated above. However in the following we omit curely bracket on purpose to have a
simpler notation hoping that it will contribute to simplicity without messing things
up.

Using δ’s and γ’s we can define two binary relations <+ and <− on faces of the
same dimension which are transitive closures of the relations �+ and �−, respec-
tively. a�+ b holds iff there is a face α such that a ∈ δ(α) and γ(α) = b, and a�− b
holds iff γ(a) ∈ δ(b). We call <+ the upper order and <− the lower order. The
following three conditions refer to these relations.

Strictness. In each dimension, the relation <+ is a strict order. The relation <+

on 0-dimensional faces is required to be a linear order.
Disjointness. This condition says that no two faces can be comparable with

respect to both orders <+ and <−.
Pencil linearity. This final condition says that the sets of cells with common

codomain (γ-pencil) and the sets of cells that have the same distinguished cell in the
domain (δ-pencil) are linearly ordered by <+.
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The morphism of positive face structures are functions that preserves dimensions
and operations γ and δ. The size of a positive face structure S is defined as an infinite
sequence of natural numbers size(S) = {size(S)k}k∈ω = {Sk− δ(Sk+1)}k∈ω (almost
all equal 0). We order the sequences lexicographically with higher dimensions being
more important. The induction on the size of face structures is a convenient way
of reasoning about positive face structures. Dimension of a face structure S is the
index of the largest non-zero number in the sequence size(S). If for k ≤ dim(S)
(k < dim(S)), size(S)k = 1 then S is principal (normal). The normal positive face
structures plays role of the pasting diagram in [HMP] and the principal positive face
structures plays role of the (positive) multitopes. Note that, contrary to [HMP], we
do not consider either the empty-domain multitopes or the pasting diagrams. The
precise connection between these two approaches will be described elsewhere. On
positive face structures we define operations of the domain, codomain, and special
pushouts which plays the role of composition. With these operations (isomorphisms
classes of) the positive face structures form the terminal positive-to-one computad,
and at the same time the monoidal globular category in the sense of Batanin.

Categories and functors

We shall define the following categories

Comp+/1 ωCat-
e

Fs+/1 Ctypes+/1ω
-j

?

(−)∗

?

pFs+/1 S

?

i
?

k

where pFs+/1 is the category of principal positive face structures, Fs+/1 is the cate-
gory of positive face structures, S is the category of simple categories c.f. [MZ], (−)∗

is the embedding functor of positive face structures into positive-to-one computads,
e is the inclusion functor, Ctypes+/1ω is the full image of the composition functor
(−)∗; e, with the non-full embedding j.

Having these functor we can form the following diagram

Set(pFs+/1)op
sPb(Sop, Set)

sPb((Fs+/1)op, Set) sPb((Ctypes+/1ω )op, Set)-
Lanj

?

i∗
6

Rankk∗
6

Rani

?

Comp+/1 ωCat-e

?

(̂−)

6

(̃−)(̂−)

6

(̃−)

?

�
j∗

in which all the vertical arrows comes in pairs and they are adjoint equiv-
alences of categories. The unexplained categories in the diagram above are:
sPb((Fs+/1)op, Set) - the category of the special pullback preserving morphisms
from (Fs+/1)op to Set and natural transformations, sPb(Sop, Set) - the category of
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the special pullback preserving morphisms from Sop to Set and natural transfor-
mations, sPb((Ctypes+/1ω )op, Set) - the category of the special pullbacks preserving
morphisms from (Ctypes+/1ω )op to Set and natural transformations.

The functors (̂−) : Comp+/1 → sPb((Fs+/1)op, Set) and (̂−) : ωCat →
sPb((Ctypes+/1ω )op, Set) are defined similarly, due to the embeddings (−)∗ in the
previous diagram. For a computad Q and an ω-category C, Q̂ and Ĉ are presheaves
so that for a positive face structure S we have

Q̂ = Comp+/1(S∗, Q) Ĉ = ωCat(S∗, C)

The adjoint functors (̃−) that produce ω-categories are slightly more complicated.
They are defined in Sections 13 and 15. The other functors are standard. The
functors i∗, j∗, k∗ are inverse image functors. Rani and Rank are the right Kan
extensions along i, k, respectively and Lanj is the left Kan extension along j.

Since we have e; (̂−) = (̂−);Lanj, and (̂−)’s are equivalences of categories, the
functor Lanj is like e but moved into a more manageable context. In fact we have
a very neat description of this functor.

The content

Since the paper is quite long I describe below the content of each section to help the
reading. Sections 2 and 3 introduce the notion of a positive hyper-graph and positive
face structure. Section 4 is concerned with establishing what kind of inclusions hold
between iterated applications of γ’s and δ’s. Section 5 contains many technical
statements concerning positive face structure. All of them are there because they
are needed afterwards. Section 6 describes the embedding (−)∗ : Fs+/1 → ωCat i.e.
it’s main goal is to define an ω-category S∗ for any positive face structure S. Section
7 describes rather technical but useful properties of normal positive face structures.
In section 8 we study a way we can decompose positive face structures if they are at
all decomposable. Any positive face structure is either principal or decomposable.
This provides a way of proving the properties of positive face structures by induction
on the size. Using this in section 9 we show that the ω-category S∗ and in fact
the whole functor (−)∗ end up in Comp+/1. The next two short sections 10, 11
describe just what is in their titles: factorization in Ctypes+/1ω , and the terminal
positive-to-one computad in terms of positive face structures. Section 12 gives an
explicite description of all the cells in a given positive-to-one computad with the
help of positive face structures. In other words, it describe in concrete terms the
functor (−) : Comma+/1

n −→ Comp+/1
n . Section 13 establishes the equivalence

of categories between Comp+/1 and the category of presheaves over pFs+/1. In
Section 14 the principal pullbacks are introduced and the V.Harnik’s argument in
the present context is presented. Section 15 describes a full nerve functor

(̂−) : ωCat −→ Set(Ctypes
+/1
ω )op

and identifies its essential image as the special pullbacks preserving functors. Section
16 describes the inclusion functor as the left Kan extension

Lanj : sPb((Fs+/1)op, Set) −→ sPb((Ctypes+/1ω )op, Set)

with the formulas involving just coproduct (and no other colimits). This gives as a
corollary the fact that e : Comp+/1 → ωCat preserves connected limits. Then it is
shown that the right adjoint to Lanj

j∗ : sPb((Ctypes+/1ω )op, Set) −→ sPb((Fs+/1)op, Set)
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(and hence the right adjoint to e : Comp+/1 → ωCat) is monadic. In Appendix we
recall the definition of the category of positive-to-one computads.
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Notation

In the paper we will use both directions of compositions of morphisms in categories.
But each time we will write which way we compose the morphism. So, for the
composition of a pair of morphism x

f−→ y
g−→ z we can write either f ; g or g ◦ f .

ω is the set of natural numbers.

2 Positive hypergraphs

A positive hypergraph S is a family {Sk}k∈ω of finite sets of faces, a family of functions
{γk : Sk+1 → Sk}k∈ω, and a family of total relations {δk : Sk+1 → Sk}0≤k<n.
Moreover δ0 : S1 → S0 is a function and only finitely many among sets {Sk}k∈ω are
non-empty. As it is always clear from the context we shall never use the indices of
the functions γ and δ.

A morphism of positive hypergraphs f : S −→ T is a family of functions fk :
Sk −→ Tk, for k ∈ ω, such that the diagrams

Sk Tk-
fk

Sk+1 Tk+1
-fk+1

?

γ
?

γ

Sk Tk-
fk

Sk+1 Tk+1
-fk+1

?
δ

?
δ

commute, for k ∈ ω. The commutation of the left hand square is the commutation of
the diagram of sets an functions but in case of the right hand square we mean more
than commutation of a diagram of relations, i.e. we demand that for any a ∈ S≥1,
fa : δ(a) −→ δ(f(a)) be a bijection, where fa is the restriction of f to δ(a). The
category of positive hypergraphs is denoted by Hg+1.

When convenient and does not lead to confusions, for a ∈ Sk we sometime treat
γ(a) as an element of Sk−1 and sometimes as a subset {γ(a)} of Sk−1.

Before we go on, we need some notation. Let S be a positive hypergraph.

1. The dimension of S is max{k ∈ ω : Sk 6= ∅}, and it is denoted by dim(S).

2. The sets of faces of different dimensions are assumed to be disjoint (i.e. Sk ∩
Sl = ∅, for k 6= l). S is also used to mean the set of all faces of S, i.e.

⋃n
k=0 Sk;

the notation A ⊆ S mean that A is a set of some faces of S; Ak = A ∩ Sk, for
k ∈ ω.

3. If a ∈ Sk then the face a has dimension k and we write dim(a) = k.

4. For a ∈ S≥1 the set θ(a) = δ(a) ∪ γ(a) is the set of codimension 1 faces in a.

5. S≥k =
⋃
i≥k Si, S≤k =

⋃
i≤k Si. The set S≤k is closed under δ and γ so it is

a sub-hypergraph of S, called k-truncation of S.
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6. The image of A ⊆ S under δ and γ will be denoted by

δ(A) =
⋃
a∈A

δ(a), γ(A) = {γ(a) : a ∈ A},

respectively. In particular δδ(a) =
⋃
x∈δ(a) δ(x), γδ(a) = {γ(x) : x ∈ δ(a)}.

7. ι(a) = δδ(a) ∩ γδ(a) is the set of internal faces of the face a ∈ S≥2.

8. On each set Sk we introduce two binary relations <Sk,− and <Sk,+, called
lower and upper order, respectively. We usually omit k and even S in the
superscript.

(a) <S0,− is the empty relation. For k > 0, <Sk,− is the transitive closure of
the relation �Sk,− on Sk, such that a �Sk,− b iff γ(a) ∈ δ(b). We write
a ⊥− b iff either a <− b or b <− a, and we write a ≤− b iff either a = b
or a <− b.

(b) <Sk,+ is the transitive closure of the relation �Sk,+ on Sk, such that
a�Sk,+ b iff there is α ∈ Sk+1, such that a ∈ δ(α) and γ(α) = b. We write
a ⊥+ b iff either a <+ b or b <+ a, and we write a ≤+ b iff either a = b
or a <+ b.

(c) a 6⊥ b if both conditions a 6⊥+ b and a 6⊥− b hold.

9. Let a, b ∈ Sk. A lower path a0, . . . , am from a to b in S is a sequence of faces
a0, . . . , am ∈ Sk such that a = a0, b = am and for γ(ai−1) ∈ δ(ai), i = 1, . . . ,m.

10. Let x, y ∈ Sk. An upper path x, a0, . . . , am, y from x to y in S is a sequence of
faces a0, . . . , am ∈ Sk+1 such that x ∈ δ(a0), y = γ(am) and γ(ai−1) ∈ δ(ai),
for i = 1, . . . ,m.

11. The iterations of γ and δ will be denoted in two different ways. By γk and δk

we mean k applications of γ and δ, respectively. By γ(k) and δ(k) we mean the
application as many times γ and δ, respectively, to get faces of dimension k.
For example in a ∈ S5 then δ3(a) = δδδ(a) ⊆ S2 and δ(3)(a) = δδ(a) ⊆ S3.

12. For l ≤ k, a, b ∈ Sk we define a <l b iff γ(l)(a) <− γ(l)(b).

13. A face a is unary iff δ(a) is a singleton.

We have

Lemma 2.1 If S is an hypergraph and k ∈ ω, then <Sk+1,− is a strict partial order
iff <Sk,+ is a strict partial order.

3 Positive face structures

To simplify the notation, we treat both δ and γ as functions acting on faces as well
as on sets of faces, which means that sometimes we confuse elements with singletons.
Clearly, both δ and γ when considered as functions on sets are monotone.

A positive hypergraph S is a positive face structure if it is non-empty, i.e. S0 6= ∅
and

1. Globularity: for a ∈ S≥2:

γγ(a) = γδ(a)− δδ(a), δγ(a) = δδ(a)− γδ(a);
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2. Strictness: for k ∈ ω, the relation <Sk,+ is a strict order; <S0,+ is linear;

3. Disjointness: for k > 0,
⊥Sk,− ∩ ⊥Sk,+= ∅

4. Pencil linearity: for any k > 0 and x ∈ Sk−1, the sets

{a ∈ Sk | x = γ(a)} and {a ∈ Sk | x ∈ δ(a)}

are linearly ordered by <Sk,+.

S is a weak positive face structure if S is a globular, strict, disjoint, positive
hypergraph (i.e. pencil linearity is not required to hold).

The category of (weak) positive face structures is the full subcategory of Hg+1

whose objects are the (weak) positive face structures and is denoted by denoted by
Fs+/1 (wFs+/1).

Remarks.

1. The reason why we call the first condition ’globularity’ is that it will imply
the usual globularity condition in the ω-categories generated by positive face
structures.

2. For each k ∈ ω, the k-truncation of a weak positive face structure S is again
a weak positive face structure S≤k. In particular, any k-truncation of a pos-
itive face structure S is a weak positive face structure S≤k, but it does not
necessarily satisfy local linearity condition.

3. Note that if we were to assume that each positive face structure has a single
cell of dimension −1 then linearity of <S0,+ would become a special case of
pencil linearity.

4. The fact that, for x ∈ Sk−1, the set {a ∈ Sk | x = γ(a)} is linearly ordered
is sometimes referred to as γ-linearity of <Sk,+, and the fact that the set
{a ∈ Sk | x ∈ δ(a)} is linearly ordered is sometimes referred to as δ-linearity
of <Sk,+.

5. If S has dimension n, as hypergraph, then we say that S is an n-face structure.

6. The size of positive face structure S is the sequence natural numbers size(S) =
{|Sn − δ(Sn+1)|}n∈ω, with almost all being equal 0. We have an order < on
such sequences, so that {xn}n∈ω < {yn}n∈ω iff there is k ∈ ω such that xk < yk
and for all l > k, xl = yl. This order is well founded and many facts about
positive face structures will be proven by induction on the size.

7. Let S be a positive face structure. S is k-principal iff size(S)l = 1, for l ≤ k. S
is principal iff S is dim(S)-principal. S is normal iff S is (dim(S)−1)-principal.
S is k-normal iff S is normal and dim(S) = k. By pFs+/1 (nFs+/1) we denote
full subcategories of Fs+/1 whose objects are principal (normal) positive face
structures.

4 Atlas for γ and δ

We have an easy

Lemma 4.1 Let S be a positive face structure, a ∈ Sn, n > 1. Then

1. the sets δγ(a), ι(a), and γγ(a) are disjoint;
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δγ ι γγ

2. δδ(a) = δγ(a) ∪ ι(a);

3. γδ(a) = γγ(a) ∪ ι(a).

Proof. These are immediate consequences of globularity. 2

Moreover

Lemma 4.2 Let S be a positive face structure, a ∈ Sn, n > 2. Then we have

1. δγγ(a) ⊆ δγδ(a) ⊆ δγγ(a) ∪ ιγ(a) = δδγ(a) = δδδ(a);

2. γγγ(a) ⊆ γγδ(a) ⊆ γγγ(a) ∪ ιγ(a) = γδγ(a) = γδδ(a).

Proof. From globularity we have γγ(α) ⊆ γδ(α). Thus by monotonicity of δ
and γ we get

γγγ(α) ⊆ γγδ(α) and δγγ(α) ⊆ δγδ(α) and γγδ(α) ⊆ γδδ(α).

Similarly, as we have from globularity: δγ(α) ⊆ δδ(α) it follows by monotonicity
of δ and γ:

γδγ(α) ⊆ γδδ(α) and δδγ(α) ⊆ δδδ(α) and δγδ(α) ⊆ δδδ(α).

The equalities

δγγ(a) ∪ ιγ(a) = δδγ(a) and γγγ(a) ∪ ιγ(a) = γδγ(a)

follow easily from Lemma 4.1.
Thus it remains to show that:

1. δδγ(a) ⊇ δδδ(a),

2. γδγ(a) ⊇ γδδ(a).

Both inclusions can be proven similarly. We shall show the first only.
Suppose contrary, that there is u ∈ δδδ(a)−δδγ(a). Let x ∈ δ(a) be <−-minimal

element in δ(a) such that there is s ∈ δ(x) with u ∈ δ(s). If s ∈ δγ(a) then u ∈ δδγ(a)
contrary to the supposition. Thus s 6∈ δγ(a). Since δγ(a) = δδ(a)− γδ(a) it follows
that s ∈ γδ(a). Hence there is x′ ∈ δ(a) with γ(x′) = s. In particular x′ <− x.
Moreover

u ∈ δ(s) = δγ(x′) ⊆ δδ(x′).

Then there is s′ ∈ δ(x′) so that u ∈ δ(s′). This contradicts the <−-minimality of x.
2

From Lemma 4.2 we get

Corollary 4.3 Let S be a positive face structure, a ∈ Sn, n > 2, k < n. Then, with
ξl and ξ′l being two fixed strings of γ’s and δ’s of length l, we have

1. γk(a) ⊆ γξk−1(a);

2. δξk−1(a) ⊆ δk(a);

3. δk(a) ∩ γk(a) = ∅;
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4. ξk(a) ⊆ γk(a) ∪ δk(a);

5. δ2ξk−2(a) = δ2ξ′k−2(a), (e.g. δk(a) = δ2γk−2(a));

6. γδξk−2(a) = γδξ′k−2(a), (e.g. γδk−1(a) = γδγk−2(a));

7. ξk−2δγ(a) = ξk−2δ2(a), for k > 2;

8. δk(a) = δγk−1(a) ∪ ιγk−2(a), for k > 1.

5 Combinatorial properties of positive face structures

Local properties

Proposition 5.1 Let S be a positive face structure, k > 0 and α ∈ Sk, a1, a2 ∈ δ(α),
a1 6= a2. Then we have

1. a1 6⊥+ a2;

2. δ(a1) ∩ δ(a2) = ∅ and γ(a1) 6= γ(a2).

Proof. Ad 1. Suppose contrary that there are a1, a2 ∈ δ(α) such that a1 <
+ a2.

So we have an upper path
a1, β1, . . . , βr, a2

and hence a lower path
β1, . . . , βr, α.

In particular β1 <
− α. As a1 ∈ δ(β1) ∩ δ(α) by δ-linearity we have β1 ⊥+ α. But

then (α, β1) ∈⊥+ ∩ ⊥− 6= ∅ i.e. S does not satisfy the disjointness. This shows 1.
Ad 2. This is an immediate consequence of 1. If a1, a2 ∈ δ(α) and either

γ(a1) = γ(a2) or δ(a1) ∩ δ(a2) 6= ∅ then by pencil linearity we get that a1 ⊥+ a2,
contradicting 1. 2

After proving the above proposition we can introduce more notation. Let S be
a positive face structure, n ∈ ω.

1. For a face α ∈ Sn+2, we shall denote by ρ(α) ∈ δ(α) be the only face in δ(α),
such that γ(ρ(α)) = γγ(α).

2. X ⊆ Sn+1, a, b ∈ Sn and a, α1, . . . , αk, b be an upper path in S. We say that
it is a path in X (or X-path) if {α1, . . . , αk} ⊆ X.

Lemma 5.2 Let S be a positive face structure, n ∈ ω, α ∈ Sn+2, a, b ∈ Sn+1,
y ∈ δδ(α). Then

1. there is a unique upper δ(α)-path from y to γγ(α);

2. there is a unique x ∈ δγ(α) and an upper δ(α)-path from x to y such that
γ(x) = γ(y);

3. if t ∈ δ(y) there is an x ∈ δγ(α) and an upper δ(α)-path from x to y and
t ∈ δ(x);

4. If a <+ b then γ(a) ≤+ γ(b).
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Proof. Ad 1. Uniqueness follows from Lemma 5.1. To show the existence, let
us suppose contrary that there is no δ(α)-path from y to γγ(α). We shall construct
an infinite upper δ(α)-path from y

y, a1, a2, . . .

As y ∈ δδ(α) there is a1 ∈ δ(α) such that y ∈ δ(a1). So now suppose that we have
already constructed a1, . . . , ak. By assumption γ(ak) 6= γγ(α) so, by globularity,
γ(ak) ∈ δδ(α). Hence there is ak+1 ∈ δ(α) such that γ(ak) ∈ δ(ak+1). This ends the
construction of the path.

As in positive face structure there are no infinite paths, this is a contradiction
and if fact there is a δ(α)-path from y to γγ(α).

Ad 2. Suppose not, that there is no x ∈ δγ(α) as claimed. We shall construct
an infinite descending lower δ(α)-path

. . .�− a1 �− a0

such that γ(a0) = y, γγ(an) = γ(y) = t, for n ∈ ω.
By assumption y 6∈ δγ(α) = δδ(α) − γδ(α). So y ∈ γδ(α). Hence there is

a0 ∈ δ(α) such, that γ(a0) = y. Now, suppose that the lower δ(α)-path

ak �− ak−1 �− . . .�− a0

has been already constructed. By globularity, we can pick z ∈ δ(ak), such that
γ(z) = t. By assumption z 6∈ δγ(α) = δδ(α)− γδ(α). So z ∈ γδ(α). Hence there is
ak+1 ∈ δ(α) such, that γ(ak+1) = z ∈ δ(ak). Clearly, γγ(ak+1) = t. This ends the
construction of the path. But by strictness such a path has to be finite, so there is
x as needed.

Ad 3. This case is similar. We put it for completeness.
Suppose not, that there is no x ∈ δγ(α) as above. We shall construct an infinite

descending lower δ(α)-path
. . .�− a1 �− a0

such that γ(a0) = y, t ∈ δγ(an), for n ∈ ω.
By assumption y 6∈ δγ(α) = δδ(α) − γδ(α). So y ∈ γδ(α). Hence there is

a0 ∈ δ(α) such, that γ(a0) = y. Now, suppose that the lower δ(α)-path

ak �− ak−1 �− . . .�− a0

has been already constructed. By globularity, we can pick z ∈ δ(ak), such that
t ∈ δ(z). By assumption z 6∈ δγ(α) = δδ(α) − γδ(α). So z ∈ γδ(α). Hence there is
ak+1 ∈ δ(α) such, that γ(ak+1) = z ∈ δ(ak). Clearly, t ∈ δγ(ak+1). This ends the
construction of the path. But by strictness such a path has to be finite, so there is
x as needed.

Ad 4. The essential case is when a �+ b. This follows from 1. Then use the
induction. 2

Lemma 5.3 Let S be a positive face structure, n > 1, α ∈ Sn+1, and a, b ∈ Sn such
that a <+ b. Then

1. ιδ(α) = ιγ(α) ;

2. ι(a) ⊆ ι(b);

3. ι(a) ∪ γγ(a) ⊆ ι(b) ∪ γγ(b);
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4. δδ(a) ⊆ δδ(b);

5. θθ(a) ⊆ θθ(b).

Proof. Ad 1. ιδ(α) ⊆ ιγ(α):
Fix a ∈ δ(α) and t ∈ ι(a). Thus there are x, y ∈ δ(a) such, that γ(x) = t ∈ δ(y).

By Lemma 5.2 2,3 there are x′, y′ ∈ δγ(α) such, that x′ ≤+ x, y′ ≤+ y and γ(x′) =
t ∈ δ(y′). Thus t ∈ ιγ(α) and the first inclusion is proved.

ιδ(α) ⊇ ιγ(α):
Fix t ∈ ιγ(α). In particular, there are x, y ∈ δγ(α), so that γ(x) = t ∈ δ(y).

Suppose that t 6∈ ιδ(α). We shall build an infinite δ(α)-path

a1 �− a2 . . .

such that γγ(ai) = t for i ∈ ω.
Since δγ(α) ⊆ δδ(α), there is a1 ∈ δ(α) such, that x ∈ δ(a1). Since t 6∈ ιδ(α), it

follows that γγ(a1) = t. Suppose now that we have already constructed the path

a1 �− a2 . . . ak

as above. We have γγ(ak) = t �+ γ(y) ≤+ γγγ(α). So γ(ak) 6= γγ(α) and γ(ak) ∈
δδ(α). Then there is ak+1 ∈ δ(α) such, that γ(ak) ∈ δ(ak+1). Again, as t 6∈ ιδ(α),
it follows that γγ(ak+1) = t. This ends the construction of the path. Since, by
strictness, such a path cannot exists we get the other inclusion.

