
Multitopes are the same as

principal ordered face structures

Marek Zawadowski
Instytut Matematyki, Uniwersytet Warszawski

ul. S.Banacha 2, 00-913 Warszawa, Poland
zawado@mimuw.edu.pl

July 7, 2008

Dedicated to Professor F.W.Lawvere
on the occasion of his 70th birthday.

Abstract

We show that the category of principal ordered face structures pFs is equiv-
alent to the category of multitopes Mlt. On the way we introduce the notion
of a graded tensor theory to state the abstract properties of the category of
ordered face structures oFs and show how oFs fits into the recent work of T.
Leinster and M. Weber concerning the nerve construction.
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1 Introduction

In [Z1] the notion of a positive face structure is introduced and it is shown how it
helps to understand the positive-to-one computads. In [Z2] part of the program of
[Z1] was developed in the many-to-one context, i.e. the notion of an ordered face
structure was introduced and related to the many-to-one computads. The first part
of this paper is a sequel of [Z2] developing farther part of [Z1] in the many-to-one
context. We show how the category of ordered face structures and monotone maps
oFs can be used to show that the category of many-to-one computads Compm/1 is
equivalent to the presheaves category SetpFsop , where pFs is the full subcategory of
oFs whose objects are principal ordered face structures. In fact we show that both
categories Compm/1 and SetpFsop are equivalent to the category Mod⊗(oFsop, Set)
of Set-models of the graded tensor theory oFs. In [HMP] it was shown that the
category MltSet of multitopic set is a presheaf category on the category of multi-
topes Mlt. In [HMZ] it was shown that the categories MltSet and Compm/1 are
equivalent. Thus as a corollary we get the statement from the title of this paper.

My main motivation to define the ordered face structures was to have an ex-
plicit combinatorial definition of multitopic sets1 (or what comes to the same the
many-to-one computads, c.f. [HMZ]) that allow fairly easy direct manipulation on
cells. For this I wanted to describe not only the shapes of many-to-one indets (=in-
determinates) but of all the cells build from them. To see some pictures and more
explanations on this consult introduction to [Z2]. As there are several other struc-
tures that are serving a similar purpose, that I will discuss later, the anonymous
referee asked to explain what is the role of the category oFs and why it is of an

1Recall that multitopic category, a weak ω-category in the sense of M.Makkai, is a multitopic
set with a property, c.f. [M].
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interest at all as its definition is not a simple one. It is not always easy to give
a convincing answer to such questions. After my talk describing the ordered face
structures in Patras (PSSL, April 2008) J. Kock suggested that the recent paper of
M. Weber, c.f. [W], could provide a framework for a conceptual explanation what
oFs is. The explanations I will present in the second part of the paper are very
much inspired by the work of T. Leinster [Lei1] and M. Weber [W] but it also goes
beyond that. The short answer is that the category oFs is the category of shapes
of all cells, not only indeterminates (=indets), in many-to-one computads. The
abstract properties of oFs are subsumed by the notion of a graded tensor theory.
I can also make a broader but ’non-full’ analogy concerning oFs. It is related to
the ω-category monad on many-to-one computads in a similar way as the category
of simple ω-graphs sωG (or globular cardinals) is related to the ω-category monad
on one-to-one computads Comp1/1, i.e. the free ω-categories over ω-graphs with
morphisms sending indets to indets. However the embedding oFs → Compm/1 is
not full and what is even worse it is not full on isomorphisms. The full image of
oFs under this embedding is the category of ordered face structures and local maps
oFsloc which plays the role of the category of many-to-one cardinals in the Leinster-
Weber approach. Thus we have here two different categories oFs and oFsloc where
T. Leinster and M. Weber have only one. What I mean by the category of shapes
is a bit technical and the precise definition will be given in Section 8.

T. Leinster in [Lei2] explained that he started to love the nerve construction
when he discovered that both category ∆ and the nerve construction (for categories)
arise canonically from the free category monad on graphs. This convinced him
that the construction is natural. Before, he could only acknowledge that the nerve
construction is just useful. I would consider even two earlier stages in the process
of proving ’rights to exists’ of a concept. One, when there is a construction of the
object in question which is not totally unrelated to the purpose it serves. Then,
if all else failed, there might be a purity of style behind the notion. The reason I
explain all this is that I don’t have a canonical simple construction that would make
T. Leinster believe that the category oFs can be naturally derived from ω-category
monad on the category of many-to-one computads Compm/1 or possibly some other
fundamental construction related Compm/1. But I will argue about the three weaker
claims.