Ad 2. Since the inclusion is transitive, it is enough to consider the case a�+ b,
i.e. there is an α ∈ Sn+1 such, that a ∈ δ(α) and b = γ(α). Then by 1. we have

ι(a) ⊆ ιδ(α) = ιγ(α) = ι(b)

Ad 3. As above it is enough to consider the case a�+b, i.e. that there is α ∈ Sn+1

such that a ∈ δ(α) and γ(α) = b. By 2. we need to show that γγ(a) ⊆ ι(b) ∪ γγ(b).
We have

γγ(a) ∈ γγδ(α) ⊆ ιγ(α) ∪ γγγ(α) = ι(b) ∪ γγ(b).

Ad 4. Again it is enough to consider the case a�+ b, i.e. that there is α ∈ Sn+1

such that a ∈ δ(α) and γ(α) = b. We have

δδ(a) ⊆ δδδ(α) = δδγ(α) = δδ(b).

Ad 5. This follows from 3. and 4. 2

Global properties

Lemma 5.4 Let S be a positive face structure, n ∈ ω, a, b ∈ Sn, a <+ b. Then,
there is an upper Sn+1 − γ(Sn+2)-path from a to b.

Proof. Let a, α1, . . . , αk, b be an upper path is S. By Lemma 5.2 we can replace
each face αi in this path which is not in S − γ(S) by a sequence of faces which are
<+-smaller. Just take Γ ∈ Sn+2, such that γ(Γ) = αi and take instead of αi a path
in δ(Γ) from γ(αi−1) (if i = 0 then from a) to γ(αi). Repeated application of this
procedure will eventually yield the required path. 2

Lemma 5.5 Let S be a positive face structure, n > 0, a ∈ Sn, α ∈ Sn+1, and either
γ(a) ∈ ι(α) or δ(a) ∩ ι(α) 6= ∅. Then a <+ γ(α). Moreover, if α ∈ S − γ(S) then
there is a unique a′ ∈ δ(α) such that a ≤+ a′.
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Proof. If a ∈ δ(α) there is nothing to prove. So we assume that a 6∈ δ(α).
We begin with the second part of Lemma, i.e. we assume that α ∈ Sn+1 −

γ(Sn+2).
Let γ(a) ∈ ι(α). Thus there are b, c ∈ δ(α) such that γ(a) = γ(b) ∈ δ(c).

In particular a <− c. By γ-linearity either b <+ a or a <+ b. Suppose that
b <+ a. Then we have an (S − γ(S))-upper path b, β0, . . . , βr, a. As b ∈ α ∩ β0

and α, β0 ∈ S − γ(S), we have α = β0. But then c ∈ δ(α) = δ(β0) and hence
c <+ γ(β0) ≤+ a. So we get a <− c and c <+ a contradicting the disjointness of ⊥+

and ⊥−. Thus we can put a′ = b and we have a <+ a′. The uniqueness of a′ follows
from the fact that γ(a) = γ(a′).

The case δ(a) ∩ ι(α) 6= ∅ is similar and we put it for completeness. Thus there
are b, c ∈ δ(α) such that γ(b) ∈ δ(a) ∩ δ(c). In particular b <− a. By δ-linearity
either c <+ a or a <+ c. Suppose that c <+ a. Then we have an (S − γ(S))-upper
path c, β0, . . . , βr, a. As c ∈ α ∩ β0 and α, β0 ∈ S − γ(S), we have α = β0. But
then b ∈ δ(α) = δ(β0) and hence b <+ γ(β0) ≤+ a. So we get b <− a and b <+ a
contradicting the disjointness of ⊥+ and ⊥−. Thus we can put a′ = c and we have
a <+ a′. The uniqueness of a′ follows from the fact that γ(b) ∈ δ(a′) and a′ ∈ δ(α)
and Lemma 5.1.

The first part of the Lemma follows from the above, Lemma 5.2.4 and the fol-
lowing Claim.

Claim. If α ∈ Sn+1 and x ∈ ι(α) then there is an α′ ∈ Sn+1 such that α′ ≤+ α,
x ∈ ι(α′) and α′ 6∈ γ(Sn+2).

Proof of the Claim. Suppose that Claim is not true. To get a contradiction, we
shall build an infinite descending γ(Sn+2)-path

. . .�+ α1 �+ α0 = α

such that x ∈ ι(αi), for i ∈ ω.
We put α0 = α. Suppose that we have already constructed α0, . . . , αk ∈ γ(Sn+2).

Hence there is β ∈ Sn+2 such, that γ(β) = αk. Since ιδ(β) = ιγ(β) = ι(αk), there is
αk+1 ∈ δ(β) such, that x ∈ ι(αk+1). This ends the construction of the infinite path
and the proof of the Claim and the Lemma. 2

Corollary 5.6 Let S be a positive face structure. If a ∈ S−δ(S) then γ(a) ∈ S−ι(S)
and δ(a) ⊆ S − ι(S).

Proof. Let a ∈ Sn and α ∈ Sn+2. If either γ(a) ∈ ι(α) or δ(a)∩ ι(α) 6= ∅ then by
Lemma 5.5 a <+ γ(α). Thus a ∈ δ(S). 2

A lower path b0, . . . , bm is a maximal path if δ(b0) ⊆ δ(S) − γ(S) and γ(bm) ∈
γ(S)− δ(S), i.e. if it can’t be extended either way.

Lemma 5.7 (Path Lemma) Let k ≥ 0, B = (a0, . . . , ak) be a maximal Sn-path
in a positive face structure S, b ∈ Sn, 0 ≤ s ≤ k, as <+ b. Then there are
0 ≤ l ≤ s ≤ p ≤ k such, that

1. ai <+ b for i = l, . . . , p;

2. γ(ap) = γ(b);

3. either l = 0 and δ(a0) ⊆ δ(b) or l > 0 and γ(al−1) ∈ δ(b);

4. γ(ai) ∈ ι(S), for l ≤ i < p.
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Proof. Let 0 ≤ l ≤ p ≤ k be such that ai <+ b for l ≤ i ≤ p and either l = 0
or al−1 6<+ b and either p = k or ak+1 6<+ b. We shall show that l and p have the
properties stated in the Lemma. From the very definition the property 1 holds.

We shall show 2. Take an upper (S − γ(S))-path from ap to b: ap, β0, . . . , βr, b.
If γ(ap) = γγ(βi), for i = 0, . . . , r then γ(ap) = γγ(βr) = γ(b) and we are done. So
suppose contrary and let

i0 = min{i : γ(ap) 6= γγ(βi)}

Then there are a, c ∈ δ(βi0) such that γ(ap) = γ(a) ∈ δ(c) (NB. a = ap if i0 = 0
and a = γ(βi0−1) otherwise). In particular γ(ap) ∈ ι(βi0). As γ(ap) ∈ δ(S), we have
p < k. Thus γ(ap) ∈ δ(ap+1) ∩ ι(βi0), and by Lemma 5.5 ap+1 <

+ c <+ b. But this
contradicts the choice of p. So the property 2. holds.

Now we shall show 3. Take an upper (S−γ(S))-path from al to b: al, β0, . . . , βr, b.
We have two cases: l = 0 and l > 0.

If l = 0 then there is no face a ∈ S such that γ(a) ∈ δ(al). As δ(al) ⊆ δδ(β0) we
must have δ(al) ∈ δγ(βi), for i = 0, . . . , r. Hence δ(al) ⊆ δγ(βr) = δ(b) and 3. holds
in this case.

Now suppose that l > 0. If γ(al−1) ∈ δγ(βi), for i = 0, . . . , r, then γ(al−1) ∈
δγ(βr) = δ(b) and 3. holds again. So suppose contrary , and let

i1 = min{i : γ(al−1) 6∈ δγ(βi)}

Then there are a, c ∈ δ(βi1) such that γ(al−1) = γ(a) ∈ δ(c) (NB: c = al if i1 = 0
and c = γ(βi1−1) otherwise). In particular γ(al−1) ∈ ι(βi1), and by Lemma 5.5 we
have al−1 <

+ a <+ b contrary to the choice of l. Thus 3. holds in this case as well.
Finally, we shall show 4. Let l ≤ j ≤ p and aj , β0, . . . , βr, b be an upper (S−δ(S))-

path from aj to b. As aj <− ap and ap <
+ b we have γ(aj) 6= γ(b). So we can put

i2 = min{i : γ(aj) 6= γγ(βi)}

But then γ(aj) ∈ γδ(βi2) − γγ(βi2) = ι(βi2). Therefore γ(aj) ∈ ι(S) and 4. holds.
2

Lemma 5.8 Let S be a positive face structure, n ∈ ω, x, y ∈ Sn, x <+ y. Then if
x, y 6∈ ι(Sn+2), then there is an upper path from x to y contained in Sn+1− δ(Sn+2).

Proof. Assume x, y ∈ (S − ι(S)) and x <+ y. Let

x, b0, . . . , bk, y

be an upper path from x to y with the longest possible initial segment b0, . . . , bl in
S − δ(S).

We need to show that k = l. So suppose contrary, that l < k. By Corollary 5.6
γ(bl)not ∈ ι(S). Let α be a face such that bl+1 ∈ ι(α). In particular bl+1 <

+ γ(α).
As γ(bl) 6∈ ι(S) we have γ(bl) ∈ δγ(α) (= δδ(α)− ι(α)). So γ(bl) ∈ δ(bl+1 ∩ δγ(α).

Let a be the <+-largest element of the set {b ∈ S : γ(bl) ∈ δ(b)}. Then bl+1 ≤ a.
By a similar argument as above for bl+1 we get that a 6∈ δ(S). By Lemma 5.7 there
is p such that l + 1 ≤ p ≤ k such that γ(bp) = γ(a) (Note that the facts that
y 6∈ ι(S) and Lemma 5.7.4 are needed here.). Thus we have an upper path from x
to y, x, b0, . . . , bl, a, bp+1, . . . , bk, y with a longer initial segment in S−δ(S). But this
means in fact that in fact l = k, as required. 2
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Order

Lemma 5.9 Let S be a positive face structure, n ∈ ω, a, b ∈ Sn. Then we have

1. If a <+ b then for any x ∈ δ(a) there is y ∈ δ(b) such that y ≤+ x;

2. If a <+ b and γ(a) = γ(b) then for any y ∈ δ(b) there is x ∈ δ(a) such that
y ≤+ x;

3. If γ(a) = γ(b) then either a = b or a ⊥+ b;

4. If γ(a) <+ γ(b) then either a <+ b or a <− b;

5. If a <+ b then γ(a) ≤+ γ(b);

6. If a <− b then γ(a) <+ γ(b);

7. If γ(a) ⊥− γ(b) then a 6⊥− b and a 6⊥+ b.

Proof. Ad 1. Let a <+ b and x ∈ δ(a). We have two cases: either x ∈ γ(S) or
x 6∈ γ(S).

In the first case there is a′ ∈, such that γ(a′) = x. Let a0, . . . , ak be a maximal
path containing a′, a, say as−1 = a′ and as = a, where 0 < s ≤ k. As as <+ b, by
Lemma 5.7 there is l ≤ s and y ∈ δ(al) ∩ δ(b). Clearly, y ≤+ x.

In the second case consider an upper path from a to b: a, β0, . . . , βr, b. We have
x ∈ δ(a) ⊆ δδ(β0). As x 6∈ γ(S) so x 6∈ γδ(β0), and hence x ∈ δδ(β0) − γδ(β0) =
δγ(β0). Thus we can define

r′ = max{i : x ∈ δγ(βi)}

If we had r′ < r then again we would have x ∈ δδ(βr′+1) − γδ(βr′+1) = δγ(βr′+1),
contrary to the choice of r′. So r′ = r and x ∈ δγ(βr) = δ(b). Thus we can put
y = x.

Ad 2. Fix a <+ b such that γ(a) = γ(b) and y ∈ δ(b). We need to find x ∈ δ(a)
with y ≤=. Take a maximal (S − γ(S))-path a0, . . . , ak passing through y, i.e.
there is 0 ≤ j ≤ k such that y ∈ δ(aj) and if y ∈ γ(S) then moreover j > 0 and
γ(aj−1) = y. Since aj 6∈ γ(S) by δ-linearity aj <

+ b. Thus by Lemma 5.7 there is
j ≤ p ≤ k such that γ(ap) = γ(b) = γ(a). Since ap 6∈ γ(S) by γ-linearity we have
ap ≤+ a. If ap = a then we can take as the face x either y if p = 0 or γ(ap−1) if
p > 0. So assume now that ap <+ a. Again by Lemma 5.7 there is 0 ≤ l ≤ p such
that either l = 0 and δ(a0) ⊆ δ(a) or l > 0 and γ(al−1) ∈ δ(a). As al is the first face
in the path a0, . . . , ak such that al <+ a and aj is the first face in the path a0, . . . , ak
such that al <+ b and moreover a <+ b it follows that j ≤ l. Thus in this case we
can take as the face x either y if l = 0 or γ(al−1) if l > 0.

Ad 3. This is an immediate consequence of γ-linearity.
Ad 4. Suppose γ(a) <+ γ(b). So there is an upper path

γ(a), c1, . . . , ck, γ(b)

with k > 0. We put c0 = a. We have γ(ck) = γ(b) so by γ-linearity ck ⊥+ b. So we
have two cases: either b <+ ck or ck <+ b.

If b <+ ck then by Lemma 5.7 for any maximal path that contains b and the face
ck we get that ck−1 <

− b. Thus we have a <− b.
If ck <+ b then by Lemma 5.7 for any maximal path that extends c0, c1, . . . , ck

and face b we get that either there is 0 ≤ i < k such that γ(ci) ∈ δ(b) and then
a <− b or else a = c0 <

+ b.
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Ad 5. This is repeated from Lemma 5.2.
Ad 6. Suppose a <− b. Then there is a lower path

a = a0, a1, . . . , ak = b

with k > 0. Then we have an upper path

γ(a) = γ(a0), a1, . . . , ak, γ(ak) = γ(b).

Hence γ(a) <+ γ(b).
Ad 7. Easily follows from 5 and 6. 2

Proposition 5.10 Let S be a positive face structure, a, b ∈ Sn, a 6= b. Let
{ai}0≤i≤n, {bi}0≤i≤n be two sequences of codomains of a and b, respectively, so
that

ai = γ(i)(a) bi = γ(i)(b)

(i.e. dim(ai) = i), for i = 0, . . . , n. Then there are two numbers 0 ≤ l ≤ k ≤ n such
that either

1. ai = bi for i < l,

2. ai <+ bi for l ≤ i ≤ k,

3. ai <− bi for k + 1 = i ≤ n,

4. ai 6⊥ bi for k + 2 ≤ i ≤ n,

or the roles of a and b are interchanged.

Proof. The above conditions we can present more visually as:

a0 = b0, . . . , al−1 = bl−1, al <
+ bl, . . . ak <

+ bk,

ak+1 <
− bk+1, ak+2 6⊥ bk+2, . . . , an 6⊥ bn.

These conditions we will verify from the bottom up. Note that by strictness <S0,+ is
a linear order. So either a0 = b0 or a0 ⊥+ b0. In the later case l = 0. As a 6= b then
there is i ≤ n such that ai 6= bi. Let l be minimal such, i.e. l = min{i : ai 6= bi}. By
Lemma 5.9 3., al ⊥+ bl. So assume that al <+ bl. We put k = max{i ≤ n : ai <+

bi}. If k = n we are done. If k < n then by Lemma 5.9 4., we have ak+1 <
− bk+1.

Then if k + 1 < n, by Lemma 5.9 5. 6. 7., ai 6⊥ bi for k + 2 ≤ i ≤ n. This ends the
proof. 2

From the above Proposition we get immediately

Corollary 5.11 Let S be a positive face structure, a, b ∈ Sn, a 6= b. Then either
a ⊥+ b or there is a unique 0 ≤ l ≤ k such that a ⊥−l b, but not both.

The above Corollary allows us to define an order <S (also denoted <) on all cells
of S as follows. For a, b ∈ Sn,

a <S b iff a <+ b or ∃l a <−l b.

Corollary 5.12 For any positive face structure S, and n ∈ ω, the relation <S

restricted to Sn is a linear order.
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Proof. We need to verify that <S is transitive.
Let a, b, c ∈ Sn. There are some cases to consider.
If a <+ b <+ c then clearly a <+ c.
If a <+ b <−l c then we have γ(l)(a) <+ γ(l)(b) <− γ(l)(c). By Lemma 5.2 4.,

and transitivity of <− we have γ(l)(a) <− γ(l)(c). Hence a <−l c.
If a <−l b <+ c then, by use Lemma 5.7, either the maximal lower path from

that contains both γ(l)(a) and γ(l)(b) passes between γ(l)(a) and γ(l)(b) through a
face in δγ(l+1)(c) and a <−l c or it does not passes through a face δγ(l+1)(c) and
then γ(l)(a) <+ γ(l)(c). Thus by Proposition 5.10 either there is l ≤ l′ ≤ n such that
γ(l′)(a) <+ γ(l′)(c) and hence a <−l′ c or a <+ c.

Finally suppose that a <−k b <
−
l c.

If k = l then clearly a <l c.
If k > l then γ(l)(a) <+ γ(l)(b) <− γ(l)(c) and, by the previous argument,

γ(l)(a) <− γ(l)(c), i.e. a <−l c.
Finally, assume that k < l, i.e. γ(k)(a) <− γ(k)(b) <+ γ(k)(c). Then, by Path

Lemma, either γ(k)(a) <− γ(k)(c) or γ(k)(a) <+ γ(k)(c). In the latter case, by
Proposition 5.10, either a <+ b or there is k′, such that k < k′ ≤ n and γ(k′)(a) <+

γ(k′)(c). In any case we have a < c, as required. 2

From the proof of the above corollary we get

Lemma 5.13 Let S be a positive face structure, a ∈ Sn. Then the set

{b ∈ Sn : a ≤+ b}

is linearly ordered by ≤+.

Proof. Suppose a ≤+ b, b′. If we where to have b <−l b
′ for some l ≤ n then, by

Corollary 5.12 we would have a <−l b
′ which is a contradiction. 2

Corollary 5.14 Any morphism of positive face structures is one-to-one. Moreover
any automorphism of positive face structures is an identity.

Proof. By Corollary 5.12, the (strict, linear in each dimension) order <S is
defined internally using relations <− and <+ that are preserved by any morphism.
Hence <S must be preserved by any morphism, as well. From this observation the
Corollary follows. 2

Lemma 5.15 Let S be a positive face structure, a, b ∈ Sn. Then

1. if ι(a) ∩ ι(b) 6= ∅ then a ⊥+ b;

2. if ∅ 6= ι(a) ⊆ ι(b) 6= ι(a) then a <+ b;

3. if a ⊥− b then ι(a) ∩ ι(b) = ∅.

Proof. 2. is an easy consequence of 1. and Lemma 5.3. 3. is an easy consequence
of 1. and Disjointness. We shall show 1.

Assume that u ∈ ι(a) ∩ ι(b). Thus there are x, y ∈ δ(a) and x′, y′ ∈ δ(b) such
that γ(x) = γ(x′) = u ∈ δ(y) ∩ δ(y′). If x = x′ then by Local linearity a ⊥+ b, as
required. So assume that x 6= x′. Again by Local linearity x ⊥+ x′, say x′ ⊥+ x.
Thus there is a T − γ(T )-path x′, a1, . . . , ak, x. As, for i = 1, . . . , k, γγ(ai) = u
and γγ(b) 6∈ ι(b) 3 u, we have that γ(ai) 6= γ(b) and ai 6= b. Once again by Local
linearity a0 ⊥+ b and by Path Lemma ai < b, for i = 1, . . . , k with γ(ak) 6= γ(b). As
γ(ak) = x ∈ δ(a), again by Path Lemma a <+ b, as well. 2
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Proposition 5.16 Let S be a positive face structure, a, b ∈ Sk, α ∈ Sk+1, so that
α is a <+-minimal element in Sk+1, and a ∈ δ(α), b = γ(α). Then b is the <+-
successor of a.

Proof. Assume that α is a <+-minimal element in Sk+1. Suppose that there is
c ∈ Sk such that a <+ c <+ b. Thus we have an upper path

a, β1, . . . , βi, c, βi+1, . . . , βl, b.

Hence β1 <
− βl. Moreover a ∈ δ(β1) ∩ δ(α) and γ(βl) = b = γ(α). Thus both β1

and βl are <+-comparable with α. Since α is <+-minimal we have α <+ β1, βl. By
Lemma 5.13, β1 ⊥+ βl. But then we have (β1, βl) ∈⊥+ ∩ ⊥− 6= ∅, contradicting
strictness. 2

Proposition 5.17 Let T be a positive face structure and X ⊆ T a subhypergraph
of T . Then X is a positive face structure iff the relation <X,+ is the restriction of
<T,+ to X.

Proof. Assume that X is a subhypergraph of a positive face structure T . Then
X satisfies axioms of globularity, disjointness, and strictness of the relations <Xk,+

for k > 0.
Clearly, if <Xk,+ = <Tk,+ ∩(Xk)2 then the relation <X0,+ is linear, the relations

<Xk,+, for k > 0, satisfy pencil linearity, i.e. X is a positive face structure.
Now we assume that the subhypergraph X of positive face structure T is a

positive face structure. We shall show that for k ∈ ω, a, b ∈ Xk we have a <Xk,+ b
iff a <Tk,+ b. Since X is a subhypergraph a <Xk,+ b implies a <Tk,+ b. Thus
it is enough to show that if a <Tk,+ b then a ⊥Xk,+ b. We shall prove this by
induction on k. For k = 0 it is obvious, since <X0,+ is linear. So assume that for
faces x, y ∈ Xl, with l < k we already know that x <Xl,+ y iff x <Tl,+ y. Fix
a, b ∈ Tk such that a <Tk,+ b. Then by Lemma 5.9.2 γ(a) ≤Tk−1,+ γ(b) and hence
by inductive hypothesis γ(a) ≤Xk−1,+ γ(b). Thus we have an upper X-path a =
ar, γ(a), ar−1 . . . , a1, γ(b), with r ≥ 1. As a <Tk,+ b, by Path Lemma ai <Tk,+ b for
i = 1, . . . , r. Again by induction on r we shall show that ai <Xk,+ b, for i = 1, . . . , r.
As γ(a1) = γ(b) by pencil linearity we have a1 ⊥Xk,+ b. So a1 <

Xk,+ b. Suppose that
ai <

Xk,+ b, for i ≤ l < r. Let al, αs, . . . , α1, b be an upper T -path. As al+1 <
Tk,+ b,

we cannot have γ(al+1) ∈ δ(b). Therefore, for some j ≥ 1, γ(al+1) ∈ ι(αj). So by
Lemma 5.5, al+1 <

Xk,+ γ(αj) ≤Xk,+ b, as required. 2

Lemma 5.18 Let T be a positive face structure, a, b, α ∈ T . If a ∈ δ(α) and
a <+ b <+ γ(α) then b ∈ ι(T ).

Proof. Assume that a, b, α ∈ T are as in the assumption of the Lemma. Thus we
have an upper path a, α0, . . . , αr, b. As a ∈ δ(α)∩ δ(α0), by pencil linearity we have
α ⊥+ α0. If α <+ α0 <

− αr then γ(α) ≤+ γ(αr) = b contradicting our assumption.
Thus α0 <

+ α. Then by Path Lemma, since b = γ(αr) <+ γ(α), we have αr <+ α
and b ∈ ι(T ), as required. 2

Some equations

Proposition 5.19 Let S be a positive face structure 0 < k ∈ ω. Then

1. ι(Sk+1) = ι(Sk+1 − δ(Sk+2));

2. δ(Sk) = δ(Sk − γ(Sk+1));

18



3. γ(Sk) = γ(Sk − γ(Sk+1));

4. δ(Sk) = δ(Sk − ι(Sk+2));

5. δ(Sk) = δ(Sk − δ(Sk+1)) ∪ ι(Sk+1).

Proof. In all the above equations the inclusion ⊇ is obvious. So in each case we
need to check the inclusion ⊆ only.

Ad 1. Let s ∈ ι(Sk+1), i.e. there is a ∈ Sk+1 such that s ∈ ι(a). By strictness,
there is b ∈ Sk+1 such that a <+ b and b 6∈ δ(Sk+1). By Lemma 5.3, we have

s ∈ ι(a) ⊆ ι(b) ⊆ ι(Sk+1 − δ(Sk+2))

as required.
Ad 2. Let x ∈ δ(Sk). Let a ∈ Sk be the <+-minimal element in Sk such that

x ∈ δ(a). We shall show that a ∈ Sk − γ(Sk+1). Suppose contrary that there is an
α ∈ Sk+1 such that a = γ(α). The by globularity

x ∈ δ(a) = δγ(α) = δδ(α)− γδ(α).

So there is b ∈ δ(α) such that x ∈ δ(b). As b <+ a this contradicts the minimality
of a.

Ad 3. This is similar to the previous one but simpler.
Ad 4. Since ι(Sk+2) ⊆ γ(Sk+1) 4. follows from 2.
Ad 5. Let x ∈ δ(Sk). Let a ∈ Sk be the <+-maximal element in Sk such that

x ∈ δ(a). If a 6∈ δ(Sk+1) then x ∈ δ(Sk − δ(Sk+1)) as required. So assume that
a ∈ δ(Sk+1), i.e. there is α ∈ Sk+1 such that a ∈ δ(α). Thus x ∈ δδ(α). As
a <+ γ(α), by choice of a we have x 6∈ δγ(α) (= δδ(α)− γδ(α)). So x ∈ γδ(α) and
hence x ∈ ι(α) ⊆ ι(Sk+1), as required. 2

6 The ω-categories generated by the positive face struc-
tures

Let T ∗ (T ∗n) be the set of all face substructures of the face structure T (of dimension
at most n). We introduce operations

d(n), c(n) : T ∗ −→ T ∗n

of the n-th domain and the n-th codomain. For S in (T ∗)≥n the faces n-th domain
d(n)S are:

1. (d(n)S)k = ∅, for k > n,

2. (d(n)S)n = Sn − γ(Sn+1),

3. (d(n)S)k = Sk, for k < n.

and faces n-th codomain c(n)S are:

1. (c(n)S)k = ∅, for k > n,

2. (c(n)S)n = Sn − δ(Sn+1),

3. (c(n)S)n−1 = Sn−1 − ι(Sn+1),

4. (c(n)S)k = Sk, for k < n− 1.
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If k ∈ ω, dim(S) = k + 1, we write dS for d(k)(S), and cS for c(k)(S).
We have

Lemma 6.1 Let S be a positive face structure. Then

1. if dim(S) ≥ k then d(k)(S), c(k)(S) are positive face structures of dimension
k;

2. if dim(S) > k then dd(k+1)(S) = d(k)(S) , dd(k+1)(S) = d(k)(S);

3. if dim(S) > 1 then ddS = dcS, cdS = ccS.

4. For any k ∈ ω and α ∈ Sk, the least sub-hypergraph of S containing the face α
is again a positive face structure of dimension k; it is denoted by [α]. Moreover,
if k > 0, then

c[α] = [γ(α)], d[α] = [δ(α)]

where [δ(α)] is the least sub-hypergraph of S containing the set of face δ(α).

Proof. Ad 1. Clearly, d(k)S is a sub-hypergraph S and c(k)S is a sub-hypergraph
S by Corollary 5.6. Any sub-hypergraph T of a positive face structure S satisfies
the conditions of globularity, strictness (possibly without <T0,+ being linear), and
disjointness.

By Lemma 5.4, for a, b ∈ d(k)Sl we have a <Sl,+ b iff a <d(k)Sl,+ b. Moreover, by
Lemma 5.8, for a, b ∈ c(k)Sl we have a <Sl,+ b iff a <c(k)Sl,+ b. Hence by Lemma
5.17 both d(k)S and c(k)S are positive face structures.

Ad 2. Fix a positive face structure S and k ∈ ω such that dim(S) > k. Then
the faces of c(k+1)(S), cc(k+1)(S), and c(k)(S) are as in the table

dim c(k+1)(S) cc(k+1)(S) c(k)(S)
k + 1 Sk+1 − δ(Sk+2) ∅ ∅
k Sk − ι(Sk+2) (Sk − ι(Sk+2))− δ(Sk+1 − δ(Sk+2)) Sk − δ(Sk+1)

k − 1 Sk−1 Sk−1 − ι(Sk+1 − δ(Sk+2)) Sk−1 − ι(Sk+1)
l Sl Sl Sl

where l < k− 1. Moreover the faces of d(k+1)(S), dd(k+1)(S), and d(k)(S) are as in
the table

dim d(k+1)(S) dd(k+1)(S) d(k)(S)
k + 1 Sk+1 − γ(Sk+2) ∅ ∅
k Sk Sk − γ(Sk+1 − γ(Sk+2)) Sk − γ(Sk+1)
l Sl Sl Sl

where l < k. Thus the equalities in question all follow from Lemma 5.19.
Ad 3. Let dim(S) = n > 1. Note that both (ddS)n−2 and (dcS)n−2 are the sets

of all <+-minimal elements in Sn−2, i.e. they are equal and the equation ddS = dcS
holds.

To see that cdS = ccS holds, note first that both (cdS)n−2 and (ccS)n−2 are
the sets of all <+-maximal elements in Sn−2. Moreover

(cdS)n−3 = Sn−3 − ι(Sn−1 − γ(Sn)),

(ccS)n−3 = Sn−3 − ι(Sn−1 − δ(Sn)).

Now the equality cdS = ccS follows from the following equalities

ι(Sn−1 − γ(Sn)) = ι(Sn−1) = ι(Sn−1 − δ(Sn)).
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Both equalities follow from Lemma 5.3. We shall show the first equality only.
Suppose contrary, that there is x ∈ ι(Sn−1) such that x 6∈ ι(Sn−1 − γ(Sn)). Let

a ∈ Sn−1 be a <+-minimal face such that x ∈ ι(a). Since x 6∈ ι(Sn−1−γ(Sn)), there
is α ∈ Sn such that a = γ(α). By Lemma 5.3 we have

ιδ(α) = ιγ(α) = ι(a).

Therefore, there is a′ ∈ δ(α) such that x ∈ ι(a′). Clearly a′�+ a, and hence a is not
<+-minimal contrary to the supposition. This ends the proof of the first equality
above.

Ad 4. Fix α ∈ Sk. We need to show that [α] is a positive face structure. The
globularity, strictness (except for linearity of <[α]0,+), and disjointness are clear.

The linearity of <[α]0,+. If k ≤ 2 it is obvious. Put a = γ(k+2)(α). Using
Corollary 4.3, we have

[α]0 = δ(k)(α) ∪ γ(k)(α) =

= δδ(γ(n−2)(α)) ∪ γγ(γ(n−2)(α)) = δδ(a) ∪ γγ(a)

Thus it is enough to assume that k = 2. But in this case, as we mentioned, the
linearity of <[α]0,+ is obvious.

The γ-linearity of [α]. The proof proceeds by induction on k = dim(α). For
k ≤ 2, the γ-linearity is obvious. So assume that k > 2 and that for l < k and
a ∈ Sl.

First we shall show that c([α]) = [γ(α)]. We have

c([α])k−1 = (γ(α) ∪ δ(α))− δ(α) = γ(α) = [γ(α)]k−1

c([α])k−2 = (γγ(α) ∪ δδ(α))− ι(α) = δγ(α) ∪ γγ(α) = [γ(α)]k−2

and for l < k − 2

c([α])l = γ(l)(α) ∪ δγ(l)(α)) = γ(l)(α) ∪ δ(l)γ(α) = [γ(α)]l

Note that the definition of c(H) make sense for any positive hypergraph H and in
the above argument we haven’t use the fact (which we don’t know yet) that [α] is a
positive face structure.

Thus, for l < k−2, [α]l = [γ(α)]l. By induction, [γ(α)] is a positive face structure,
and hence [α]l is γ-linear for l < k− 2. Clearly [α]l is γ-linear for l = k− 1, k. Thus
it remains to show the γ-linearity of k − 2-cells in [α].

Fix t ∈ [α]k−3, and let

Γt = {x ∈ [α]k−2 : γ(x) = t}.

We need to show that Γt is linearly ordered by <+. We can assume that t ∈
γ([α]n−2) = γδδ(α) = γδγ(α) (otherwise Γt = ∅ is clearly linearly ordered by <+).
By Proposition 5.1 there is a unique xt ∈ δγ(α) such that γ(xt) = t. From Lemma
5.2.2 we get easily the following Claim.

Claim 1. For every x ∈ Γt there is a unique upper δ(α)-path from xt to x.
Now fix x, x′ ∈ Γt. By the Claim 1, we have the unique upper δ(α)-path

xt, a0, . . . , al, x, xt, a
′
0, . . . , a

′
l, x
′.

Suppose l ≤ l′. By Proposition 5.1, for i ≤ l, ai = a′i. Hence either l = l′ and x = x′

or l < l′ and
x, al+1, . . . , al′ , x

′
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is a δ(α)-upper path. Hence either x = x′ or x ⊥+ x′ and [α]k−2 satisfy the γ-
linearity, as required.

The proof is of the δ-linearity of [α] is very similar to the one above. For the
same reasons the only non-trivial thing to check is the condition for (k − 2)-faces.
We pick t ∈ δδ(α) and consider the set

∆t = {x ∈ [α]k−2 : t ∈ δ(x)}.

Then we have a unique yt ∈ δγ(α) such that t ∈ δ(yt). From Lemma 5.2.3 we get
the following Claim.

Claim 2. For every y ∈ ∆t there is a unique upper δ(α)-path from yt to y.
The δ-linearity of the (k − 2)-faces in [α] can be proven from Claim 2 similarly

as the γ-linearity from Claim 1.
It remains to verify the equalities

c[α] = [γ(α)], d[α] = [δ(α)].

The first one we already checked on the way. To see that the second equality also
hold we calculate

d[α]k−1 = (γ(α) ∪ δ(α))− γ(α) = δ(α) = [δ(α)]k−1

d[α]k−2 = (γγ(α) ∪ δδ(α)) = γδ(α) ∪ δδ(α) = [δ(α)]k−2

and for l < k − 2

d[α]l = γ(l)(α) ∪ δ(l)(α)) = γ(l)δ(α) ∪ δ(l)(α) = [δ(α)]l

So the second equality holds as well. 2

Lemma 6.2 Let S and T be positive face structures such that c(k)S ⊆ d(k)T . Then
the pushout S+kT in Fs+/1 of S and T over c(k)S exists. Moreover, if c(k)S = S∩T
then the diagram of inclusions in Fs+/1

c(k)S T-

S S ∪ T-

6 6

is the pushout.

Proof. Assume that c(k)S = S ∩ T ⊆ d(k)T . Let S ∪ T be the obvious sum of S
and T as positive hypergraphs. The fact that S∪T is a pushout in Hg+1 is obvious.
Thus the only thing we need to verify that S ∪ T is a positive face structure.

First we write in details the condition c(k)S = S ∩ T ⊆ d(k)T :

1. Sl ∩ Tl = ∅, for l > k,

2. Sk − δ(Sk+1) ⊆ Tk − γ(Tk+1),

3. Sk−1 − ι(Sk+1) ⊆ Tk−1,

4. Sl ⊆ Tl, for l < k − 1.
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Now we describe the orders <+ in S ∪ T :

<(S∪T )l,+=


<Sl,+ + <Tl,+ for l > k,
<Sl,+ +(Sk−δ(Sk+1)) <

Tl,+ for l = k,
<Sl,+ +(Sk−1−ι(Sk+1)) <

Tl,+ for l = k − 1,
<Tl,+ for l <= k − 1.

We shall comment on these formulas. For l > k the formulas say that the order <+

in (S ∪ T )l is the disjoint sum of the orders in Sl and Tl. This is obvious.
For l < k−1 the order <+ in (S∩T )l is just the order <Tl,+. The only case that

requires an explanation is l = k−2. So suppose that a, b ∈ Tk−2 and a <(S∪T )k−2,+ b.
So we have an upper path

a, α1, . . . , αm, b

such that αi ∈ (S ∪ T )k−1 = ι(Sk+1) ∪ Tk−1. By Lemma 5.4, we can assume that
if αi ∈ Sk−1 then αi 6∈ γ(Sk). But then αi 6∈ ι(Sk+1). So in fact αi ∈ Tk−1, as
required.

The most involved are the formulas for <(S∩T )l,+ for l = k and l = k−1. In both
cases the comparison in S ∪ T involves orders both from S and T . In the former
case we have that, for a, b ∈ (S ∪ T )k, we have

a <(S∪T )k,+ b iff
either a, b ∈ Tk and a <Tk,+ b,
or a, b ∈ Sk and a <Sk,+ b,
or a ∈ δ(Sk+1), b ∈ Tk and ∃a′∈Sk−δ(Sk+1)a <

Sk,+ a′ and a′ ≤Tk,+ b.

The orders <Sk,+ and ≤Tk,+ are glued together along the set Sk − δ(Sk+1) which is
the set of <Sk,+-maximal elements in Sk and at the same time it is contained in the
set of <Tk,+-minimal elements Tk − γ(Tk+1). This is obvious when we realize that
δ(Sk+1) ∩ γ(Tk+1) = ∅.

In the later case we have for x, y ∈ (S ∪ T )k−1 we have

x <(S∪T )k−1,+ y iff
either x, y ∈ Sk−1 and x <Sk−1,+ y,
or x, y ∈ Tk−1 and x <Tk−1,+ y,
or x ∈ ι(Sk+1), y ∈ Tk and ∃x′∈Sk−1−ι(Sk+1)x <

Sk,+ x′ and x′ ≤Tk,+ y,

or x ∈ Tk, y ∈ ι(Sk+1) and ∃x′∈Sk−1−ι(Sk+1)x <
Tk,+ x′ and x′ ≤Sk,+ y.

The order <Sk−1,+ is ’plugged into’ the order ≤Tk−1,+ along the set Sk − ι(Sk+1).
To show that these formulas hold true we argue by cases. Assume that x, y ∈

(S ∪ T )k−1 and that x <(S∪T )k−1,+ y i.e. there is an upper path

x, a1, . . . , am, y

with ai ∈ (S ∪ T )k, for i = 1, . . . ,m.
First suppose that x, y ∈ Sk−1 and that the set {ai}i 6⊆ Sk. Let ai0 , ai0+1, . . . , ai1

be a maximal subsequence of consecutive elements of the path a1, . . . , am such that
{ai}i0≤i≤i1 ⊆ Tk. Thus it is an upper path in Tk from x̄ to ȳ = γ(ai1), where

x̄ =

{
x if i0 = 1,
γ(ai0−1) otherwise.

Note that from maximality of the path ai0 , . . . , ai1 follows that both x̄, ȳ ∈ Sk−1 −
ι(Sk+1). As we have x̄ <Tk−1,+ ȳ from Corollary 5.11 we have x̄ 6⊥Tl,− ȳ, for all
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l < k− 1. Clearly ⊥Sl,−⊆⊥Tl,−. Thus x̄ 6⊥Sl,− ȳ, for all l < k− 1, as well. But then
again by Corollary 5.11 we have that x̄ ⊥Sk−1,+ ȳ. If we were to have ȳ <Sk−1,+ x̄
then, as x̄, ȳ ∈ Sk−1−ι(Sk+1), we would have ȳ <Tk−1,+ x̄. But this would contradict
the strictness of <Tk−1,+. So we must have x̄ <Sk−1,+ ȳ. In this way we can replace
the upper path a1, . . . , am in (S ∪ T )k from x to y by an upper path from x to y in
Sk.

Next, suppose that x, y ∈ Tk−1 and that the set {ai}i 6⊆ Tk. Let ai0 , ai0+1, . . . , ai1
be a maximal subsequence of consecutive elements of the path a1, . . . , am such that
{ai}i0≤i≤i1 ⊆ Sk. Thus it is an upper path in Sk from x̄ to ȳ = γ(ai1), where

x̄ =

{
x if i0 = 1,
γ(ai0−1) otherwise.

Note that from maximality of the sequence ai0 , . . . , ai1 follows that both x̄, ȳ ∈
Sk−1 − ι(Sk+1) ⊆ Tk−1. Thus by Lemma 5.8 there is an upper path from x̄ to ȳ
in Sk−1 − δ(Sk) ⊆ Tk−1. In this way we can replace the upper path a1, . . . , am in
(S ∪ T )k from x to y by an upper path from x to y in Tk.

Thus we have justified the first two cases of the above formula. The following
two cases are easy consequences these two. This end the description of the orders
in S ∪ T .

From these descriptions follows immediately that <(S∪T ),+ is strict for all l. It
remains to show the pencil linearity. Both γ- and δ-linearity of l-cells, for l < k − 1
or l > k, are obvious.

To see the γ-linearity of k-cells assume a ∈ Sk and b ∈ Tk, such that γ(a) =
γ(b). Let ā ∈ Sk be the <Sk,+-maximal k-cells, such that γ(a) = γ(ā). Then
ā ∈ c(k)(S)k ⊆ d(k)(T )k. So ā ∈ Tk is <Tk,+-minimal k-cells, such that γ(ā) = γ(b).
Thus

a ≤Sk,+ ā ≤Tk,+ b.

Thus the γ-linearity of k-cells holds. The proof of δ-linearity of k-cells is similar.
Finally, we need to establish the γ- and δ- linearity of (k − 1)-cells in S ∪ T .
In order to prove the γ-linearity, let x ∈ ι(Sk+1) and y ∈ Tk−1 such that γ(x) =

γ(y). We need to show that x ⊥(S∪T )k−1,+ y.
Let α0 ∈ Sk+1 such that x ∈ ι(α0), a ∈ δ(α0) such that x = γ(a) and let

α0, . . . , αl be a lower path in Sk+1 such that γ(αl) ∈ Tk. Since x ∈ ι(α0), then
x ∈ γδ(α0) and, by Lemma 4.2

γ(x) ∈ γγδ(α0) ⊆ ιγ(α0).

As γ(α0) ≤+ γ(αl), by Lemma 5.3, we have γ(x) ∈ ιγ(αl) ∪ γγγ(αl). Thus we have
two cases:

1. γ(x) ∈ ιγ(αl),

2. γ(x) = γγγ(αl).

Case 1: γ(x) ∈ ιγ(αl).
By Lemma 5.2.2, there is a unique z ∈ δγ(αl) such that γ(z) = γ(x) and z <+ x.

As γ(αl) ∈ Tk, so z ∈ Tk−1. If y <Tk−1,+ z then indeed y <(S∪T )k−1,+ z, as required.
By γ-linearity in Tk−1, it is enough to show that it is impossible to have z <Tk−1,+ y.

Suppose contrary, that there is an upper path z, b0, . . . , br, y in T . Since γ(αl) is
<+-minimal in T (as αl ∈ S) and z ∈ δγ(αl) ∩ δ(b0), by δ-linearity in Tk we have
γ(αl) <+ b0. By Lemma 5.3, we have

γ(x) ∈ ιγ(αl) ⊆ ι(b0) ⊆ ι(br)
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But γ(br) = y so γγ(br) = γ(y) = γ(x). In particular γ(x) 6∈ ι(br) and we get a
contradiction.

Case 2: γ(x) = γγγ(αl).
By Lemma 5.2.2 there is z ∈ δγ(αl) such that γ(x) = γ(z)(= γγγ(αl)), so that

we have
z <Sk−1,+ x <Sk−1,+ γγ(αl).

As γ(αl) ∈ Tk and it is <+-minimal in Tk, by Proposition 5.16, there is no face
y ∈ Tk−1 so that

z <Tk−1,+ y <Tk−1,+ γγ(αl).

So if y ∈ Tk−1 and γ(y) = γ(x) then either

y ≤Tk−1,+ z <Sk−1,+ x or x <Sk−1,+ γγ(αl) ≤Sk−1,+ y.

In either case x ⊥(S∪T )k−1,+ y, as required. This ends the proof of γ-linearity of
(k − 1)-faces in (S ∪ T ).

Finally, we prove the δ-linearity of (k − 1)-faces in S ∪ T . Let x ∈ ι(Sk+1) and
y ∈ Tk−1, t ∈ Tk−2 such that t ∈ δ(x)∩ δ(y). We need to show that x ⊥(S∪T )k−1,+ y.

Let α ∈ Sk+1 such that x ∈ ι(α0), a ∈ δ(α0) such that x = γ(a), and let
α0, . . . , αl be a lower path in Sk+1 such that γ(αl) ∈ Tk. As x ∈ ι(α0), using Lemma
4.2 we have

t ∈ δ(x) ⊆ δγδ(α0) ⊆ δγγ(α0) ∪ ιγ(α0).

As γ(α0) <+ γ(αl), by Lemma 5.3, we have two cases:

1. t ∈ ιγ(αl),

2. t ∈ δγγ(αl).

Case 1: t ∈ ιγ(αl).
By Lemma 5.2.3, there is a unique z ∈ δγ(αl) such that t ∈ δ(z) and z <+ x.

As γ(αl) ∈ Tk, so z ∈ Tk−1. If y <Tk−1,+ z then indeed y <(S∪T )k−1,+ z, as required.
By δ-linearity in Tk, it is enough to show that it is impossible to have z <Tk−1,+ y.

Suppose contrary, that there is an upper path in T

z, b0, . . . , br, y.

Since γ(αl) is <+-minimal in Tk and z ∈ δγ(αl) ∩ δ(b0), by δ-linearity of k-faces in
T we have γ(αl) <+ b0. By Lemma 5.3, we have

t ∈ ιγ(αl) ⊆ ι(b0) ⊆ . . . ⊆ ι(br).

But γ(br) = y, so t ∈ δ(y) ⊆ δγ(br). In particular t 6∈ ι(br) and we get a contradic-
tion.

Case 2: t ∈ δγγ(αl).
By Lemma 5.2.3 there is z ∈ δγγ(αl) such that t ∈ δ(z) and we have

z <Sk−1,+ x <Sk−1,+ γγ(αl).

As γ(αl) ∈ Tk, and it is <+-minimal face in Tk, by Lemma 5.16, there is no face
y ∈ Tk−1 such that

z <Tk−1,+ y <Tk−1,+ γγ(αl).

So if y ∈ Tk−1 and t ∈ δ(y) then either

y ≤Tk−1,+ z <Sk−1,+ x or x <Sk−1,+ γγ(αl) ≤Sk−1,+ y.
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In either case x ⊥(S∪T )k−1,+ y, as required. This ends the proof of δ-linearity of
(k − 1)-faces in (S ∪ T ) and the whole proof that S ∪ T is a positive face structure.
2

Let S and T be positive face structures such that c(k)S = d(k)T . Then the
pushout

c(k)S T-

S S +k T-

6 6

is called special pushouts
Now we shall describe an ω-category S∗ generated by the face structure S.
The set S∗n of n-cell of S∗ is the set of all positive face sub-structures of S of

dimension at most n, for n ∈ ω. The domain and codomain operations in S∗ are
restricted operations

d(k), c(k) : S∗n −→ S∗k

of the k-th domain and the k-th codomain, for k ≤ n. The identity operation

i(n) : S∗k −→ S∗n

is an inclusion and the composition map

mn,k,n : S∗n ×S∗k S
∗
n −→ S∗n

is the sum, i.e. if X, Y are sub-face structures of S of dimension at most n such
that c(k)X = d(k)Y then

mn,k,n(X,Y ) = X +k Y = X ∪ Y.