1. Purity: simple combinatorial data. As I mentioned earlier, my main moti-
vation to define the ordered face structures was to have an explicit combinatorial
definition of multitopic sets that allow fairly easy direct manipulation on cells. I
wanted to describe these shapes with the least possible structure. So in an ordered
face structure we have functions γ, associating a face γ(a) which is the codomain
the face a, relations δ, associating a set of faces δ(a) that ’constitue’ the domain to
the face a, and strict order relations <∼ that will indicate in case of doubts in what
order one should compose the faces. The structure is kept so simple at the expense
of the axioms that are quite involved and do not look at first sight as something
that have much to do with what it was designed for. To explain how ordered face
structures describe many-to-one computads is a long story, see [Z2].

2. Abstract construction: the category of shapes. However there is an abstract
definition of the category of shapes that in most considered cases gives the category
which is equivalent to the category of T -cardinals considered by T. Leinster and
M. Weber but in the case of many-to-one computads it is equivalent to oFs rather
than the category of cardinals which is in this case oFsloc. This definition of the
category of shapes is given in the section 8. It is at least related with the many-to-
one computads from the very beginning but it is rather hard to believe that it might
be of any practical use.
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3. Usefulness: oFs generates all the setup of Leinster and Weber. In Sections 9
and 10 I will argue that oFs is useful as this category alone generates all the setup it
is involved with. That includes the category of many-to-one computads Compm/1,
the ω-category monad on the category Compm/1, the proof that that this monad is
a parametric right adjoint, and that ω-categories can be considered as some presheaf
satisfying an additional condition.

The notion of a graded tensor theory, GT-theory for short, is designed to describe
the abstract features of the category oFs. Any model M : Cop → A of an GT-
theory C in a category A gives rise to a functor M̄ : A → ωCat from the category
A to the category of strict ω-categories. This notion was inspired by and should
be compared with the notion of a monoidal globular category, MG-category for
short, of M. Batanin, c.f. [B]. Both notions deal with the k-domain and the k-
codomain operations. Both notions have the k-tensor product operations that can be
performed only if the k-codomain of the first object agrees with the k-domain of the
second one. In GT-theories the cylinder operation is not given explicitly. However
there are essential differences. An GT-theory C is a single (rigid) category together
with a dimension functor dim : C → N into the linear order of natural numbers
N. The k-tensor operations are required to be functorial, as in MG-category, but
the k-domain and the k-codomain operations are not functorial in general. Instead
all these operations are given together with specified morphisms d(k)

S : d(k)
S → S,

c(k)
S : c(k)

S → S in C, κ1
S : S → S ⊗k S′, κ2

S′ : S → S ⊗k S′ that explain the
relation of the domains and the codomains of objects to objects themselves and of the
components of the tensor products to the tensor products. There are isomorphisms
relating these operations as in MG-category but, as an GT-theory is a rigid category,
the coherence conditions are satisfied automatically. Last but not least the category
oFs is a GT-theory but the domain and the codomain operations are not functorial
and the truncations of oFs do not form an MG-category, contrary to a public claim
I have made. It is true that the isomorphism classes of objects in an GT-theory can
be easily organized into a discrete MG-category. But this process when applied to
oFs would destroy an essential information about the monotone morphisms. The
notion of a model of GT-theory (a functor sending tensor square to pullbacks) is
very important in this context but doesn’t seem to have an analog in the context of
MG-categories.

In Section 9 the setup developed by T. Leinster and M. Weber is recalled but not
in the full generality of [W] and in a form that changes the emphasis. So I will not
recall the setup here but only point out to the change in the emphasis. I will discuss
only the parametric right adjoint monads on presheaf categories, called pra monads
for short. The monadic functor inducing pra monad is called pra monadic. Among
pra functors there are particularly simple ones that arise from factorizations system
on small categories. If (E ,M) is a factorization system on a category C, and CM is
the category with the objects from C and morphisms from M then the restriction
functor i∗ : SetC

op −→ SetCM
op

along the inclusion i : CM → C is pra monadic. Such
functors I will call presheaf pra monadic. In this context the main conclusion of the
work of T. Leinster and M. Weber, present in [W] in a sightly hidden form, is that any
pra monadic functors, arise as pseudo-pullback of a presheaf pra monadic one along a
full and faithful functor. Thus it can be thought of as a representation/completeness
result for pra monads. In Section 10 an extension of the above setup is proposed
and it is shown how the category oFs generates all its ingredients.