Corollary 6.3 Let S be a weak positive face structure. Then S∗ is an ω-category.
In fact, we have a functor

(−)∗ : Fs+/1 −→ ωCat

Proof. The fact that the operation on S∗ defined above satisfy the laws of
ω-category is obvious. The image f(X) of a sub-face structure X of a positive
face structure S under a morphism f : S → T is a sub-face structure of T . The
association X 7→ f(X) is easily seen to be an ω-functor. 2

Let S be a positive face structure. We have a functor

ΣS : pFs+/1 ↓ S −→ Fs+/1

such that
ΣS(f : B → S) = B

and a cocone
σS : ΣS −→ S

such that
σS(f :B→S) = f : ΣS(f : B → S) = B −→ S

We have

Lemma 6.4 The cocone σS : ΣS ·−→ S is a colimiting cocone in Fs+/1. Such col-
imiting cones are called special colimits. Any special limit in Fs+/1 can be obtained
via some special pushouts and vice versa any special pushout can be obtained from
special limits. In particular, a functor from Fs+/1 preserves special limits if and
only if it preserves special pushouts. 2
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7 Normal positive face structures

Let S be a k-normal positive face structure S. By pSl we denote the unique element
of the set Sl − δ(Sl+1), for l < k. Moreover, as we shall show below pk−1 ∈ γ(Sk)
and hence the set {x ∈ Sk : γ(x) = pk−1} is not empty. We denote by pk the
<+-maximal element of this set. We shall omit the superscript S if it does not lead
to a confusion.

Lemma 7.1 Let S be a (k−1)-principal positive face structure of dimension at least
k, k > 0. Then

1. Sl = δ(l)(Sk) ∪ γ(l)(Sk) = δ(l)(Sk) ∪ {pl}, for l < k.

2. δ(Sl+1) = δ(l)(Sk), for l < k.

3. pk is <−-largest element in Sk − δ(Sk+1).

4. γ(pl) = pl−1, for 0 < l ≤ k.

5. δ(pl) = δ(Sl)− γ(Sl), for 0 < l < k.

6. Sl = δ(l)(pk−1) ∪ γ(l)(pk−1), for l < k − 2.

Proof. Ad 1. If H is a hypergraph of dimension greater than l and γ(Hl+1) ⊆
δ(Hl+1) then there is an infinite lower path in Hl+1, i.e. <Hl,+ is not strict. Thus,
if S is a positive face structure of dimension greater than l, we have δ(Sl+1) ⊆6 Sl. A
positive face structure is normal iff this difference

Sl − δ(Sl+1)

is minimal possible (i.e. one-element set), for l < k. Thus, by the above, we must
have

Sl = δ(Sl+1) ∪ γ(Sl+1) (1)

The first equation of the statement 1. we shall show by the downward induction on
l. Suppose that we have Sl+1 = δ(l)(Sk) ∪ γ(l)(Sk) (for l = k − 2 it is true by the
above). Then

Sl = δ(l)(Sk) ∪ γ(l)(Sk) =

= δ(δ(l+1)(Sk) ∪ γ(l+1)(Sk)) ∪ γ(δ(l+1)(Sk) ∪ γ(l+1)(Sk)) =

= δδ(l+1)(Sk) ∪ δγ(l+1)(Sk) ∪ γδ(l+1)(Sk) ∪ γγ(l+1)(Sk) =

= δ(l)(Sk) ∪ δγ(l)(Sk) ∪ γδ(l)(Sk) ∪ γ(l)(Sk) =

= δ(l)(Sk) ∪ γ(l)(Sk)

where the last equation follows from Corollary 4.3.
The second equation of 1. is obvious for l = k − 1. So assume that l < k − 1.

We have
{pl} = Sl − δ(Sl+1) =

= Sl − δ(δ(l+1)(Sk) ∪ γ(l+1)(Sk)) =

= Sl − (δ(l)(Sk) ∪ δγ(l+1)(Sk)) =

Sl − δ(l)(Sk).

Thus
Sl = δ(l)(Sk) ∪ {pl}
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as required.
Ad 2. Let l < k Then using 1. we have

δ(l)(Sk) ⊆ δ(Sl+1) ⊆6 δ(l)(Sk) ∪ {pl}

Hence
δ(l)(Sk) = δ(Sl+1).

Ad 3. First we shall show that pk ∈ Sk − δ(Sk+1). Suppose contrary, that
there is α ∈ Sk+1 such that pk ∈ δ(α). Then γ(pk) ∈ γδ(α) = γγ(α) ∪ ι(α). If
γ(pk) = γγ(α) then pk <+ γ(α) i.e. γ(α) is <+-smaller element than pk such that
γ(γ(α)) = pk−1. This contradicts the choice of pk. If γ(pk) = ι(α) then there
is a ∈ δ(α) such that γ(pk) ∈ δ(a). But this means that pk−1 = γ(pk) ∈ δ(Sk)
contradicting the choice of pk−1 ∈ Sk−1−δ(Sk). This shows that pk ∈ Sk−δ(Sk+1).

We need to prove that any maximal lower (Sk − δ(Sk+1))-path ends at pk. By
strictness, it is enough to show that if x ∈ Sk − δ(Sk+1) and x 6= pk then there
is x′ ∈ Sk − δ(Sk+1) such that γ(x) ∈ δ(x′). So fix x ∈ Sk − δ(Sk+1). If we
were to have γ(x) ∈ ι(β) for some β ∈ Sk+1, then by Lemma 5.5 we would have
x <+ γ(β). In particular, x ∈ δ(Sk+1), contrary to the assumption. Therefore
γ(x) ∈ Sk−1 − ι(Sk+1). As x,pk ∈ Sk − δ(Sk+1), by γ-linearity we have γ(x) 6=
γ(pk) = pk−1. Hence by 1. the set

∆γ(x) = {y ∈ Sk : γ(x) ∈ δ(y)}

is not empty. Let x′ be the <+-maximal element of this set. It remains to show
that x′ 6∈ δ(Sk+1). Suppose contrary, that there is α ∈ Sk+1 such that x′ ∈ δ(α).
As γ(x) 6∈ ι(Sk+1) and γ(x) ∈ δ(x′) so γ(x) 6∈ ι(α) and γ(x) 6= γγ(α). Thus
γ(x) ∈ δγ(α). But this means that x′ <+ γ(α) and γ(α) ∈ ∆γ(x). This contradicts
the choice of x′. This ends the proof of 3.

Ad 4. γ(pk) = pk−1 by definition. Fix 0 < l < k. As Sl = δ(Sl+1) ∪ {pl},
pl is <+-greatest element in Sl. Assume that γ(pl) 6= pl−1. Thus γ(pl) <+ pl−1.
Let x ∈ Sl. Then x ≤ pl and, by Lemma 5.9, γ(x) ≤+ γ(pl) <+ pl−1. Thus
pl−1 6∈ γ(Sl). So γ(Sl) ⊆ δ(Sl). But this is impossible in a positive face structure as
we noticed in the proof of 1. This ends 4.

Ad 5. Fix l < k. First we shall show that

δ(pl) ∩ γ(Sl) = ∅ (2)

Let z ∈ γ(Sl), i.e. there is a ∈ Sl such that γ(a) = z. By 1. a ≤+ pl. By Lemma
5.7, there are x ∈ δ(pl) and y ∈ δ(a) such that x ≤+ y. Hence x <+ γ(a) = z. By
Proposition 5.1, since x ∈ δ(pl) it follows that z 6∈ δ(pl). This shows (2).

By Lemma 5.19, we have

δ(Sl) = δ(Sl − δ(Sl+1)) ∪ ι(Sl+1) (3)

Since δ(pl) = δ(Sl − δ(Sl+1)) and ι(Sl+1) ⊆ γ(Sl) we have by (2)

δ(Sl − δ(Sl+1)) ∩ ι(Sl+1) = ∅ (4)

Next we shall show that
ι(Sl+1) = γ(Sl) ∩ δ(Sl) (5)

The inclusion ⊆ is obvious. Let x ∈ γ(Sl) ∩ δ(Sl). Hence there are a, b ∈ Sl such
that γ(a) = x ∈ δ(b). We can assume that a is <+-maximal with this property. As
a <− b, neither a nor b is equal to the <+-greatest element pl ∈ Sl. Therefore there
is α ∈ Sl+1 such that a ∈ δ(α). If we were to have x = γ(a) = γγ(α) then γ(α)
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would be a <+-greater element than a with γ(γ(α)) = x. So γ(a) 6= γγ(α). Clearly,
x ∈ γδ(α). By globularity, x ∈ δδ(α), as well. Thus x ∈ ι(α), and (5) is shown.

Using (2), (3), (4), and (5) we have

δ(pl) = δ(Sl − δ(Sl+1)) =

= δ(Sl)− ι(Sl+1) =

= δ(Sl)− (γ(Sl) ∩ δ(Sl)) =

= δ(Sl)− γ(Sl)

as required.
Ad 6. By 1. and 2. it is enough to show

δ(l)(Sk−1) = δ(l)(pk−1),

for l < k − 2. The inclusion ⊇ is obvious.
Pick x ∈ Sk−1 We have an upper path x, a1, . . . , ar,pk−1. By Corollary 4.3, as

γ(ai) ∈ δ(ai+1), we have

δ(l)(ai) = δ(l)γ(ai) ⊆ δ(l)(δ(ai+1)) = δ(l)(ai+1)

for i = 0, . . . , r − 1. Then, by transitivity of ⊆ and again Corollary 4.3 we get

δ(l)(x) ⊆ δ(l)(a1) ⊆ δ(l)(ar) ⊆ δ(l)(γ(ar)) = δ(l)(pk−1).

This ends the proof of the inclusion ⊆ and 6. 2

Lemma 7.2 Let S be a positive face structure of dimension at least k. Then

1. S is (k − 1)-principal iff d(k)(S) is normal iff c(k−1)(S) is principal,

2. if S is normal, so is d(S),

3. if S is principal, so is c(S).

Proof. The whole Lemma is an easy consequence of Lemma 5.19. We shall show
1. leaving 2. and 3. for the reader.

First note that all three conditions in 1. imply that, |Sl−δ(Sl+1| = 1 for l < k−2.
In addition to this they say:

1. S is (k − 1)-principal iff |Sl − δ(Sl+1)| = 1 for l = k − 2, k − 1.

2. d(k)(S) is normal iff

(a) |Sk−1 − δ(Sk − γ(Sk+1))| = 1, and

(b) |Sk−2 − δ(Sk−1)| = 1.

3. c(k−1)(S) is principal iff

(a) |(Sk−1 − ι(Sk+1))− δ(Sk − δ(Sk+1))| = 1, and

(b) |Sk−2 − δ(Sk−1 − ι(Sk+1))| = 1.
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So the equivalence of these conditions follows directly from Lemma 5.19. 2

Let N be a n-normal positive face structure. We define a (n+1)-hypergraph N•,
that contains two additional faces: pN

•
n+1 of dimension n+ 1, and pN

•
n of dimension

n. We shall drop superscripts if it does not lead to confusions. We also put

δ(pn+1) = Nn, γ(pn+1) = pn,

δ(pn) = δ(Nn)− γ(Nn), γ(pn) = pn−1(= γ(Nn)− δ(Nn)).

As N is normal the γ(Nn) − δ(Nn) has one element so γ(pn) is well defined. This
determines N• uniquely. N• is called a simple extension of N .

Example. For a normal positive face structure N like this

x2 x1-f1

f2

�
�
�
��

f0

A
A
A
AU

x3 x0

the hyper-graph N• looks like this

x2 x1-f1

f2

�
�
�
��

f0

A
A
A
AU

x3 x0-
pN
•

1

⇓ pN
•

2

We have

Proposition 7.3 Let N be a normal positive face structure of dimension n. Then

1. N• is a principal positive face structure of dimension n+ 1.

2. We have d(N•) ∼= N , c(N•) ∼= (dN)•.

3. If N is a principal, then N ∼= (dN)•.

4. If T is a positive sub-face structure of N• then either T = N• or T = c(N•)
or T ⊆ N .

Proof. Ad 1. We shall check globularity of the new added cells. The other
conditions are simple.

For pn+1, we have:
γγ(pn+1) = γ(pn) =

= γ(Nn)− δ(Nn) = γδ(pn+1)− δδ(pn+1)

and
δγ(pn+1) = δ(pn) =

= δ(Nn)− γ(Nn) = δδ(pn+1)− γδ(pn+1).

So globularity holds for pn+1.
For pn, using Lemmas 7.1, 5.19 and normality of N , we have:

γγ(pn) = γ(pn−1) = pn−2 =

= γ(Nn−1)− δ(Nn−1) =

= γ(Nn−1 − γ(Nn))− δ(Nn−1 − γ(Nn)) =

= γ(δ(Nn)− γ(Nn))− δ(δ(Nn)− γ(Nn)) =
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= γδ(pn)− δδ(pn)

and similarly
δγ(pn) = δ(pn−1) =

= δ(Nn)− γ(Nn) =

= δ(δ(Nn)− γ(Nn))− γ(δ(Nn)− γ(Nn)) =

= δδ(pn)− γδ(pn)

So globularity for pn holds, as well.
Ad 2. The first isomorphism is obvious.
The faces of (N•), c(N•), dN , and (dN)• are as in the tables

dim (N•) c(N•)
n+ 1 {pN•n+1} ∅
n Nn ∪ {pN

•
n } {pN•n }

n− 1 Nn−1 Nn−1 − (γ(Nn) ∩ δ(Nn))
n− 2 Nn−2 Nn−2

and
dim dN (dN)•

n+ 1 ∅ ∅
n ∅ {p(dN)•

n }
n− 1 Nn−1 − γ(Nn) (Nn−1 − γ(Nn)) ∪ {p(dN)•

n−1 }
n− 2 Nn−2 Nn−2

We define the isomorphism f : c(N•) −→ (dN)• as follows

fn(pN
•

n+1) = p(dN)•

n+1 ,

fn−1(x) =

{
p(dN)•

n−1 if x = γ(pN
•

n ),
x otherwise.

and fl = 1Nl
for l < n− 1. Clearly, all fi’s are bijective. The preservation of the

domains and codomains is left for the reader.
3. is left as an exercise.
Ad 4. If pn+1 ∈ Tn+1 then T = N•. If pn 6∈ Tn then T ⊆ N .
Suppose that pn+1 6∈ Tn+1 but pn ∈ Tn. Since N• = [pn+1], by Lemma 6.1 it is

enough to show that T = [pn]. Clearly [pn] ⊆ T . As [pn]l = Nl, for l < n − 1 we
have [pn]l = Tl, for l < n− 1, as well.

Fix x ∈ Nn. As x ∈ δ(pn+1) and γ(pn+1) = pn, we have x <N
•,+ pn. So by

Corollary 5.11 x 6⊥N
•,−

l pn, for any l ≤ n. Thus we cannot have x ⊥T,−l pn, for any
l ≤ n, as well. As T is a positive face structure, again by Corollary 5.11, x 6∈ T .
Since x was an arbitrary element of Nn, we have Tn = {pn} = [pn]n.

It remains to show that Tn−1 = [pn]n−1. Suppose that x ∈ Nn−1 − (δ(pn) ∪
γ(pn)). Then x <N,+ γ(pn) and hence x 6⊥N

•,−
l γ(pn), for l ≤ n. So x and γ(pn)

cannot be <T,−l comparable, for l ≤ n. Since, as we have shown, Nn ∩ Tn = ∅, it
follows that x and γ(pn) cannot be <T,+ comparable. So by Lemma 5.11, x 6∈ Tn−1,
i.e. Tn−1 = δ(pn) ∪ γ(pn) = [pn]n−1. 2
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8 Decomposition of positive face structures

Let T be a positive face structure, X ⊆ T a subhypergraph of T , k ∈ ω, a ∈
(Tk − ι(Tk+2)). We define two subhypergraphs of T , X↓a and X↑a, as follows:

X↓al =


{α ∈ Xl : γ(k)(α) ≤+ a} for l > k,
{b ∈ Xk : b ≤+ a or b 6∈ γ(Xk+1)} for l = k
Xl for l < k.

X↑al =


{α ∈ Xl : γ(k)(α) 6≤+ a} for l > k,
{b ∈ Xk : b 6<+ a or b 6∈ δ(Xk+1)} for l = k

Xk−1 − ι(X↓ak+1) for l = k − 1
Xl for l < k − 1.

Intuitively, if X is a positive face substructure, X↓a is the least positive face sub-
structure of X that contains faces ’smaller or equal’ a and can be k-pre-composed
with the ’rest’ to get X. X↑a is this ’rest’ or in other words it is the largest positive
face substructure of X that can be k-post-composed with X↓a to get X (or largest
positive face substructure of X that do not contains faces ’smaller’ than a).

Examples. IfX is a hypergraph a ∈ T thenX↓a is a hypergraph as well. However,
this is not the case with X↑a, if a ∈ ι(T ), as we can see below:

· ·-

a

�
�� @

@R⇓
X:

· ·-

a

@
@R⇓

X↑a:

Here X = T . The faces in the domain of the 2-dimensional face are not in X↑a, i.e.
X↑a is not closed under δ.

To see some real decompositions let fix a positive face structure T as follows:

T

•

•
���

y

•
@@R
-

⇓
-

-
⇓

-

b

a

• •-

•

�
�� @

@R⇓

x
�
��

•
@
@R
-��

��
��

��1⇓ ⇓

Clearly x, y, a, b ∈ T − ι(T ). Then

T ↓a

•

•
���

y

•
@@R

-

-

b

a

• •-

•

�
�� @

@R⇓

x
�
��

•
@
@R��

��
��

��1⇓

and

T ↑a

•

•
���

y

•
@@R
-

⇓
-

-
⇓

-
a

•

x •
@
@R
-��

��
��

��1

⇓

Moreover with
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X1

•

•
���

y

•
@@R
-

⇓
-

-
⇓

-
a

•

x •
@
@R
-��

��
��

��1

⇓

we have X↑b1 = X1 and

X↓b1

•

•
���

y

•
@@R

-

-
a

•

x •
@
@R��

��
��

��1

i.e. X↓b1 = d(1)(X1). For

X2

•

•
���

y

•
@@R
-

⇓
-

-
⇓

we have X↓x2 = X2 and X↑x2 = {y}.
We have

Lemma 8.1 Let T be a positive face structure, X ⊆ T a subhypergraph of T , a ∈
(T − ι(T )), a ∈ Xk. Then

1. X↓a and X↑a are positive face structures;

2. c(k)(X↓a) = d(k)(X↑a) = X↓a ∩X↑a;

3. d(k)(X↓a) = d(k)(X), c(k)(X↑a) = c(k)(X);

4. X = X↓a +k X
↑a = X↓a ∪X↑a.

Proof. Ad 1. The verification that both X↓a and X↑a are closed under γ and δ
is routine.

For any k, if x, y ∈ X↓ak then x <+,X y iff x <+,X↓a y. Similarly, for any k, if
x, y ∈ X↑ak then x <+,X y iff x <+,X↑a y. Thus by Lemma 5.17 both X↓a and X↑a

positive face structures.
Ad 2. Let as spell in details both sides of the equation.
c(k)(X↓a) is:

1. c(k)(X↓a)l = ∅, for l > k;

2. c(k)(X↓a)k =
({b ∈ Xk : b ≤+ a} ∪ (Xk − γ(Xk+1)))− δ({α ∈ Xk+1 : γ(α) ≤+ a});

3. c(k)(X↓a)k−1 = Xk−1 − ι(X↓ak+1);

4. c(k)(X↓a)l = Xl, for l < k − 1.

and d(k)(X↑a) is:

1. d(k)(X↑a)l = ∅, for l > k;

2. d(k)(X↑a)k =
{b ∈ Xk : b 6<+ a or b 6∈ δ(Xk+1)} − γ(Xk+1 − {α ∈ Xk+1 : γ(α) ≤+ a});

3. d(k)(X↑a)k−1 = Xk−1 − ι(X↓ak+1);
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4. d(k)(X↑a)l = Xl, for l < k − 1.

Thus to show that c(k)(X↓a) = d(k)(X↑a) we need to verify that c(k)(X↓a)k =
d(k)(X↑a)k. As both sets are contained in Xk, we can compare their complements.
We have

Xk − c(k)(X↓a)k = {b ∈ δ(Xk+1) : b <+ a} ∪ γ(Xk+1 − {α ∈ Xk+1 : γ(α) 6≤+ a})

and

Xk − d(k)(X↑a)k = {b ∈ γ(Xk+1) : b 6≤+ a} ∪ δ({α ∈ Xk+1γ(α) ≤+ a}).

But it easy to see that

{b ∈ δ(Xk+1) : b <+ a} = δ({α ∈ Xk+1γ(α) ≤+ a})

and
γ(Xk+1 − {α ∈ Xk+1 : γ(α) 6≤+ a}) = {b ∈ γ(Xk+1) : b 6≤+ a}.

The second equality uses the fact that a 6∈ ι(T ). Thus c(k)(X↓a)k = d(k)(X↑a)k, as
required.

Ad 3. To see that c(k)(X↑a) = c(k)(X) it is enough to note that ι(Xk+1) =
ι(X↓ak+1) ∪ ι(X↑ak+1). The equation d(k)(X↓a) = d(k)(X) is even simpler.

Ad 4. Obvious. 2

Corollary 8.2 Let T be a positive face structure, k ∈ ω, a ∈ (Tk − ι(Tk+2)). Then
the square

c(k)(T ↓a) T ↑a-

T ↓a T-

6 6

is a special pushout in Fs+/1.

Proof. Follows immediately from Lemmas 6.2 and 8.1. 2

We need some notions and notations. Let X, T be a positive face structures
X ⊆ T , a ∈ (T − ι(T )). The decomposition X = X↓a ∪ X↑a is said to be proper
iff size(X↓a), size(X↑a) < size(X). If the decomposition X = X↓a ∪X↑a is proper
then a is said to be a saddle face of X. Sd(X) is the set of saddle faces of X;
Sd(X)k = Sd(X) ∩Xk.

Lemma 8.3 Let X, S, T be positive face structures, X ⊆ T , l ∈ ω. Then

1. if a ∈ (Tl−ι(T )) then a ∈ Sd(X) iff there are α, β ∈ Xl+1 such that γ(α) ≤+ a
and γ(β) 6≤+ a;

2. if c(k)(S) = d(k)(T ) then

size(S +k T )l =

{
size(S)l + size(T )l if l > k,
size(T )l if l ≤ k;

3. size(S)k ≥ 1 iff k ≤ dim(S);

4. if a ∈ Sd(S)k then size(S)k+1 ≥ 2;

5. S is principal iff Sd(S) is empty.
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Proof. We shall show 5. The rest is easy.
If there is a ∈ Sd(S)k then by 2., 3. and Lemma 8.1 we have that size(S)k+1 =

size(S↓a)k+1 + size(S↑a)k+1 ≥ 1 + 1 > 1. So in that case S is not principal.
For the converse, assume that S is not principal. Fix k ∈ ω such, that

size(S)k+1 > 1. Thus there are a, b ∈ Sk+1, that a 6= b. Suppose γ(a) ∈ ι(α)
for some α ∈ Sk+2. Then by Lemma 5.5, a <+ γ(α) contrary to the assumption on
a. Hence a ∈ S − ι(S) and for similar reasons b ∈ S − ι(S). We have a 6⊥+ b and,
by pencil linearity, γ(a) 6= γ(b). Then either γ(a) 6<+ γ(b) and then γ(b) ∈ Sd(S)k
or γ(b) 6<+ γ(a) and then γ(a) ∈ Sd(S)k. In either case Sd(S) is not empty, as
required. 2

Lemma 8.4 Let T , X be positive face structures, X ⊆ T , and a, x ∈ X − ι(X),
k = dim(x) < dim(a) = m.

1. We have the following equations of positive face structures:

X↓x↓a = X↓a↓x, X↓x↑a = X↑a↓x, X↑x↓a = X↓a↑x, X↑x↑a = X↑a↑x,

i.e. ’the decompositions of different dimension commute’.

2. If x ∈ Sd(X) then x ∈ Sd(X↓a) ∩ Sd(X↑a).

3. Moreover, we have the following equations concerning domains and codomains

c(k)(X↓x↓a) = c(k)(X↓x↑a) = d(k)(X↑x↓a) = d(k)(X↑x↑a)

c(m)(X↓x↓a) = d(m)(X↓x↑a), c(m)(X↑x↓a) = d(m)(X↑x↑a).

4. Finally, we have the following equations concerning compositions

X↓x↓a +m X↓x↑a = X↓x, X↑x↓a +m X↑x↑a = X↑x

X↓x↓a +k X
↑x↓a = X↓a, X↓x↑a +k X

↑x↑a = X↑a.

Proof. Simple check. 2

Lemma 8.5 Let T , X be positive face structures, X ⊆ T , and a, b ∈ X − ι(X),
dim(a) = dim(b) = m.

1. We have the following equations of positive face structures:

X↓a↓b = X↓b↓a, X↑a↑b = X↑b↑a,

i.e. ’the decompositions in the same dimension and the same directions com-
mute’.

2. Assume a <+ b. Then we have the following farther equations of positive face
structures:

X↓a = X↓a↓b, X↑b = X↑a↑b, X↓b↑a = X↑a↓b.

Moreover, if a, b ∈ Sd(X) then a ∈ Sd(X↓b) and b ∈ Sd(X↑a).

3. Assume a <−l b, for some l < m. Then X↑b↓a, X↑a↓b, are positive face struc-
tures, and

X↓a +m X↑a↓b = X↓b +m X↑b↓a

Moreover, if a, b ∈ Sd(X) then either there is k such that l − 1 ≤ k < m and
γ(k)(a) ∈ Sd(X) or a ∈ Sd(X↑b) and b ∈ Sd(X↑a).
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Proof. Simple check. 2

Lemma 8.6 Let T , X be positive face structures, X ⊆ T , dim(X) = n, l < n− 1,
a ∈ Sd(X)l. Then

1. a ∈ Sd(cX) ∩ Sd(dX);

2. d(X↓a) = (dX)↓a;

3. d(X↑a) = (dX)↑a;

4. c(X↓a) = (cX)↓a;

5. c(X↑a) = (cX)↑a.

Proof. The proof is again by a long and simple check. We shall check part of
5. We should consider separately cases: l = n− 2, l = n− 3, and l < n− 3, but we
shall check the case l = n − 3 only. The other cases can be also shown by similar,
but easier, check.

(cX)↑a is:

1. (cX)↑al = ∅, for l ≥ n;

2. (cX)↑an−1 = {x ∈ Xn−1 : γ(n−3)(x) 6≤+ a, x 6∈ δ(Xn)};

3. (cX)↑an−2 = {x ∈ Xn−2 : γ(x) 6≤+ a, x 6∈ ι(Xn)};

4. (cX)↑an−3 = {x ∈ Xn−3 : x 6<+ a or x 6∈ δ(Xn−2 − ι(Xn))};

5. (cX)↑an−4 = Xn−4 − ι({x ∈ Xn−2 : x 6∈ ι(Xn), γ(x) ≤+ a});

6. X↓al = Xl, for l < n− 4.

and c(X↑a) is:

1. c(X↑a)l = ∅, for l ≥ n;

2. c(X↑a)n−1 = {x∈Xn−1 : γ(n−3)(x) 6≤+ a} − δ({z∈Xn : γ(n−3)(z) 6≤+ a});

3. c(X↑a)n−2 = {x∈Xn−2 : γ(x) 6≤+ a} − ι({z∈Xn : γ(n−3)(z) 6≤+ a});

4. c(X↑a)n−3 = {x ∈ Xn−3 : x 6<+ a or x 6∈ δ(Xn−2)};

5. c(X↑a)n−4 = Xn−4 − ι(X↓an−2);

6. c(X↑a)l = Xl, for l < n− 4.

We need to verify the equality (cX)↑al = c(X↑a)l for l = n− 1, . . . , n− 4.
In dimension n − 1, it is enough to show that if x ∈ Xn−1 and z ∈ Xn so that

γ(n−3)(x) 6≤+ a and x ∈ δ(z) then γn−3(z) 6≤+ a.
So assume that x ∈ Xn−1, γ(n−3)(x) 6≤+ a, z ∈ Xn such that x ∈ δ(z). Hence

x �+ γ(z). By Lemma 5.9.5 γ(n−3)(x) ≤+ γ(n−3)(z). Therefore γ(n−3)(z) 6≤+ a
(otherwise we would have γ(n−3)(x) 6≤+ a), as required.

In dimension n − 2, it is enough to show that if x ∈ Xn−2 and z ∈ Xn so that
x 6≤+ a and x ∈ ι(z) then γn−3(z) 6≤+ a.

So assume that x ∈ Xn−2, z ∈ Xn so that x 6≤+ a and x ∈ ι(z). Hence
x ≤+ γγ(z). By Lemma 5.9.5 γ(x) ≤+ γ(n−3)(z). Therefore γ(n−3)(z) 6≤+ a, as
required.

The equality in dimension n− 3 follows immediately from Lemma 5.19.4.
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To show that in dimension n − 4, the above equation also holds we shall show
that

ι(X↓an−2) ⊆ ι({x ∈ Xn−2 : x 6∈ ι(Xn), γ(x) ≤+ a})

Note that, by Lemma 5.3.1, if t ∈ Xn−4 and x ∈ Xn−2, y ∈ Xn−1, t ∈ ι(x) and
γ(x) ≤+ a and x = γ(y) then there is x′ ∈ δ(y) (i.e. x′ �+ x and hence γ(x′) ≤+ a)
such that t ∈ ι(x′).

Thus, as <+ is well founded, from the above observation follows that, for any
t ∈ Xn−4 and x ∈ Xn−2 that t ∈ ι(x) and γ(x) ≤+ a, there is x′′ ≤+ x such that
t ∈ ι(x′′) and x′′ 6∈ γ(X). Then we clearly have that x′′ 6∈ ι(X) and γ(x′′) ≤+ a, as
required. 2

Lemma 8.7 Let T, T1, T2 be positive face structures, dim(T1), dim(T2) > k, such
that c(k)(T1) = d(k)(T2) and T = T1 +k T2. Then c(k)(T1)k ∩ γ(T1) 6= ∅. For any
a ∈ c(k)(T1)k ∩ γ(T1) we have a ∈ Sd(T )k and either T1 = T ↓a and T2 = T ↑a or
a ∈ Sd(T1)k, T ↓a = T ↓a1 and T ↑a = T ↑a1 +k T2.

Proof. By assumption (T1)k+1 6= ∅ and (T2)k+1 6= ∅. So c(k)(T1) ∩ γ(T1) 6= ∅.
Fix a ∈ c(k)(T1) ∩ γ(T1) 6= ∅. Then T ↓ak+1 6= ∅. As T ↓ak+1 ∩ (T2)k+1 = ∅ we must have
a ∈ Sd(T )k.

Assume that T1 6= T ↓a. Then T ↓a ⊆6 T1. Hence (T1)− (T ↓a) 6= ∅. But this means
that a ∈ Sd(T1)k. The verification that the equalities T ↓a = T ↓a1 and T ↑a = T ↑a1 +kT2

hold in this case is left as an exercise. 2

9 S∗ is a positive-to-one computad

Proposition 9.1 Let S be a weak positive face structure. Then S∗ is a positive-to-
one computad whose k-indets correspond to faces in Sk.

Proof. Note that in the proof of Lemma 6.1.4 we were not using pencil linearity.
So if S is a weak positive face structure and a ∈ Sk then the subhypergraph [a] of S
is a principal positive face structure.

The proof is by induction on dimension n of the weak positive face structure S.
For n = 0, 1 the Proposition is obvious.

So assume that for any weak positive face structure T of dimension n, T ∗ is a
positive-to-one computad of dimension n, generated by faces in T . Suppose that S
is a weak positive face structure of dimension n + 1. We shall show that S∗ is a
computad generated by faces in S. Since S≤n is a weak positive face structure, by
inductive assumption S∗≤n is the computad generated by faces in S≤n. So we need to
verify that for any ω-functor f : S∗≤n −→ C to any ω-category C, and any function
|f | : Sn+1 −→ Cn+1 such, that for a ∈ Sn+1

dC(|f |(a)) = f(d([a])), cC(|f |(a)) = f(c([a])),

there is a unique ω-functor F : S∗ −→ C, such that

Fn+1([a]) = |f |(a), F≤n = f

as in the diagram
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S≤n S∗≤n-
[−]

Sn+1 S∗n+1
-
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γ
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d
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Fn+1
���

���
���

���:

f















�
C

[−]

|f |

We define Fn+1 as follows. For X ∈ S∗n+1

Fn+1(X) =


idf(X) if dim(X) ≤ n,
|f |(a) if dim(X) = n+ 1, X is principal and X = [a],
Fn+1(X↓a);l Fn+1(X↑a) if dim(X) = n+ 1, a ∈ Sd(X)l.

;l refers to the composition in C. Clearly Fk = fk for k ≤ n. The above morphism,
if well defined, clearly preserves identities. We need to verify, for X ∈ S∗n+1 and
dim(X) = n+ 1, three conditions:

I F is well defined, i.e. Fn+1(X) = Fn+1(X↓a);l Fn+1(X↑a) does not depend on
the choice of the saddle face a ∈ Sd(X);

II F preserves the domains and codomains i.e., Fn(d(X)) = d(Fn+1(X)) and
Fn(c(X)) = c(Fn+1(X));

III F preserves compositions i.e., Fn+1(X) = Fn+1(X1);k Fn+1(X2) whenever X =
X1 +k X2 and dim(X1), dim(X2) > k.

We have an embedding [−] : S≤n −→ S∗≤n.
So let assume that for positive face substructures of S of size less than size(X)

the above assumption holds. If size(X)n+1 = 0 or X is principal all three conditions
are obvious. So assume that X is not principal and dim(X) = n + 1. To save on
notation we write F for Fn+1.

Ad I. First we will consider two saddle faces a, x ∈ Sd(X) of different dimension
k = dim(x) < dim(a) = m. Using Lemma 8.4 we have

F (X↓a);m F (X↑a) = ind. hyp. I

= (F (X↓a↓x);k F (X↓a↑x));m (F (X↑a↓x);k F (X↑a↑x)) = MEL

= (F (X↓a↓x);m F (X↑a↓x));k (F (X↓a↑x);m F (X↑a↑x)) =
= (F (X↓x↓a);m F (X↓x↑a));k (F (X↑x↓a);m F (X↑x↑a)) = ind. hyp. III

= F (X↓x);m F (X↑x)

Now we will consider two saddle faces a, b ∈ Sd(X) of the same dimension dim(a) =
dim(b) = m. We shall use Lemma 8.5. Assume that a <−l b, for some l < m. If
γ(k)(a) ∈ Sd(X), for some k < m, then this case reduces to the previous one for
two pairs a, γ(k)(a) ∈ Sd(X) and b, γ(k)(a) ∈ Sd(X). Otherwise a ∈ Sd(X↑b) and
a ∈ Sd(X↑b) and we have

F (X↓a);k F (X↑a) = ind. hyp I

= F (X↓a);k (F (X↑a↓b);k F (X↑a↑b)) =
= (F (X↓a);k F (X↑a↓b));k F (X↑b↑a) = ind hyp III

= F (X↓a;kX↑a↓b);k F (X↑b↑a) =
= F (X↓b;kX↑b↓a);k F (X↑b↑a) = ind hyp III

= (F (X↓b);k F (X↑b↓a));k F (X↑b↑a) =
= F (X↓b);k (F (X↑b↓a);k F (X↑b↑a)) = ind hyp I

= F (X↓b);k F (X↑b)
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Finally, we consider the case a <+ b. We have

F (X↓a);k F (X↑a) = ind. hyp I

= F (X↓a);k (F (X↑a↓b);k F (X↑a↑b)) =
= F (X↓b↓a);k (F (X↓b↑a));k F (X↑b) =
= (F (X↓b↓a);k F (X↓b↑a));k F (X↑b) = ind hyp I

= F (X↓b);k F (X↑b)

This shows that F (X) is well defined.
Ad II. We shall show that the domains are preserved. The proof that, the

codomains are preserved, is similar.
The fact that if Sd(X) = ∅ then F preserves domains and codomains follows

immediately from the assumption on f and |f |. So assume that Sd(X) 6= ∅ and let
a ∈ Sd(X), dim(a) = k. We use Lemma 8.6. We have to consider two cases k < n,
and k = n.

If k < n then

Fn(d(X)) = Fn(d(X↓a +k X
↑a)) =

= Fn(d(X↓a);k d((X↑a)) =
= Fn(d(X)↓a;k d(X)↑a) = ind hyp III

= Fn(d(X)↓a);k Fn(d(X)↑a) =
= Fn(d(X↓a));k Fn(d(X↑a)) = ind hyp II

= d(Fn+1(X↓a));k d(Fn+1(X↑a)) =
= d(Fn+1(X↓a);k Fn+1(X↑a)) = ind hyp I

= d(Fn+1(X))

If k = n then

Fn(d(X)) = Fn(d(X↓a +n X
↑a)) =

= Fn(d(X↓a)) = ind hyp II

= d(Fn+1(X↓a)) =
= d(Fn+1(X↓a);n Fn+1(X↑a)) = ind hyp I

= d(Fn+1(X))

Ad III. Suppose that X = X1;kX2 and dim(X) ≤ n+ 1. We shall show that F
preserves this composition. If dim(X1) = k then X = X2, X1 = d(k)(X2). We have

Fn+1(X) = Fn+1(X2) = 1(n+1)

Fk(d(k)(X2))
;k Fn+1(X2) =

= 1(n+1)
Fk(X1);k Fn+1(X2) = Fn+1(X1);k Fn+1(X2)

The case dim(X2) = k is similar. So now assume that dim(X1), dim(X2) > k. We
shall use Lemma 8.7. Fix a ∈ c(k)(X1)k ∩ γ(X1). So a ∈ Sd(X)k. If X1 = X↓a and
X2 = X↑a then we have

F (X) = F (X↓a);k F (X↑a) = F (X1);k F (X2).

If a ∈ Sd(X1)k then

F (X) = F (X↓a);k F (X↑a) = ind hyp II

= F (X↓a);k (F (X↑a1 );k F (X2)) =

= (F (X↓a1 );k F (X↑a1 ));k F (X2) = ind hyp II

F (X1);k F (X2)
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So in any case the composition is preserved.
This ends the proof of the Lemma. 2

For n ∈ ω, we have a functor

(−)],n : wFs+/1
n −→ Comma+/1

n

such that, for S in wFs+/1
n

S],n = (Sn, S∗<n, [δ], [γ])

and for f : S → T in wFs+/1
n we have

f \,n = (fn, (f<n)∗).

Corollary 9.2 For every n ∈ ω, the functor (−)],n is well defined, full, faithful,
and it preserves existing pushouts. Moreover, for S in wFs+/1

n we have S∗ = S],n
n

.

Proof. The functor (−)
n

: Comma+/1
n −→ Comp+/1

n which is an equivalence of
categories is described in the Appendix.

Fullness and faithfulness of (−)],n is left for the reader. We shall show simulta-
neously that for every n ∈ ω, both functors

(−)],n : wFs+/1
n −→ Comma+/1

n , (−)∗,n : wFs+/1
n −→ Comp+/1

n

preserve existing pushouts. For n = 0 there is nothing to prove. For n = 1 this is
obvious. So assume that n > 1 and that (−)],n preserves existing pushouts. Let

R T-

S S +R T-

6 6

be a pushout in wFs+/1
n+1. Clearly its n-truncation is a pushout in wFs+/1

n . Hence
by inductive hypothesis it is preserved by (−)∗,n. In dimension n + 1, the functor
(−)],n+1 is an inclusion. Hence, in dimension n + 1, this square is a pushout (of
monos) in Set. So the whole square

R],n+1 T ],n+1-

S],n+1 (S +R T )],n+1-

6 6

is a pushout in Comman+1, i.e. (−)],n+1 preserves pushouts. As (−)∗,n+1 is a
composition of (−)],n+1 with an equivalence of categories it preserves the pushouts,
as well. 2

Corollary 9.3 The functor

(−)∗ : wFs+/1 −→ Comp+/1

is full and faithful and preserves special pushouts.

Proof. This follows from the previous Corollary and the fact that the functor (−)
n

:
Comma+/1

n −→ Comp+/1
n (see Appendix) is an equivalence of categories. 2

Let P be a positive-to-one computad, a a k-cell in P . A description of the cell a
is a pair

< Ta, τa : T ∗a −→ P >
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where Ta is a positive face structure and τa is a computad map such that

τa(Ta) = a.

In the remainder of this section we shall define some specific positive face struc-
tures that will be used later. First we define αn, for n ∈ ω. We put

αnl =


∅ if l > n
{2n} if l = n
{2l + 1, 2l} if 0 ≤ l < n

d, c : αnl −→ αnl−1

d(x) = {2l − 1} c(x) = 2l − 2

for x ∈ αnl , and 1 ≤ l ≤ n.
For example α4 can be pictured as follows:

1 0
��@@

3 2
��@@

5 4
��@@

7 6
�� AA

8

i.e. 8 is the unique cell of dimension 4 in α4 that has 7 as its domain and 6 as its
codomain, 7 and 6 have 5 as its domain and 4 as its codomain, and so on. Note
that, for any k ≤ n, we have

d(k)αn = αk = c(k)αn.

Let n1 < n0, n2 and n3 < n2, n4. We define the positive face structures αn0,n1,n2

and αn0,n1,n2,n3,n4 as the following colimits in Fs+/1:

αn1 αn2-

d(n1)
αn2

αn0 , αn0,n1,n2-κ1

6

c(n1)
αn0

6
κ2

αn1 αn2-

d(n1)
αn2

αn0 , αn0,n1,n2,n3,n4-κ1

6

c(n1)
αn0

6
κ2

αn3�

c(n3)
αn2

αn4�κ3

6 6

d(n3)
αn4

We have

Proposition 9.4 The above colimits are preserved by the functor

(−)∗ : Fs+/1 −→ Comp+/1.

Moreover for any ω-category C we have bijective correspondences

ωCat((αn)∗, C) = Cn

ωCat((αn0,n1,n2)∗, C) = {(x, y) ∈ Cn0 × Cn2 : c(n1)(x) = d(n1)(y)}

ωCat((αn0,n1,n2,n3,n4)∗, C) =

= {(x, y, z) ∈ Cn0 × Cn2 × Cn4 : c(n1)(x) = d(n1)(y) and c(n3)(y) = d(n3)(z)}
which are natural in C.
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Proof. As both positive face structures αn0,n1,n2 and αn0,n1,n2,n3,n4 are obtained
vis special pushout (in the second case applied twice) these colimits are preserved
by (−)∗. 2

The essential image of the full and faithful functor (−)∗ : Fs+/1 −→ Comp+/1

is the category of the positive computypes and it will be denoted by Ctypes+/1. Thus
the categories Fs+/1 and Ctypes+/1 are equivalent. The full image of the functor
(−)∗ : Fs+/1 −→ ωCat will be denoted by Ctypes+/1ω . The objects of Ctypes+/1ω are
ω-categories isomorphic to those of form S∗ for S being positive face structure and
the morphism in Ctypes+/1ω are all ω-functors.

10 The inner-outer factorization in Ctypes+/1
ω

Let f : S∗ −→ T ∗ be a morphism in Ctypes+/1ω . We say that f is outer1 if there is
a map of face structures g : S −→ T such that g∗ = f . We say that f is inner iff
fdim(S)(S) = T . From Corollary 9.3 we have

Lemma 10.1 An ω-functor f : S∗ −→ T ∗ is outer iff it is a computad map. 2

Proposition 10.2 Let f : S∗ −→ T ∗ be an inner map, dim(S) = dim(T ) > 0. The
maps df : dS −→ dT and cf : cS −→ cT , being the restrictions of f , are well
defined, inner and the squares

(dS)∗ S∗-
d∗S

(dT )∗ T ∗-
d∗T

6
df

6
f

(cS)∗�
c∗S

(cT )∗�
c∗T

6
cf

commute.

Proof. So suppose that f : S∗ → T ∗ is an inner map. So f(S) = T . Since f is an
ω-functor we have

f(dS) = df(S) = dT and f(cS) = cf(S) = cT.

This shows the proposition. 2

We have

Proposition 10.3 The inner and outer morphisms form a factorization system in
Ctypes+/1ω . So any ω-functor f : S∗ −→ T ∗ can be factored essentially uniquely by

inner map
•
f followed by outer map

◦
f :

S∗ T ∗-f

f(S)∗

•
f

@
@
@
@R

◦
f

�
�
�
��

Proof. This is almost tautological. 2

1The names ’inner’ and ’outer’ are introduced in analogy with the morphism with the same
name and role in the category of disks in [J].
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11 The terminal positive-to-one computad

In this section we shall describe the terminal positive-to-one computad T .
The set of n-cell Tn consists of (isomorphisms classes of) positive face structures

of dimension less than or equal to n. For n > 0, the operations of domain and
codomain dT , cT : Tn → Tn−1 are given, for S ∈ Tn by

d(S) =

{
S if dim(S) < n,
dS if dim(S) = n,

and

c(S) =

{
S if dim(S) < n,
cS if dim(S) = n.

and, for S, S′ ∈ Tn such that c(k)(S) = d(k)(S′) the composition in T is just the
pushout S;k S′ = S +k S

′ i.e.

c(k)S S′-

S S +k S
′-

6 6

The identity idT : Tn−1 → Tn is the inclusion map.
The n-indets in T are the principal positive n-face structures.

Proposition 11.1 T just described is the terminal positive-to-one computad.

Proof. The fact that T is an ω-category is easy. The fact that T is free with free
n-generators being principal n-face structures can be shown much like the freeness
of S∗ before. The fact that T is terminal follows from the following observation:

Observation. For every pair of parallel n-face structures N and B (i.e. dN = dB
and cN = cB) such that N is normal and B is principal there is a unique (up to an
iso) principal (n+ 1)-face structure N• such that dN• = N and cN• = B. 2

Lemma 11.2 Let S be a positive face structure and ! : S∗ −→ T the unique map
from S∗ to T . Then, for T ∈ S∗k we have

!k(T ) = T.

Proof. The proof is by induction on k ∈ ω and the size of T in S∗k . For k = 0, 1
the lemma is obvious. Let k > 1 and assume that lemma holds for i < k.

If dim(T ) = l < k then, using the inductive hypothesis and the fact that ! is an
ω-functor, we have

!k(T ) =!k(1
(k)
T ) = 1(k)

!l(T ) = 1(k)
T = T

Suppose that dim(T ) = k and T is principal. As ! is a computad map !k(T ) is
an indet, i.e. it is principal, as well. We have, using again the inductive hypothesis
and the fact that ! is an ω-functor,

d(!k(T )) =!k−1(dT ) = dT

c(!k(T )) =!k−1(cT ) = cT

As T is the only (up to a unique iso) positive face structure with the domain dT
and the codomain cT , it follows that !k(T ) = T , as required.

Finally, suppose that dim(T ) = k, T is not principal, and for the positive face
structures of size smaller than the size of T the lemma holds. Thus there are l ∈ ω
and a ∈ Sd(T )l so that

!k(T ) =!k(T ↓a;l T ↑a) =!k(T ↓a);l !k(T ↑a) = T ↓a;l T ↑a = T,

as required 2
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12 A description of the positive-to-one computads

In this section we shall describe all the cells in positive-to-one computads using pos-
itive face structures, in other words we shall describe in concrete terms the functor:

(−) : Comma+/1
n −→ Comp+/1

n

More precisely, the positive-to-one computads of dimension 1 (and all computads
as well) are free computads over graphs and are well understood. So suppose that
n > 1, and we are given an object of Comma+/1

n , i.e. a quadruple (|P |n, P, d, c)
such that

1. a positive-to-one (n− 1)-computad P ;

2. a set |P |n with two functions c : |P |n −→ |P |n−1 and d : |P |n −→ Pn−1 such
that for x ∈ |P |n, cc(x) = cd(x) and dc(x) = dd(x); we assume that d(x) is
not an identity for any x ∈ |P |n.

If the maps d and c in the object (|P |n, P, d, c) are understood from the context we
can abbreviate notation to (|P |n, P ).

For a positive face structure S, with dim(S) ≤ n, we denote by S],n the object
(Sn, (S<n)∗, [δ], [γ]) in Comma+/1

n . In fact, we have an obvious functor

(−)],n : Fs+/1 −→ Comma+/1
n

such that
S 7→ (Sn, (S<n)∗, [δ], [γ])

Any positive-to-one computad P can be restricted to its part in Comma+/1
n . So we

have an obvious forgetful functor

(−)\,n : Comp+/1 −→ Comma+/1
n

such that
P 7→ (|P |n, P<n, d, c)

We shall describe the positive-to-one n-computad P whose (n− 1)-truncation is
P and whose n-indets are |P |n with the domains and codomains given by c and d.

n-cells of P . An n-cell in Pn is a(n equivalence class of) pair(s) (S, f) where

1. S is a positive face structure, dim(S) ≤ n;

2. f : (Sn, (S<n)∗, [δ], [γ]) −→ (|P |n, P, d, c) is a morphism in Comma+/1
n , i.e.

S∗n−1 Pn−1-
fn−1

Sn |P |n-|f |n

?

[δ]

?

[γ]

?

d

?

c

commutes.

We identify two pairs (S, f), (S′, f ′) if there is an isomorphism h : S −→ S′ such
that the triangles of sets and of (n− 1)-computads

Sn S′n
-hn

|P |n

fn
@
@
@R

f ′n
�

�
�	

(S<n)∗ (S′<n)∗-(h<n)∗

P

f<n
@
@
@R

f ′<n
�

�
�	
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commute. Clearly, such an h, if exists, is unique. Even if formally cells in Pn
are equivalence classes of triples we will work on triples themselves as if they were
cells understanding that equality between such cells is an isomorphism in the sense
defined above.

Domains and codomains. The domain and codomain functions

d(k), c(k) : Pn −→ P k

are defined for an n-cell (S, f) as follows:

d(k)(S, f) = (d(k)S,d(k)f)

where, for x ∈ (d(k)S)k
(d(k)f)k(x) = fk([x])(x)

(i.e. we take the sub-face structure [x] of S, then value of f on it, and then we
evaluate the map in Comma+/1

n on x the only element of [x]k),

(d(k)f)l = fl

for l < k;

c(k)(S, f) = (c(k)S, c(k)f)

where, for x ∈ (c(k)S)k
(c(k)f)k(x) = fk([x])(x)

and
(d(k)f)l = fl

for l < k, i.e. we calculate the k-th domain and k-th codomain of an n-cell (S, f) by
taking d(k) and c(k) of the domain S of the cell f , respectively, and by restricting
the maps f accordingly.

Identities. The identity function

i : Pn−1 −→ Pn

is defined for an (n− 1)-cell ((S, f) in Pn−1, as follows:

i(S, f) =

{
(S, f) if dim(S) < n− 1,
(S, f) if dim(S)=n-1

Note that f is the map Comp+/1
n−1 which is the value of the functor (−) on a map f

from Comma+/1
n−1. So it is in fact defined as ’the same (n − 1)-cell’ but considered

as an n-cell.
Compositions. Suppose that (Si, f i) are n-cells for i = 0, 1, such that

c(k)(S0, f0) = d(k)(S1, f1).

Then their composition is defined, via pushout in Comma+/1
n , as

(S0, f0);k (S1, f1) = (S0 +k S
1, [f0, f1])

i.e.
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((S0 +k S
1)≤n−1)∗n−1 Pn−1

-
[f0
n−1, f

1
n−1]

S0
n t· S1

n |P |n-[f0
n, f

1
n]

?

[δ]

?

[γ]

?

d

?

c

This ends the description of the computad P .
Now let h : P → Q be a morphism in Comma+/1

n , i.e. a function hn : |P |n −→
|Q|n and a (n− 1)-computad morphism h<n : P<n −→ Q<n such that the square

Pn−1 Qn−1
-

hn−1

|P |n |Q|n-hn

?

d

?

c

?

d

?

c

commutes serially. We define
h̄ : P̄ −→ Q̄

by putting h̄k = hk for k < n, and for (S, f) ∈ P̄n, we put

h̄(S, f) = (S, h ◦ f).

Notation. Let x = (S, f) be a cell in P̄n as above, and a ∈ Sd(S). Then by
x↓a = (S↓a, f↓a) and x↑a = (S↑a, f↑a) we denote the cells in P̄n that are the obvious
restriction x. Clearly, we have c(k)(x↓a) = d(k)((x↑a) and that x = x↓a;k x↑a, where
k = dim(a).

The following Proposition states several statements concerning the above con-
struction. This includes that the above construction is correct. We have put all
these statement together as we need to prove them together, that is by simultane-
ous induction.

Proposition 12.1 Let n ∈ ω. We have

1. Let P be an object of Comma+/1
n . We define the function

ηP : |P |n −→ Pn

as follows. Let x ∈ |P |n. As c(x) is an indet d(x) is a normal cell of dimension
n− 1. Thus there is a unique description of the cell d(x)

< Td(x), τd(x) : T ∗d(x) −→ P<n >

with Td(x) being normal positive face structure. Then we have a unique n-cell
in P̄ :

x̄ =< T •d(x), |τx|n : {T •d(x)} → |P |n, (τx)<n : (T •d(x))
∗
<n → P<n >

(note: |T •d(x)|n = {T •d(x)}) such that

|τx|n(T •d(x)) = x

and

(τx)n−1(S) =

{
c(x) if S = c(T •d(x))
(τdx)n−1(S) if S ⊆ Tdx

and (τx)<(n−1) = (τdx)<(n−1). We put ηP (x) = x̄.

Then P̄ is a positive-to-one computad with ηP the inclusion of n-
indeterminates. Moreover any positive-to-one n-computad Q is equivalent to
a computad P̄ , for some P in Comma+/1

n .
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2. Let P be an object of Comma+/1
n , ! : P −→ T the unique morphism into the

terminal object T and f : S],n → P a cell in Pn. Then

!n(f : S],n → P ) = S.

3. Let h : P → Q be an object of Comma+/1
n . Then h̄ : P̄ −→ Q̄ is a computad

morphism,

4. Let S be a positive face structure of dimension at most n. Moreover, for a
morphism f : S],n −→ P in Comma+/1

n we have that

fk(T ) = f ◦ (iT )],n

where k ≤ n, T ∈ S∗k and iT : T −→ S is the inclusion.

5. Let S be a positive face structure of dimension n, P positive-to-one computad,
g, h : S∗ −→ P computad maps. Then

g = h iff gn(S) = hn(S).

6. Let S be a positive face structure of dimension at most n, P be an object in
Comma+/1

n . Them we have a bijective correspondence

f : S],n −→ P ∈ Comma+/1
n

f : S∗ −→ P ∈ Comp+/1
n

such that, fn(S) = f , and for g : S∗ −→ P we have g = gn(S).

7. The map
κPn :

∐
S

Comp(S∗, P ) −→ Pn

g : S∗ → P 7→ gn(S)

where coproduct is taken over all (up to iso) positive face structures S of di-
mension at most n, is a bijection. In other words, any cell in P̄ has a unique
description.

Proof. Ad 1. We have to verify that P satisfy the laws of ω-categories and that
it is free in the appropriate sense.

Laws ω-categories are left for the reader. We shall show that P is free in the
appropriate sense.

Let C be an ω-category, g<n : P<n → C<n and (n−1)-functor and gn : |P |n → Cn
a function so that the diagram

Pn−1 Cn−1
-

gn−1

|P |n Cn-gn

?

d

?

c

?

d

?

c

commutes serially. We shall define an n-functor g : P → C extending g and gn. For
x = (S, f) ∈ Pn we put

gn(x) =


1gn−1◦fn−1(S) if dim(S) < n,
gn ◦ fn(mS) if dim(S) = n, S is principal, Sn = {mS}
gn(x↓a);k gn(x↑a) if dim(S) = n, a ∈ Sd(S)k
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We need to check that g is well defined, unique one that extends g, preserves
domains, codomains, compositions and identities.

All these calculations are similar, and they are very much like those in the proof
of Proposition 9.1. We shall check, assuming that we already know that g is well
defined, and preserves identities that compositions are preserved. So let T , T1, T2

be positive face structures such, that T = T1 +k T2. Since g preserves identities, we
can restrict to the case dim(T1), dim(T2) > k.

Fix a ∈ c(k)(T1)k ∩ γ(T1). So a ∈ Sd(T )k. If T1 = T ↓a and T2 = T ↑a then we
have

g(T ) = g(T ↓a);k g(T ↑a) = g(T1);k g(T2).

If a ∈ Sd(T1)k then

g(T ) = g(T ↓a);k g(T ↑a) =

= g(T ↓a);k (g(T ↑a1 );k g(T2)) =

= (g(T ↓a1 );k g(T ↑a1 ));k g(T2) =
g(T1);k g(T2)

The remaining verifications are similar.
Ad 2. Let ! : P −→ T be the unique computad map into the terminal object, S

a positive face structure such that dim(S) = l ≤ n, f : S],n −→ P a cell in Pn.
If l < n then by induction we have !n(f) = S. If l = n and S is principal then

we have, by induction

!n(d(f) : (dS)],n → P ) = dS, !n(c(f) : (cS)],n → P ) = cS.

As f is an indet in P , !n(f) is a principal positive face structure. But the only (up
to an iso) principal positive face structure B such that

dB = dS, dB = dS

is S itself. Thus, in this case, !n(f) = S.
Now assume that l = n, and S is not principal, and that for positive face struc-

tures T of smaller size than S the statement holds. Let a ∈ Sd(S)k. We have

!n(f) =!n(f↓a;k f↑a) =!n(f↓a);k !n(f↑a) = S↓a;k S↑a = S

where f↓a = f ◦ (κ↓a)],n and f↑a = f ◦ (κ↑a)],n and κ↓a and κ↑a are the maps as in
the following pushout

c(k)S S↑a-

S↓a S-
κ↓a

6 6
κ↑a

Ad 3. The main thing is to show that h preserves compositions. This follows
from the fact that the functor

(−)],n : Fs+/1
n −→ Comma+/1

n

preserves special pullbacks.
Ad 4. This is an immediate consequence of 3.
Ad 5. Let S be a positive face structure S of dimension at most n. To prove 5.,

we are going to use the description of the n-cells in positive-to-one computads given
in 1. Moreover, note that by 3. and Lemma 11.2 we have that for T ∈ S∗k , the value
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of g at T is a map in Comma+/1
k , such that gk(T ) : T ],k −→ P \,k, i.e. the domain

of gk(T ) is necessarily T ],k.
The implication ⇒ is obvious. So assume that g, h : S∗ −→ P are different

computad maps. Then there is k ≤ n and x ∈ Sk such that gk([x]) 6= hk([x]). We
shall show, by induction on size of T , that for any T ∈ S∗l , such that x ∈ T , we
have

gk(T ) 6= hk(T ) (6)

T = [x] has the least size among those positive face structures that contain x.
Clearly, (6) holds in this case by assumption.

Suppose that (6) holds for all U ∈ S∗l′ whenever for l′ < l and x ∈ U . Suppose
that T = [y] for some y ∈ Sl, and x ∈ [y]. Then either x ∈ d[y] or x ∈ c[y]. In the
former case we have, by inductive hypothesis, that gk(dT ) 6= hk(dT ).Thus

d(gk(T )) = gk(dT ) 6= hk(dT ) = d(gk(T ))

But then (6) holds as well. The later case (x ∈ c[y]) is similar.
Now suppose that T is not principal x ∈ T and that for U of a smaller size with

x ∈ U the condition (6) holds. Let a ∈ Sd(T )r. Then either x ∈ T ↓a or x ∈ T ↑a.
Both cases are similar, so we will consider the first one only. Thus, as T ↓a has a
smaller size than T , by inductive hypothesis we have

gk(T ↓a) 6= hk(T ↓a) (7)

As the compositions in P are calculated via pushouts we have that

gl(T ↓a);r gl(T ↑a) = [gl(T ↓a), gl(T ↑a)]

where [gl(T ↓a), gl(T ↑a)] is the unique morphism from the pushout as in the following
diagram:

(cT ↑a)],l (T ↓a)],l-

(T ↑a)],l T ],l-

6 6

[gl(T ↓a), gl(T ↑a)]

�
�
�
�
��

P \,l

gl(T ↑a)

�
�
�
�
�
�
�
�
�
��

�
�

gl(T ↓a)
���

���
���

���:

Similarly
hl(T ↓a);r hl(T ↑a) = [hl(T ↓a), hl(T ↑a)]

As morphism form the pushout are equal if and only if their both components are
equal we have

gl(T ) = gl(T ↓a;r T ↑a) = gl(T ↓a);r gl(T ↑a) =

[gl(T ↓a), gl(T ↑a)] 6= [hl(T ↓a), hl(T ↑a)] =

= hl(T ↓a);r hl(T ↑a) = hl(T ↓a;r T ↑a) = hl(T )

Thus (6) holds for all T ∈ S∗ such that x ∈ T . As x ∈ S, we get that

gn(S) 6= hn(S)
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as required.
Ad 6. Fix a positive face structure S of dimension at most n.
Let f : S],n −→ P be a cell in Pn. By 4, we have

fn(S) = f ◦ (iS)],n = f ◦ (1S)],n = f ◦ (1],nS ) = f.

Let g : S∗ −→ P be a computad map. To show that g = gn(S), by 5, it is enough
to show that

(gn(S))n(S) = gn(S).

Using 4 again, we have,

(gn(S))n(S) = gn(S) ◦ (iS)],n =

= gn(S) ◦ iS],n = gn(S) ◦ 1S],n = gn(S).

Thus, by 5, (gn(S)) = g.
Ad 7. It follows immediately from 6. 2

From the Proposition 12.1.7 we know that each cell in a positive-to-one computad
has (up to an isomorphism) a unique description. The following Proposition is a bit
more specific.

Proposition 12.2 Let P be a positive-to-one computad, n ∈ ω, and a ∈ Pn. Let Ta
be !Pn (a) (where !P : P −→ T is the unique morphism into the terminal computad).
Then there is a unique computad map τa : T ∗a −→ P such that (τa)n(Ta) = a, i.e.
each cell has an essentially unique description. Moreover, we have:

1. for any a ∈ P we have

τda = d(τa) = τda = τa ◦ (dTa)∗, τc(a) = c(τa) = τc(a) = τa ◦ (cTa)∗,

τ1a = τa

2. for any a, b ∈ P such that c(k)(a) = d(k)(b) we have

τa;kb = [τa, τb] : T ∗a +c(k)T ∗a
T ∗b −→ P,

3. for any positive face structure S, for any computad map f : S∗ −→ P ,

τfn(S) = f.

4. for any positive face structure S, any ω-functor f : S∗ −→ P can be essentially
uniquely factorized as

S∗ P-
f

T ∗f(S)

f in@
@R

τf(S)
�
��

where f in is an inner map and (τf(S), Tf(S)) is the description of the cell f(S).

Proof. Using the above description of the positive-to-one computad P we have
that a : (Ta)],n −→ P \,n. We put τa = a. By Proposition 12.1 point 6, we have that
(τa)n(Ta) = an(Ta) = a, as required.

The uniqueness of (Ta, τa) follows from Proposition 12.1 point 5.
The remaining part is left for the reader. 2
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13 Positive-to-one computads form a presheaf category

In this section we want to prove that the category Comp+/1 is equivalent to the
presheaf category Set(pFs+/1)op

. In fact, we will show that both categories are equiv-
alent to the category sPb((Fs+/1)op, Set) of special pullbacks preserving functors
from (Fs+/1)op to Set.

First note that the inclusion functor i : pFs+/1 −→ Fs+/1 induces the adjunction

-Rani

�
i∗

Set(pFs+/1)
op

Set(Fs+/1)
op

with i∗ is the functor of composing with i and Rani is a the right Kan extension
along i. Recall that for F in Set(pFs+/1)

op

, S in Fs+/1, it is defined as the following
limit

(RaniF )(S) = LimF ◦ ΣS,op

where ΣS,op is the dual of the functor ΣS defined before Lemma 6.4. Note that as
(pFs+/1 ↓ S)op = S ↓ (pFs+/1)op we have

ΣS,op : S ↓ (pFs+/1)op −→ (pFs+/1)op.

As i is full and faithful the right Kan extension Rani(F ) is an extension. There-
fore the counit of this adjunction

εF : (Rani F ) ◦ i −→ F

is an isomorphism. The functor RaniF is so defined that it preserves special limits.
Hence by Lemma 6.4 it preserves special pullbacks. It is easy to see, that for G in
Set(Fs+/1)

op

the unit of adjunction

ηG : G −→ Rani(G ◦ i)

is an isomorphism iff G preserves special pullbacks. Thus we have

Proposition 13.1 The above adjunction restricts to the following equivalence of
categories

-Rani

�
i∗

Set(pFs+/1)
op

sPb((Fs+/1)op, Set)

2

Now we will set up the adjunction

-(̃−)
�

(̂−) = Comp+/1((')∗,−)
sPb((Fs+/1)op, Set) Comp+/1

which will turn out to be an equivalence of categories. The functor (̂−) sends a
positive-to-one computad P to a functor

P̂ = Comp+/1((−)∗, P ) : (Fs+/1)op −→ Set

(̂−) is defined on morphism in the obvious way, by composition. We have

Lemma 13.2 Let P be a positive-to-one computad. Then P̂ defined above is a
special pullbacks preserving functor.
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Proof. This is an immediate consequence of the fact that the functor (−)∗ pre-
serves special pushouts. 2

Now suppose we have a special pullbacks preserving functor F : (Fs+/1)op −→
Set. We shall define a positive-to-one computad F̃ .

As n-cells of F̃ we put
F̃n =

∐
S

F (S)

where the coproduct is taken over all2 (up to iso) positive face structures S of
dimension at most n.

If k ≤ n, the identity map

1(n) : F̃k −→ F̃n

is the obvious embedding induced by identity maps on the components of the co-
products.

Now we shall describe the domains and codomains in F̃ . Let S be a positive
face structure of dimension at most n, a ∈ F (S) ↪→ F̃n. We have in Fs+/1 the k-th
domain and the k-th codomain morphisms:

d(k)S c(k)S

S

d(k)
S
�
�
��

c(k)
S
@

@
@I

We put
d(k)(a) = F (d(k)

S )(a) ∈ F (d(k)S) ↪→ F̃k,

c(k)(a) = F (c(k)
S )(a) ∈ F (c(k)S) ↪→ F̃k.

Finally, we define the compositions in F̃ . Let n1, n2 ∈ ω, n = max(n1, n2),
k < min(n1, n2), and

a ∈ F (S) ↪→ F̃n1 b ∈ F (T ) ↪→ F̃n2 ,

such that
c(k)(a) = F (c(k)

S )(a) = F (d(k)
T )(b) = d(k)(b).

We shall define the cell a;k b ∈ F̃n. We take a special pushout in Fs+/1:

c(k)S T-

d(k)
T

S S +k T-κ1

6

c(k)
S

6
κ2

As F preserves special pullbacks (from (Fs+/1)op) it follows that the square
2In fact, we think about such a coproduct

∐
S
F (S) as if it were to be taken over sufficiently

large (so that each isomorphism type of positive face structures is represented) set of positive face
structures S of dimension at most n. Then, if positive face structures S and S′ are isomorphic via
(necessarily unique) isomorphism h, then the cells x ∈ F (S) and x′ ∈ F (S′) are considered equal
iff F (h)(x) = x′.
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F (c(k)S) F (T )�

F (d(k)
T )

F (S) F (S +k T )�F (κ1)

?

F (c(k)
S )

?

F (κ2)

is a pullback in Set. Thus there is a unique element

x ∈ F (S +k T ) ↪→ F̃n

such that
F (κ1)(x) = a, F (κ1)(x) = b.

We put
a;k b = x.

This ends the definition of F̃ .
For a morphism α : F −→ G in sPb((Fs+/1)op, Set) we put

α̃ = {α̃n : F̃n −→ G̃n}n∈ω

such that
α̃n =

∐
S

αS : F̃n −→ G̃n

where the coproduct is taken over all (up to iso) positive face structures S of dimen-
sion at most n. This ends the definition of the functor (̃−).

We have

Proposition 13.3 The functor

(̃−) : sPb((Fs+/1)op, Set) −→ Comp+/1

is well defined.

Proof. The verification that (̃−) is a functor into ωCat is left for the reader. We
shall verify that for any special pullbacks preserving functor F : Fs+/1op −→ Set,
F̃ is a positive-to-one computad, whose n-indets are

|F̃ |n =
∐

B∈pFs+/1,dim(B)=n

F (B) ↪→
∐

S∈Fs+/1,dim(S)≤n

F (S) = F̃n.

Let P be the truncation of F̃ in Comma+/1
n , i.e. P = F̃ \,n. We shall show that

F̃n is in a bijective correspondence with Pn described in the previous section. We
define a function

ϕ : Pn −→ F̃n

so that for a cell f : S],n −→ P in Pn we put

ϕ(f) =


1fn−1(S) if dim(S) < n,
fn(mS) if dim(S) = n, S principal, Sn = {mS}
ϕ(f↓a);k ϕ(f↑a) if dim(S) = n, a ∈ Sd(S)k.

and the morphisms in ϕ(f↓a) and ϕ(f↑a) in Comma+/1
n are obtained by composi-

tions so that the diagram
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�
��

S],n

@
@R

(S↓a)],n

(S↑a)],n

P-
f

f↓a
PPPPPPPPq

f↑a
��

��
��

��1

commutes. We need to verify, by induction on n, that ϕ is well defined, bijective
and that it preserves compositions, domains, and codomains.

We shall only verify (partially) that ϕ is well defined, i.e. the definition ϕ for
any non-principal positive face structure S of dimension n does not depend on the
choice of the saddle point of S. Let a, x ∈ Sd(S) so that k = dim(x) < dim(a) = m.
Using Lemma 8.4 and the fact that (−)],n preserves special pushouts, we have

ϕ(f↓a);m ϕ(f↑a) =
= (ϕ(f↓a↓x);k ϕ(f↓a↑x));m (ϕ(f↑a↓x);k ϕ(f↑a↑x)) =
= (ϕ(f↓a↓x);m ϕ(f↑a↓x));k (ϕ(f↓a↑x);m ϕ(f↑a↑x)) =
= (ϕ(f↓x↓a);m ϕ(f↓x↑a));k (ϕ(f↑x↓a);m ϕ(f↑x↑a)) =

= ϕ(f↓x);m ϕ(f↑x)

as required in this case. The reader can compare these calculations with the those,
in the same case, of Proposition 9.1 (F is replaces by ϕ and T is replaces by f). So
there is no point to repeat the other calculations. 2

For P in Comp+/1 we define a computad map

ηP : P −→ ˜̂
P

so that for x ∈ Pn we put
ηP,n(x) = τx : T ∗x → P.

For F in sPb((Fs+/1)op, Set) we define a natural transformation

εF : ̂̃
F −→ F,

such that, for a positive face structure S of dimension n,

(εF )S : ̂̃
F (S) −→ F (S)

and g : S∗ → F̃ ∈ ̂̃
F (S) we put

(εF )S(g) = gn(S).

Proposition 13.4 The functors

-(̃−)
�

(̂−) = Comp+/1((')∗,−)
sPb((Fs+/1)op, Set) Comp+/1

together with the natural transformations η and ε defined above form an adjunction
((̂−) a (̃−)). It establishes the equivalence of categories sPb((Fs+/1)op, Set) and
Comp+/1.

Proof. The fact that both η and ε are bijective on each component follows im-
mediately from Proposition 12.1 point 6. So we shall verify the triangular equalities
only.

Let P be a computad, and F be a functor in sPb((Fs+/1)op, Set). We need to
show that the triangles
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P̂ P̂-1
P̂

̂̃̂
P

η̂P
�
�
�� ε

P̂
@
@
@R

F̃ F̃-1
F̃

˜̂̃
F

η
F̃
�
�
��

ε̃F
@
@
@R

commute. So let f : S∗ → P ∈ P̂ (S). Then, we have

ε
P̂
◦ η̂P (f) = ε

P̂
(ηP ◦ f) = (ηP ◦ f)n(S) =

= (ηP )n(fn(S)) = τfn(S) = f

So let x ∈ F (S) −→ F̃n. Then we have

ε̃F ◦ ηF̃ (x) = ε̃F (τx) = (τx)n(1Tx) = x

So both triangles commutes, as required. 2

From Propositions 13.1 and 13.4 we get immediately

Corollary 13.5 The functor

(̂−) : Comp+/1 −→ Set(pFs+/1)op

such that for a positive-to-one computad X,

X̂ = Comp+/1((−)∗, X) : (pFs+/1)op −→ Set

is an equivalence of categories.

14 The principal pushouts

Recall the positive face structure αn from section 9. A total composition map is an
inner ω-functor whose domain is of form (αn)∗, for some n ∈ ω. If S is a positive
face structure of dimension n, then the total composition of S (in fact S∗) is denoted
by

µS
∗

: αn,∗ −→ S∗.

It is uniquely determined by the condition µS
∗

n (αn) = S. We have

Proposition 14.1 Let N be a normal positive face structure. With the notation as
above, the square

αn,∗ αn+1,∗-
d∗αn+1

N∗ N•,∗-
d∗N•

6

µN
∗

6

µN
•,∗

is a pushout in Ctypes+/1ω . Such pushouts are called principal pushouts.

Proof. This is an easy consequence of Proposition 7.3, particularly point 4. 2

From the above proposition we immediately get

Corollary 14.2 If n > 0 and P is a principal positive face structure of dimension
n then the square
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αn−1,∗ αn,∗-
dαn,∗

dP ∗ P ∗-
d∗P

6

µdP
6

µP

is a (principal) pushout in Ctypes+/1ω . 2

Theorem 14.3 (V.Harnik) 3 Let F : (Ctypes+/1ω )op −→ Set be a special pullback
preserving functor. Then F preserves the principal pullbacks as well.

Theorem 14.3 is a special case of Lemma 14.6, for k = n− 1.
The proof of the above theorem will be divided into three Lemmas. Theorem

14.3 is a special case of Lemma 14.6, for k = n− 1.
Before we even formulate these Lemmas we need to introduce some construc-

tions on positive face structures and define some ω-functors between computypes.
Introducing these constructs and notation for them we shall make some comments
how they are going to be interpreted by special pullback preserving morphisms from
(Ctypes+/1ω )op to Set.

Fix k ≤ n, and a P principal positive face structure of dimension n. We say
that P is k-globular iff d(l)P is principal, for k ≤ l ≤ n, i.e. δ(l)(pn) is a singleton,
for k ≤ l ≤ n, where Pn = {pn}. The k-globularization kP of P is the k-globular
positive face structure of dimension n defined as follows. Note that by Lemma 7.1
Pl = δ(pl+1) ∪ {pl} for 0 ≤ l < n. We put

kPl =

{
{ql,pl} for k ≤ l < n,
Pl otherwise.

For x ∈ kP ,

γkP (x) =

{
pl−1 if x = ql for some k ≤ l < n,
γP (x) otherwise.

and

δkP (x) =


ql if x ∈ kPl+1 for some k < l < n,
δP (pk) if x ∈ kPk,
δP (x) otherwise.

Note that nP is P itself. Thus the elements of the shape kP ∗ are k-globularized
versions of the elements of the shape P ∗. As the following positive face structures

c(k)P ∼= c(k)
kP ∼= cc(k+1)

kP ∼= dc(k+1)
kP ∼= d(k+1)

kP

are isomorphic, we can form the following special pushouts

c(k)P ∗ kP ∗-

d(k),∗
kP

c(k+1)P ∗ c(k+1)P +c(k)P kP ∗-κ1

6
c∗
c(k+1)P

6
κ2

3The original statement of V.Harnik is saying that the nerve functor from ω-categories to (all)
computads is monadic. However, in the present context the argument given by V.Harnik is directly
proving the present statement, i.e. that the principal pullbacks are preserved whenever the special
one’s are. This, statement is used to show that the category of ω-categories is equivalent to the
category of special pullback preserving functors from (Ctypes+/1)op to Set, c.f. Corollary 15.2.
From that statement, the monadicity of the nerve functor is an easy corollary, c.f. Theorem 16.7.
In the remainder of this section the Harnik’s argument, adopted to the present context, is presented.

56



and

c(k)P ∗ kP ∗-

d(k),∗
kP

c(k+1)
kP ∗ c(k+1)

kP +c(k)P kP ∗-κ′1

6
c∗
c(k+1)kP

6

κ′2

We describe in details the positive face structures we have just defined:

kP, P ′ = c(k+1)P +c(k)P kP, and P′′ = c(k+1)
kP +c(k)P kP,

for a (k + 1)-globular positive face structures P , i.e. in case P is equal to k+1P .

dim P kP P ′ P ′′

n {pn} {pn} {pn} {pn}
n−1 {qn−1,pn−1} {qn−1,pn−1} {qn−1,pn−1} {qn−1,pn−1}

...
...

...
...

...
k+1 {qk+1,pk+1} {qk+1,pk+1} {rk+1,qk+1,pk+1} {rk+1,qk+1,pk+1}
k δ(pk+1) ∪ {pk} {qk,pk} δ(pk+1) ∪ {qk,pk} {rk,qk,pk}
...

...
...

...
...

l Pl Pl Pl Pl

0 ≤ l < k. The functions γ and δ in both P ′ and P ′′ are easy to figure out. We give
few less obvious values below. In P ′

δP
′
(rk+1) = δP (pk+1), δP

′
(qk+1) = δP

′
(pk+1) = qk

γP
′
(rk+1) = qk, γP

′
(qk+1) = γP

′
(pk+1) = pk,

and in P ′′

δP
′′
(rk+1) = rk.

Now we shall define some ω-functors between computypes. To describe their
meaning let us fix a special pullback preserving functors from F : (Ctypes+/1ω )op −→
Set.

The ω-functors denoted by letter µ are interpreted as operation that ’globularize’
cells. We have two of them. The first one µS

∗
: αn,∗ −→ S∗ was already introduced

at the beginning of this section for any positive face structure S. The second is the
ω-functor

µ
k

: kP ∗ −→ k+1P ∗

such that

µ
k
(X) =

{
(X − {qk}) ∪ δ(pk+1) if qk ∈ X
X otherwise.

for X ∈ kP ∗, and
The fact that these operations are interpreted as globularization of cells can be

explained as follows. The function

F (µ
k
) : F (k+1P ∗) −→ F (kP ∗),

takes a (k + 1)-globular n-cell a ∈ F (k+1P ∗) and returns a k-globular n-cell
F (µ

k
)(a) ∈ F (kP ∗). Intuitively, F (µ

k
) is composing the k-domain of a leaving

the rest ’untouched’. So it is a ’one-step globularization’. On the other hand, the
function

F (µS
∗
) : F (S∗) −→ F (αn,∗)
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is taking an n-cell b of an arbitrary shape S∗ and is returning a globular n-cell. This
time F (µS

∗
) is composing all the domains and codomains in the cell b as much as

possible, so that there is nothing left to be compose. This is the ’full globularization’.
Instead of writing F (µ

k
)(a) and F (µS

∗
)(b) we write µ

k
(a) and µS

∗
(b) or even µ(a)

and µ(b) if it does not lead to confusions. The same conventions will apply to the
other operations that we introduce below.

We need a separate notation for the ω-functor µk : c(k+1)
kP ∗ −→ c(k+1)P ∗ such

that

µk(X) =


c(k+1)P if X = c(k+1)

kP

c(k)P if X = c(k)
kP

X otherwise.

for X ∈ c(k+1)
kP ∗. It is a version of µ

k
.

The ω-functor
ιP : P ∗ −→ dP ∗

is given by

ιP (X) =

{
dP if cP ⊆ X
X otherwise.

for X ∈ P ∗. ιP is a kind of degeneracy map and it is interpreted as ’a kind of
identity’. For a given (n− 1)-cell t of the shape dP ∗, ι(t) is ’identity on t’ but with
the codomain composed. This is why we will write ιt rather than ι(t).

The ω-functor
βk : c(k)P −→ d(k)P

such that

βk(X) =

{
d(k)P if X = c(k)P
X otherwise.

for X ∈ P ∗, is the operation of ’composition of all the cells at the top’ leaving the
rest untouched. Clearly we have βn−1 = d∗P ; ιP .

The following two ω-functors

[ιc(k+1)P ; d(k),∗
P ,µP ] : c(k+1)P +c(k)P kP ∗ −→ P ∗

and
[ιc(k+1)kP ; d(k),∗

kP , 1kP ] : c(k+1)
kP +c(k)P kP ∗ −→ kP ∗

are defined as the unique ω-functors making the following diagrams

c(k)P ∗ kP ∗-

d(k),∗
kP

c(k+1)P ∗ c(k+1)P +c(k)P kP ∗-κ1

6
c∗
c(k+1)P

6
κ2

k+1P ∗-[ι; d(k),µ]

d(k)P ∗

ιc(k+1)P ∗

��
�
��

�
��

��*

d(k),∗
P

H
HHH

HHH
HHHHj

µ
k

��
��

�
��

�
��*

and
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c(k)P ∗ kP ∗-

d(k),∗
kP

c(k+1)
kP ∗ c(k+1)

kP +c(k)P kP ∗-κ′1

6
c∗
c(k+1)kP

6

κ′2

kP ∗-[ι; d(k), 1kP ∗ ]

d(k)
kP ∗

ιc(k+1)kP ∗

��
��

�
��

�
��*

d(k),∗
kP

HH
HHH

HHH
HHHj

1kP ∗

��
�
��

�
��

��*

commute.
Finally, we introduce two maps that are a kind of a binary composition but with

a wiskering. The first

;k+1 : k+1P ∗ −→ c(k+1)P +c(k)P kP

is given by

;k+1(X) =

{
X ∪ {rk+1,qk} if X ∩ {qk+1,pk+1} 6= ∅
X otherwise.

for X ∈ k+1P ∗. The other is ;k : kP ∗ −→ c(k+1)
kP +c(k)P kP with the same defining

formula, for X ∈ kP ∗.
In the following diagram all the morphisms that we introduced above are dis-

played. Most of the subscripts of the morphisms are suppressed for clarity of the
picture.

c(k)P ∗ kP ∗-

d(k)P ∗ k+1P ∗-

6

βk

6

µ
k

d(k),∗

d(k),∗

c(k+1)
k+1P ∗ c(k+1)

kP +c(k)P k+1P ∗

c(k+1)P ∗ c(k+1)P +c(k)P k+1P ∗-κ1

6

µk + 1

�
�
�
�
��

c∗

�
�
�
�
��

d∗ �
�

�
�
�	

ι
�
�
�
�
��κ′2

�
�
�
�
��;k �
�
�

�
�	

[ι; d∗, 1]

�
�
�
�
���

;k+1

�
�

�
�

��	[ι; d∗,µ]�
�
�
�
���

d∗
�

�
�

�
��	

ι

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
���

�
�
�
�
�
�
�
�
�
�
��

c∗ κ2
µk

6

κ′1 -

The above cube contains two special pushouts mentioned above. The following
Lemma describe some other commutations.

Lemma 14.4 With the notation as above we have:

1. c∗
c(k+1)P

; ιc(k+1)P ∗ = βk,

2. d∗
c(k+1)P

;κ1 = d(k),∗
P ; (;k+1),
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3. d∗
c(k+1)P

; ιc(k+1)P ∗ = 1d(k)P ∗,

4. µ
k
; (;k+1) = (;k); (µk + 1kP ),

5. ιc(k+1)kP ∗ ; βk = µk; ιc(k+1)P ∗,

6. (;k); [ιc(k+1)kP ∗ ; d
(k),∗
kP , 1kP ∗ ] = 1kP ∗,

7. (;k+1); [ιc(k+1)P ∗ ; d
(k),∗
P ,µ

k
] = 1P ∗.

Proof. Routine check. 2

Lemma 14.5 Let F : (Ctypes+/1ω )op −→ Set be a special pullback preserving func-
tor, P a principal positive face structure of dimension n. Then for any 0 ≤ k < n,
F preserves the pullback in (Ctypes+/1)op

c(k)P ∗ kP ∗-

d(k),∗
kP

d(k)P ∗ k+1P ∗-
d(k),∗

k+1P

6
βk

6
µk

Proof. Let F : (Ctypes+/1ω )op −→ Set be a special pullback preserving functor,
P a principal positive face structure of dimension n. We need to show that the
square

F (c(k)P ∗) F (kP ∗)�

F (d(k),∗
kP )

F (d(k)P ∗) F (k+1P ∗)�
F (d(k),∗

k+1P )

?

F (βk)

?

F (µk)

is a pullback in Set. Let us fix t ∈ F (d(k)P ∗) and a ∈ F (c(k)P ∗) such that β(t) =
d(k)(a). We will check that it is a pullback, by showing existence and uniqueness of
an element b ∈ F (k+1P ∗) such that d(k)(b) = t and µ(b) = a.

Existence. By Lemma 14.4.1 we have c(ιt) = d(k)(a). Since F preserves special
pullbacks and c(k+1)P +c(k)P kP is a special pullback in (Ctypes+/1ω )op we have an
element (ιt, a) ∈ F (c(k+1)P +c(k)P kP ) such that κ1(ιt, a) = ιt and κ2(ιt, a) = a. We
shall show that the element ιt;k+1a ∈ F (k+1P ∗) is the element we are looking for, i.e.
d(k)(ιt;k+1a) = t and µ(ιt;k+1a) = a.

Using Lemma 14.4 2 and 3 we have

d(k)(ιt;k+1a) = d(ιt) = t

and using Lemma 14.4 4, 5, 6 and assumption β(t) = d(k)(a) we have

µ(ιt;k+1a) = µ(ιt);ka = ιβ(t);ka = ιd(k)(a);ka = a

This ends the proof of existence.
Uniqueness. Now suppose that we have two elements b, b′ ∈ F (k+1P ∗) such that

d(k)(b) = t = d(k)(b′) and µ(b) = a = µ(b). Then using Lemma 14.4 7 and the
assumption we have

b = ιd(k)(b);k+1 µ(b) = ιd(k)(b′);k+1 µ(b′) = b′.

So the element with this property is unique. 2
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Lemma 14.6 Let F : (Ctypes+/1ω )op −→ Set be a special pullback preserving func-
tor, P a principal positive face structure of dimension n. Then for any 0 ≤ k < n,
F preserves the following pullback in (Ctypes+/1ω )op

(8)

αk,∗ αn,∗-

d(k),∗
αn

d(k)P ∗ k+1P ∗-
d(k),∗

k+1P

6

µd(k)P ∗
6

µk+1P ∗

Proof. The proof is by double induction, on dimension n of the principal positive
face structure P , and k < n.

Note that if k = 0 then, for any n > 0, the vertical arrows in (8) are isomor-
phisms, so any functor form (Ctypes+/1ω )op sends (8) to a pullback. This shows in
particular that the Lemma holds for n = 1. As we already mentioned, if k = n− 1,
the square (8) is an arbitrary special pushout.

Thus, we assume that F : (Ctypes+/1ω )op −→ Set is a special pullback preserving
functor, and that P a principal positive face structure of dimension n, 0 ≤ k < n,
F preserves the pullback (8). Moreover, for n′ < n and the principal positive face
structure Q of dimension n′, F preserves the principal pullback in (Ctypes+/1ω )op:

αn
′−1,∗ αn

′,∗-
d∗
αn′

dQ∗ Q∗-
d∗Q

6

µdQ
6

µQ

αn
′−1,∗ αn

′,∗-

d(n′−1),∗
αn′

d(n′−1)Q∗ n′Q∗-
d(n′−1),∗

n′Q

6

µd(n′−1)Q∗
6

µn′Q∗=

We shall show that F preserves the pullback (Ctypes+/1ω )op

(9)

αk+1,∗ αn,∗-

d(k+1),∗
αn

d(k+1)P ∗ k+2P ∗-
d(k+1),∗

k+2P

6

µd(k+1)P ∗
6

µk+2P ∗

as well.
In the following diagram (most of the subscripts and some superscripts were

suppressed for clarity):

I

IIIII

αk,∗ αn,∗-

d(k)P ∗

6
µ

d(k),∗

��
��

�
��

��*

d(k),∗

6

d∗
6

µ

αk+1,∗ � d∗
�
�
�
�
�
�
�
�
�
�

-

µ

d(k+1),∗
6

-

µ c(k+1)P ∗ k+1P ∗-

d(k+1)P ∗ k+2P ∗-d(k+1),∗

6
βk+1

6
µ

d(k+1),∗
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all the squares and triangles commute. Moreover, F sends the squares I, II, III
to pullbacks in Set: I by Lemma 14.5, II by inductive hypothesis for k, III by
inductive hypothesis since dim(c(k+1)P ) < n.

Let f : X −→ F (d(k+1)P ∗) and g : X −→ F (k+1P ∗) be functions such that

F (µd(k+1)P ∗); f = F (d(k+1),∗
αn ); g

Since F applied to II is a pullback in Set, and some squares and triangles in the
above diagram commute, there is a unique function h1 : X −→ F (k+1P ) such that

h1;F (d(k),∗
k+1P ) = f ;F (βk+1);F (d∗c(k+1)P ) and h1; F(µk+1P∗) = g. (10)

To get a unique function h2 : X −→ F (k+2P ∗) such that

h2;F (dk+1,∗
k+2P ) = f and h2; F(µk+1) = h1 (11)

we use the fact that F sends III to a pullback in Set. The application of F to the
diagram above will give the following diagram in Set, where we added the additional
functions f , g, h1, and h2:

F (αk,∗) F (αn,∗)�

F (d(k)P ∗)

?

F (µ)

F (d(k),∗)

���
���

��� F (d(k),∗)
?

F (d∗)

?

F (µ)

F (αk+1,∗) -F (d∗)

F (d(k+1),∗)
6

?

F (µ)
�
�
�
�
�
�
�
�
�
��

F (µ)

X� h2

�
�

�
��	

h1

g

�

f

?

F (c(k+1)P ∗) F (k+1P ∗)�

F (d(k+1)P ∗) F (k+2P ∗)�F (d(k+1),∗)

?

F (βk+1)

?

F (µ)

F (d(k+1),∗)

Thus in order to verify that

f ;F (βk+1) = h1;F (d(k+1),∗
k+1P )

and to get h2 satisfying (11), it is enough to verify that

f ;F (βk+1);F (µc(k+1)P ∗) = h1;F (d(k+1),∗
k+1P );F (µc(k+1)P ∗) (12)

f ;F (βk+1);F (d∗c(k+1)P ) = h1;F (d(k+1),∗
k+1P );F (d∗c(k+1)P ) (13)

For (12), we have

f ;F (βk+1);F (µc(k+1)P ∗) = f ;F (µd(k+1)P ∗) =

= g;F (d(k+1),∗
αn ) = h1;F (µk+1P ∗);F (d(k+1),∗

αn ) =
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= h1;F (d(k+1)∗

k+1P );F (µc(k+1)P ∗)

and for (13), we have

f ;F (βk+1);F (d∗c(k+1)P ) = h1;F (d(k),∗
k+1P ) =

= h1;F (d(k+1),∗
k+1P );F (d∗c(k+1)P ).

By uniqueness of both h1 and h2, h2 is the unique function such that

h2; d(k+1),∗
k+2P = f and h2; µk+2P∗ = g

i.e. F sends (9) to a pullback in Set, as required. 2

15 Yet another full nerve of the ω-categories

Let S denote the category of simple ω-categories introduced in [MZ]. It was proved
there that any simple ω-category is isomorphic to one of form (α~u)∗ for some ud-
vector ~u. In fact what we need here is that any simple ω-category can be obtained
from those of form (αn)∗, with n ∈ ω, via special pushouts.

As every simple ω-category is a positive computype, we have an inclusion functor

k : S −→ Ctypes+/1ω .

In [MZ] we have shown, that sPb(Sop, Set) the category of special pullbacks pre-
serving functors from the dual of S to Set is equivalent to the category ω-categories.
We have in fact an adjoint equivalence

� (̃−)
-

(̂−) = ωCat(',−)
ωCat sPb(Sop, Set)

where
Ĉ : Sop −→ Set

is given by
Ĉ(A) = ωCat(A,C),

where A is a simple category. We shall show

Proposition 15.1 The adjunction

-Rank

�
k∗

SetS
op

Set(Ctypes
+/1
ω )op

restricts to an equivalence of categories.

-Rank

�
k∗

sPb(Sop, Set) sPb((Ctypes+/1ω )op, Set)

where sPb((Ctypes+/1ω )op, Set) is the category of the special pullbacks preserving func-
tors.

Proof. First we shall describe the adjunction in details.
The counit. Let G be a functor in sPb(Sop, Set) , A a simple ω-category. We

have a functor
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(k ↓ A)op Sop-π
A

Set-G

with the limit, say (LimG ◦ πA, σA). Then the counit (εG)A is

(εG)A : (Rank(G) ◦ k)(A) = Lim(G ◦ πA) G(A)-
σA1A

As k is full and faithful4, for any G, εG is an iso. Thus ε is an iso.
The unit. Let F be a functor in sPb((Ctypes+/1ω )op, Set), T a positive face

structure. We have a functor

(k ↓ T ∗)op Sop-πT
∗

Ctypes+/1ω
-k Set-F

with the limit, say (LimF ◦ k ◦ πT ∗ , σT ∗). Then the unit (ηF )T ∗ is the unique
morphism into the limit:

F (T ∗) Rank(F ◦ k)(T ∗)-(ηF )T ∗

‖

- F (A) F (B)-
F (f)

LimF ◦ k ◦ πT ∗

σTa
�

�
�	

σTb
@
@
@R

F (a)

PPPPPPPPPPPPq

XXXXXXXXXXXXX

XXXXz

F (b)

where the triangle in Ctypes+/1ω

A B�
f

T ∗

a
�
�� b@

@I

commutes.
Note that, as F preserves special pullbacks, and any simple category can be

obtained from those of form αn with n ∈ ω, we can restrict the limiting cone
(LimF ◦ k ◦ πT ∗ , σT ∗) to the objects of form αn, with n ∈ ω.

After this observation we shall prove by induction on size of a positive face
structure T , that (ηF )T ∗ is an iso.

If dim(T ) ≤ 1 then (ηF )T ∗ is obviously an iso.
Suppose T is not principal, i.e. we have a ∈ Sd(T ) for some k ∈ ω. By inductive

hypothesis the morphisms

(ηF )(T ↓a)∗ , (ηF )c(k)(T ↓a)∗ , (ηF )(T ↑a)∗

are iso, and the square

c(k)(T ↓a) T ↑a-

T ↓a T-

6 6

is a special pushout (see Proposition 6.2) which is sent by F to a pullback. Hence
the morphism

(ηF )T ∗ = (ηF )(T ↓a)∗ × (ηF )(T ↑a)∗

is indeed an iso in this case.
4This conditions translates to the fact that 1A is the initial object in (k ↓ A)op and therefore

that we have an iso σA
1A

: LimG ◦ πA ∼= G ◦ πA(1A) = G(A).
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If T is principal and T = (αn)∗ then the category (k ↓ (αn)∗)op has the initial
object 1(αn)∗ , so morphism

(ηF )(αn)∗ : F ((αn)∗) −→ Rank(F ◦ k)((αn)∗)

is an iso.
Finally, let assume that T (= P ) is any principal positive face structure of di-

mension n. Thus, by Corollary 14.2, we have a principal pushout

(αn−1)∗ (αn)∗-
d∗αn

(dP )∗ P ∗-
d∗P

6

µdP
6

µP

which, by Theorem 14.3, is preserved by F . By induction hypothesis the morphisms

(ηF )(T ↓a)∗ , (ηF )c(k)(T ↓a)∗ , (ηF )(T ↑a)∗

are iso, so we have that the morphism

(ηF )P ∗ = (ηF )(dP )∗ × (ηF )(αn)∗

is iso, as well. 2

Corollary 15.2 We have a commuting triangle of adjoint equivalences
ωCat

sPb((Ctypes+/1ω )op, Set) sPb(Sop, Set)
?

(̂−)

6

(̃−) (̂−)

HH
HHH

HHH
HHH

HHj

(̃−)

HH
HH

H
HH

H
HH

H
HHY

-k∗
�

Rank

In particular the categories ωCat and sPb((Ctypes+/1ω )op, Set) are equivalent.

Proof. It is enough to show that in the above diagram k∗ ◦ (̂−) = (̂−). But this
is obvious. 2

16 A monadic adjunction

In this section we show that the inclusion functor e : Comp+/1 −→ ωCat has a
right adjoint which is monadic.

First we will give an outline of the proof. Consider the following diagram of
categories and functors

ωCat

sPb((Ctypes+/1ω )op, Set)

Comp+/1

sPb((Fs+/1)op, Set)

?

(̂−)

6

(̃−)

?

(̂−)

6

(̃−)

-
Lanj

�
j∗

-e
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where e is just an inclusion of positive-to-one computads into ω-categories and j =
(−)∗ : Fs+/1 −→ Ctypes+/1ω is an essentially surjective embedding. We have already
shown (Proposition 13.4, Corollary 15.2) that the vertical morphisms constitute two
adjoint equivalences. The proof that e has a right adjoint has two parts. First
we will check that the functor Lanj(F ), the left Kan extension of a composition
pullbacks preserving functor F preserves the composition pullbacks. Then we shall
check that the above square commutes, i.e. (̂−) ◦ e = Lanj ◦ (̂−). Thus reduces the
problem to check whether j∗ the left adjoint to Lanj is monadic.

Lemma 16.1 The functor of the left Kan extension

Lanj : sPb((Fs+/1)op, Set) −→ sPb((Ctypes+/1ω )op, Set)

is well defined, i.e. whenever F : (Fs+/1)op −→ Set preserves special pullbacks so
does Lanj(F ) : (Ctypes+/1ω )op −→ Set. Moreover, the above functor Lanj is the left
adjoint to

j∗ : sPb((Ctypes+/1ω )op, Set) −→ sPb((Fs+/1)op, Set).

Proof. Note that once we will prove the first part of the statement the part
following ’moreover’ will follow immediately.

Fix F in sPb((Fs+/1)op, Set) for the whole proof. First we shall describe the left
Kan extension along j in a more convenient then the usual way, c.f. [CWM]. Fix a
positive face structure S. Lanj(F )(S) is the colimit of the following functor

jop ↓ S (Fs+/1)op-πS
Set-F

i.e. Lanj(F )(S) = (F ◦ πS , σF ). Note however that if we have a map f : a −→ b in
jop ↓ S i.e. there is a commuting triangle

T ∗1 T ∗2-
f∗

S∗

a �
�	 b@

@R

by Lemma 10.3 we can take the inner-outer factorizations of both a = a′; (a′′)∗ and
b = b′; (b′′)∗, with a′ and b′ inner. Hence, again by Lemma 10.3, there is a morphism
f ′ : a′ −→ b′ which must be an iso. In this way we get a commuting diagram

T ∗1 T ∗2-
f∗

T ∗3 T ∗4

?
(a′′)∗

?
(b′′)∗

S∗

a

�
�

�
�
�

��	

b

@
@
@
@
@
@@R

��
��

���1a′

PP
PP

PPPi b′

-

(f ′)∗

which correspond to the following part of the colimiting cocone

F (T1) F (T2)-
F (f)

G(T3) F (T4)

?
F (a′′)

?
F (b′′)

σFa

�
�

�
�
�

��	

σFb

@
@
@
@
@
@@R

Lanj(F )(S)∗

��
��

���1σFa′

PP
PP

PPPi σFb′

-

F (f ′)
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Thus if there is a morphism between two objects in jop ↓ S f : a → b, we have a
commuting diagram

a b-
f

a′

a′′ ��	
f ′; b′′@
@R

with a′ being the inner part of both a and b. Otherwise there are no comparison
maps. But this say, that in fact

Lanj(F )(S∗) =
∐
a:S∗→T ∗ inner F (T ) F (T )� κS

∗
a

where the coproduct is taken over all (up to iso) inner maps with the domain S∗,
with the coprojections as shown.

If h : S∗1 −→ S∗2 is an ω-functor and a2 : S∗2 → T ∗2 is inner, by Lemma 10.3, we
can form a diagram

T ∗1 T ∗2-
(h′)∗

S∗1 S∗2-h

?

a1

?

a2

with a1 inner and (h′)∗ outer. Lanj(h) is so defined that, for any h′, a1, a2 as above,
the diagram

Lanj(F )(S∗1) =
∐
a1:S∗1→T

∗
1 inner F (T1) F (T1)-

κ
S∗1
a1

Lanj(F )(S∗2) =
∐
a2:S∗2→T

∗
2 inner F (T2) F (T2)-κ

S∗2
a2

?

Lanj(F )(h)

?

F (h′)

commutes. This ends the description of the functor Lanj.
We shall use this description to show that Lanj(F ) preserves the special

pushouts.
So assume that S1 and S2 are positive face structures such that c(k)(S1) =

d(k)(S2), i.e. we have a pushout

c(k)(S1) S2
-

d(k)
S2

S1 S1;kS2
-κ1

6
c(k)
S1

6
κ2

in Fs+/1. We need to show that the square

Lanj(F )(c(k)(S1)) Lanj(F )(S2)�

Lanj(F )(d(k)
S2

)

Lanj(F )(S1) Lanj(F )(S1;kS2)�
Lanj(F )(κ1)

?

Lanj(F )(c(k)
S1

)

?

Lanj(F )(κ2)

is a pullback in Set, i.e. that the square
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∐
a:(c(k)(S1))∗→T ∗ inner F (T )

∐
a:S∗2→T ∗ inner F (T )�

Lanj(F )(d(k)
S2

)

∐
a:S∗1→T ∗ inner F (T )

∐
a:(S1;kS2)∗→T ∗ inner F (T )�

Lanj(F )(κ1)

?

Lanj(F )(c(k)
S1

)

?

Lanj(F )(κ2)

is a pullback in Set. So suppose we have

x1 ∈ F (T1)
∐
a:S∗1→T ∗ inner F (T )-

κs
∗
a1

x2 ∈ F (T1)
∐
a:S∗1→T ∗ inner F (T )-

κs
∗
a2

such that
Lanj(F )(c(k)

S1
)(x1) = Lanj(F )(d(k)

S2
)(x2)

i.e. we have a commutative diagram in Fs+/1

T ∗1 T ∗�
f∗1

S∗1 (c(k)(S1))∗ = (d(k)(S2))∗�
(c(k)
S1

)∗

?

a1

?
T ∗2�

f∗2

T ∗2
-

(d(k)
S2

)∗

a0

?

a2

such that
F (f1)(x1) = F (f2)(x2).

By Proposition 10.2,

c(k)a1 = a0 = d(k)a2, f∗1 = (c(k)
T1

)∗, f∗2 = (d(k)
T2

)∗

and the square

T T2
-

f2

T1 T1;kT2
-κ′1

6
f1

6
κ′2

is a special pushout. We have a commuting diagram

T ∗ T ∗2-

c(k)(S1)∗ S∗2
-

?

a0

?

T ∗1 (T1;kT2)∗

S∗1 (S1;kS2)∗-

?

a1 + a2

�
�
�
�3

�
�
�
�3

�
�
��3

�
�
��3

-
?

a1

a2
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where the bottom square is the above square, the top square is obvious. All the
horizontal morphisms are outer. Since a1 and a2 are inner, a1(S1) = T1 and a2(S2) =
T2 we have

(a1 + a2)(S1;k S2) = a1(S1);k a2(S2) = T1;k T2.

i.e. a1+a2 : (S1;kS2)∗ −→ (T1;kT2) is inner, as well. So in fact all vertical morphisms
in the above diagram are inner.

Suppose we have another inner map u and outer maps κ′′1, κ′′2 so that the squares

T ∗1 U∗-
κ′′1
∗

S∗1 (S1;kS2)∗-κ∗1

?

a1

?

u

T ∗2�
κ′′2
∗

S∗2
� κ∗2

?

a2

commute. A diagram chasing shows that

a0; f∗1 ;κ′′1
∗ = a0; f∗2 ;κ′′2

∗

As inner-outer factorization is essentially unique, it follows that

f∗1 ;κ′′1
∗ = f∗2 ;κ′′2

∗

By the universal property of the pushout (T1;kT2)∗ we have an ω-functor v :
(T1;kT2)∗ −→ U∗ such that

κ′′1 = κ′1;u, κ′′2 = κ′2;u

Then again by a diagram chasing we get

κi;u = κi; (a1 + a2); v

for i = 1, 2. Hence by universal property of the pushout (S1;kS2)∗ we have that
u = (a1+a2); v. But both u and (a1+a2) are inner so by uniqueness of factorization,
see Lemma 10.3, v must be an iso, as well. This means that if there is an x ∈∐
a:(S1;kS2)∗→T ∗ inner F (T ) such that

Lanj(F )(κ1)(x) = x1, Lanj(F )(κ2)(x) = x2

it is necessary that x belongs to the summand of the coproduct with the index
(a1 + a2), i.e.

x ∈ F (T1;k T2)
∐
a:(S1;kS2)∗→T ∗ inner F (T )-

κ
(S1;kS2)∗

(a1+a2)

But F sends special pushouts in Fs+/1 to pullbacks in Set so the square

F (T ) F (T2)�
F (f2)

F (T1) F (T1;kT2)�F (κ′1)

?

F (f1)
?

F (κ′2)

is a pullback in Set. Thus indeed there is a unique x ∈ F (T1;kT2)‘F (T ) such that
F (κ′i)(x) = xi for i = 1, 2. This shows that Lanj(F ) preserves special pushouts. 2

In the proof above we have described the left Kan extension Lanj in a special
way in terms coproducts. As it is a very important property the corollary below we
restate this description explicitly, for the record.
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Corollary 16.2 The functor

Lanj : sPb((Fs+/1)op, Set) −→ sPb((Ctypes+/1ω )op, Set)

is defined for F ∈ sPb((Fs+/1)op, Set) as follows. For a positive face structure S we
have

Lanj(F )(S∗) =
∐
a:S∗→T ∗ inner F (T ) F (T )� κS

∗
a

where coproduct is taken over all up to iso inner maps in Ctypes+/1ω with the domain
S∗, with the coprojections as shown.

If h : S∗1 −→ S∗2 is an ω-functor and a2 : S∗2 → T ∗2 is inner, by Lemma 10.3, we
can form a diagram

T ∗1 T ∗2-
(h′)∗

S∗1 S∗2-h

?

a1

?

a2

with a1 inner and h′ a face structures map, i.e. the map (h′)∗ is outer. Lanj(h) is
so defined that, for any h, h′, a1, a2 as above, the diagram

Lanj(F )(S∗1) =
∐
a1:S∗1→T

∗
1 inner F (T1) F (T1)-

κ
S∗1
a1

Lanj(F )(S∗2) =
∐
a2:S∗2→T

∗
2 inner F (T2) F (T2)-κ

S∗2
a2

?

Lanj(F )(h)

?

F (h′)

commutes. 2

Lemma 16.3 The following square

ωCat

sPb((Ctypes+/1ω )op, Set)

Comp+/1

sPb((Fs+/1)op, Set)

?

(̂−)

?

(̂−)

-
Lanj

-e

commutes, up to an isomorphism.

Proof. We shall define two natural transformations ϕ and ψ which are mutually
inverse, i.e. for a positive-to-one computad Q we define

Lanj (Comp+/1((−)∗, Q)) ωCat((−)∗, Q)
-

ϕQ

�
ψQ

Let a : S∗ −→ T ∗ be an inner map and f : T ∗ → A be a computad map, i.e. g
is in the following coproduct

g ∈ Comp+/1(T ∗, Q)
∐
S∗→R∗ inner Comp+/1(R∗, Q)-κS

∗
a

Then we put
ϕQ(g) = a; g.

On the other hand, for an ω-functor f : S∗ → Q ∈ ωCat(S∗, Q), by Proposition
12.2.4, we have a factorization
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S∗ Q-
f

T ∗f(S)

f in@
@R

τf(S)
�
��

Then we put

ψQ(f) = τf(S) ∈ Comp+/1(T ∗f(S), Q)
∐
S∗→R∗ inner Comp+/1(R∗, Q)-

κS
∗

f in

The fact that these transformations are mutually inverse follows from the fact that
the above factorization is essentially unique.

The verifications that these transformations and natural is left for the reader.
2

Proposition 16.4 The functor

Lanj : sPb((Fs+/1)op, Set) −→ sPb((Ctypes+/1ω )op, Set)

preserves connected limits.

Proof. This is an easy consequence of Lemma 16.2, where Lanj is described in
terms of pushouts. For preservation of connected limits it is sufficient to show that
wide pullbacks and equalizers are preserved. We shall sketch the preservation of the
binary pullbacks leaving the details and other cases to the reader.

So let

F H-

F ×H G G-

? ?

be a pullback in sPb((Fs+/1)op, Set). Then we have, for any positive face structure
S, we have

Lanj(F ×H G)(S∗) =
∐

a:S∗→T ∗ inner

(F ×H G)(T ) ∼=

∼=
∐

a:S∗→T ∗ inner

F (T )×H(T ) G(T ) ∼=

∼=
∐

a:S∗→T ∗ inner

F (T )×∐
a:S∗→T∗ inner

H(T )

∐
a:S∗→T ∗ inner

G(T ) ∼=

∼= Lanj(F )(S∗)×Lanj(H)(S∗) Lanj(G)(S∗)

as required. 2

From Propositions 13.4, 16.4, Lemma 16.3 and Corollary 15.2 we get immediately

Theorem 16.5 The embedding functor

e : Comp+/1 −→ ωCat

preserves connected limits. 2

We have
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Theorem 16.6 The functor

j∗ : sPb((Ctypes+/1ω )op, Set) −→ sPb((Fs+/1)op, Set)

is monadic.

Proof. We are going to verify Beck’s conditions for monadicity. As j is es-
sentially surjective j∗ is conservative. By Lemma 16.1, the adjunction Lanj a j∗
restricts to the above categories. So j∗ has a left adjoint. It remains to show that
sPb((Ctypes+/1ω )op, Set) has coequalizers of j∗-contractible coequalizer pairs and that
j∗ preserves them.

To this aim, let assume that we have a parallel pair of morphisms in
sPb((Ctypes+/1ω )op, Set)

A B
-

G

-F

such that

A((−)∗) B((−)∗)
-

G(−)∗

-
F(−)∗

� t Q-
q

�
s

is a split coequalizer in sPb((Fs+/1)op, Set), i.e. the following equations

s; q = 1Q, G(−)∗ ; q = F(−)∗ ; q, t;F(−)∗ = 1B((−)∗), t;G(−)∗ = q; s

hold.
We are going to construct a special pullbacks preserving functor C :

(Ctypes+/1ω )op −→ Set and a natural transformation H : B −→ C so that the
diagram in sPb((Ctypes+/1ω )op, Set)

A B
-

G

-F

C-
H

is a coequalizer, and H(−)∗ = q.
The functor C on a morphism f : T ∗1 −→ T ∗2 is defined as in the diagram

B(T ∗1 ) B(T ∗2 )-
B(f)

Q(T1) Q(T2)

?

sT1

6qT2

C(T ∗1 ) C(T ∗2 )-C(f)

‖ ‖

i.e. C(Ti) = Q(Ti), for i = 1, 2 and C(f) = sT1 ;B(f); qT2 .
The natural transformation H is given by

HT ∗ = qT

for T ∈ Fs+/1.
It remains to verify that

1. C is a functor;
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2. H is a natural transformation;

3. C((−)∗) = Q;

4. H(−)∗ = q;

5. C preserves the special pullbacks;

6. H is a coequalizer.

Ad 1. Let

T ∗1 T ∗2� f
T ∗3� g

be a pair of morphisms in Ctypes+/1ω . We calculate

C(f);C(g) = sT1 ;B(f); qT2 ; sT2 ;B(g); qT3 =

= sT1 ;B(f); tT2 ;GT ∗2 ;B(g); qT3 =

= sT1 ;B(f); tT2 ;A(g);GT ∗3 ; qT3 =

= sT1 ;B(f); tT2 ;A(g);FT ∗3 ; qT3 =

= sT1 ;B(f); tT2 ;FT ∗2 ;B(g); qT3 =

= sT1 ;B(f); tT2 ;FT ∗2 ;B(g); qT3 =

= sT1 ;B(f);B(g); qT3 =

= sT1 ;B(f ; g); qT3 = C(f ; g)

i.e. C preserves compositions. If T is a positive face structure, we also have

C(1T ∗) = sT ;B(1T ∗); qT = sT ; qT = 1Q(T ) = 1C(T ∗).

i.e. C preserves identities, as well.
Ad 2. Let f : T ∗2 −→ T ∗1 be a morphism in Ctypes+/1ω . We have

B(f);HT ∗2
= B(f); qT2 =

= tT1 ;F (T ∗1 );B(f); qT2 =

= tT1 ;A(f);F (T ∗2 ); qT2 =

= tT1 ;A(f);G(T ∗2 ); qT2 =

= tT1 ;G(T ∗1 );B(f); qT2 =

= qT1 ; sT1 ;B(f); qT2 =

= qT1 ;C(f) = HT ∗1
;C(f)

i.e. H is a natural transformation.
Ad 3. Let f : T2 −→ T1 be a morphism in Fs+/1. Thus q is natural with respect

to f . So we have

C(f∗) = sT1 ;B(f∗); qT2 = sT1 ; qT1 ;Q(f) = 1T1 ;Q(f) = Q(f)

i.e. C(−)∗ = Q. Note that we still don’t know that C is in spPb((Ctypes+/1ω )op, Set).
Ad 4. H(−)∗ = q holds by definition.
Ad 5. Since special pullbacks involve only the outer morphisms (i.e. those that

comes from Fs+/1), and Q preserves special pullbacks so does C.
Ad 6. Finally, we shall show that H is a coequalizer. Let p : B −→ Z be

a natural transformation in sPb((Ctypes+/1ω )op, Set) such that pF = pG. We put
k = s; p : C −→ Z , so that we have a diagram
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A B
-

G

-F

C-
H

Z
?

k = s; pp

Q
Q
Q
Q
Q
Qs

We need to verify that k is a natural transformation in sPb((Ctypes+/1ω )op, Set), such
that p = H; k. Then, the uniqueness of k will follows from the fact that q is a split
epi. Let f : T ∗2 −→ T ∗1 be a morphism in Ctypes+/1ω . Then

C(f); kT ∗2 = sT1 ;B(f); qT2 ; kT ∗2 =

= sT1 ;B(f); qT2 ; sT2 ; pT ∗2 =

= sT1 ;B(f); tT2 ;GT ∗2 ; pT ∗2 =

= sT1 ;B(f); tT2 ;FT ∗2 ; pT ∗2 =

= sT1 ;B(f); pT ∗2 =

= sT1 ; pT ∗1 ;D(f) = kT ∗1 ;D(f)

i.e. k a natural transformation and hence H is indeed a coequalizer of F and G in
sPb((Ctypes+/1ω )op, Set), as required. 2

Combining the above theorem with Corollaries 13.5 and 15.2 we get

Theorem 16.7 The nerve functor

(̂−) : ωCat −→ sPb((Fs+/1)op, Set)

sending the ω-category C to the presheaf

ωCat((−)∗, C) : (Fs+/1)op −→ Set

is monadic.

17 Appendix

A definition of the positive-to-one computads and the comma categories
The notion of a computad was introduced by Ross Street. We repeat this def-

inition for a subcategory Comp+/1 of the category of all computads that have
indeterminates of a special shape, namely their codomains are again indeterminates
and their domains are not identities. We use this opportunity to introduce the no-
tation used in the paper. In order to define Comp+/1 we define three sequences of
categories Comp+/1

n , Comma+/1
n , and Comman.

1. For n = 0, the categories Comp+/1
n , Comma+/1

n and Comman are just Set,
and the functor (−)

n
: Comma+/1

n −→ Comp+/1
n is the identity.

2. For n = 1, the categories Comma+/1
n and Comman are the category of

graphs (i.e. 1-graphs) and Comp+/1
n is the category of free ω-categories

over graphs with morphisms being the functors sending indets (=indetermi-
nates=generators) to indets.
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3. Let n ≥ 1. We define the following functor

π+/1
n : Comp+/1

n −→ Set

such that

π+/1
n (P ) = {(a, b) : a ∈ (Pn − ι(Pn−1)), b ∈ |P |n, d(a) = d(b), c(a) = c(b)}

i.e. π+/1
n (P ) consists of those parallel pairs (a, b) of n-cells of P such that a is

not an identity and b is an indet. On morphisms π+/1
n is defined in the obvious

way. We define Comma+/1
n+1 to be equal to the comma category Set ↓ π+/1

n .
So we have a diagram

Comp+/1
n Set-

π
+/1
n

Comma+/1
n+1

(−)≤n

�
�

�
�
��	

| − |n+1

@
@
@
@
@@Rµ ⇓

4. For n ≥ 1, we can define also a functor

πn : nCat −→ Set

such that

πn(C) = {(a, b) : a, b ∈ Cn, d(a) = d(b), c(a) = c(b)}

i.e. πn(C) consists of all parallel pairs (a, b) of n-cells of the n-category C. We
define Comman+1 to be equal to the comma category Set ↓ πn. We often
denote objects of Comman+1 as quadruples C = (|C|n+1, C≤n, d, c), where
C≤n is an n-category, |C|n+1 is a set and (d, c) : |C|n+1 −→ πn(C≤n) is a func-
tion. Clearly, the category Comma+/1

n+1 is a full subcategory of Comman+1,
moreover we have a forgetful functor

Un+1 : (n+ 1)Cat −→ Comman+1

such that for an (n+ 1)-category A

Un+1(A) = (An+1, A≤n, d, c)

i.e. Un+1 forgets the structure of compositions and identities at the top level.
This functor has a left adjoint

Fn+1 : Comman+1 −→ (n+ 1)Cat

The category Fn+1(|B|n+1, B, d, c) is said to be a free extension of
(|B|n+1, B, d, c) the n-category B by the indets |B|n+1. The category of
positive-to-one (n + 1)-computads Comp+/1

n+1 is a subcategory of (n + 1)Cat

whose objects are free extensions of objects from Comma+/1
n+1. The morphisms

in Comp+/1
n+1 are (n+1)-functors that sends indets to indets. Thus the functor

Fn+1 restricts to an equivalence of categories

F+/1
n+1 : Comma+/1

n+1 −→ Comp+/1
n+1,

its essential inverse will be denoted by

‖ − ‖n+1 : Comp+/1
n+1 −→ Comma+/1

n+1.

Thus for an (n+ 1)-computad P we have ‖P‖n+1 = (|P |n+1, P≤n, d, c).
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5. The category Comp+/1 is the category of such ω-categories P , that for every
n ∈ ω, P≤n is a positive-to-one n-computad, and whose morphisms are ω-
functors sending indets to indets.

For n ∈ ω, we have functors

| − |n : Comp+/1 −→ Set

associating to computads their n-indets, i.e.

f : A −→ B 7→ |f |n : |A|n −→ |B|n,

they all preserve colimits. Moreover we have a functor

| − | : Comp+/1 −→ Set

associating to computads all their indets, i.e.

f : A −→ B 7→ |f | : |A| −→ |B|,

where
|A| =

∐
n∈ω
|A|n.

It also preserves colimits and moreover it is faithful.

6. We have a truncation functor

(−)≤n : ωCat −→ nCat

such that
f : A −→ B 7→ f≤k : A≤k −→ B≤k

with k ∈ ω, it preserves limits and colimits.
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