In the presheaf approaches to weak categories (as opposed to the algebraic ones)
the weak categories are presheaves with some properties. If we believe that strict
ω-categories should be special cases of weak ones we need to find the way how to
interpret strict ω-categories as appropriate presheaves. The nerves of ω-categories
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are constructions that do exactly this and (should) provide abundance of examples
of weak categories. In particular the many-to-one nerve functor sends strict ω-
categories to multitopic categories.

The need to have a good description of higher many-to-one shapes was already
clear at the conference n-categories: Foundations and Applications at IMA in Min-
neapolis, in June 2004. Now there is (at least) seven essentially different definitions
that are attempting to describe shapes of indets of many-to-one computads or some
supposedly equivalent entities. These definitions differ a lot in spirit and it is by far
not clear that they are all equivalent. It seem that it is too early to call which one is
better then the others and I think that all of them contribute to better understand-
ing the concept they try to capture. So I will content myself by just listing them
divided into four groups.

1. There are three kinds of opetopes [BD], [L], [KJBM] that describe the set of
shapes of many-to-one indets without an attempt to make it into a category. The
second and third kind of opetopes are proved in [KJBM] to be equivalent.

2. There are four categories describing the shapes of many-to-one indets: the
category of multitopes, c.f. [HMP], the category of dendrotopes, c.f. [P], the cate-
gory of opetopes [C] and the category of ordered face structures, c.f. [Z2]. The main
purpose of this paper is to show that the categories first and last are equivalent.

3. The set of shapes of the, so called, pasting diagrams2 is described in [HMP]
as pasting diagrams and in [Z2] as normal ordered face structures.

4. The category of all the shapes of many-to-one cells is the category oFs
described in [Z2].

The paper is organized as follows. In Section 2 we recall the definition of an
ordered face structures and two kinds of maps between them: monotone and local.
In section 3 we introduce the notion of a GT-theory that describes the abstract
properties of oFs. Sections 4 to 7 establish the main goal of the paper. Through a
sequence of three adjunctions we establish that the category of multitopes and the
category of principal face structures are equivalent. The remaining three sections
are exhibiting the properties of oFs. In Section 8 we define the category of shapes.
In Section 9 we recall the relevant part of the work of T. Leinster and M. Weber
in a way that is suitable for our context. Finally, in Section 10 we describe how
the category oFs can generate all the ingredients involved in the definition of the
many-to-one nerve construction for strict ω categories.

As this paper is a sequel to [Z2] we adopt here the notions and notation intro-
duced there. This includes that we shall denote the compositions of morphisms both
ways, i.e. the composition of two morphisms X

f−→ Y
g−→ Z may be denoted as

either g ◦ f or f ; g. But in any case we will write which way the composition is
meant.

I would like to thank the anonymous referee for comments that encouraged me
to simplify the exposition and to give a comprehensive explanation of the role the
category of ordered face structures oFs. I also want to thank J. Kock for bringing
[W] to my attention.

The diagrams for this paper were prepared with a help of catmac of Michael
Barr.

2 Ordered face structures in a nutshell

This section is a quick introduction to ordered face structures. For more see [Z2].
A hypergraph S is

2n-pasting diagram are nothing but the shapes of domains of n+ 1 indets.
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1. a family {Sk}k∈ω of finite sets of faces; only finitely many among these sets
are non-empty;

2. a family of functions {γ : Sk+1t· 1¯Sk → Sk}k∈ω; where 1
¯Sk

= {1u : u ∈ Sk} is the
set of empty faces of dimension k; the face 1u is the empty (k+ 1)-dimensional
face on a non-empty face u of dimension k.

3. a family of total relations {δ : Sk+1 t· 1
¯Sk
→ Sk t· 1

¯Sk−1
}k∈ω; for a ∈ Sk+1 we

denote δ(a) = {x ∈ Sk t· 1
¯Sk−1

: (a, x) ∈ δSk }; δ(a) is either singleton or it is
non-empty subset of Sk3. Moreover δ : S1 t· 1¯S0

→ S0 is a function (S−1 = ∅).
We put δ̇(a) = δ(a) ∩ S.

A morphism of hypergraphs f : S −→ T is a family of functions fk : Sk −→ Tk
that preserves γ and δ i.e., for k ∈ ω, γ◦fk+1 = fk◦γ and for a ∈ Sk+1 the restriction
of fk to δ(a): fa : δ(a) −→ δ(f(a)) is a bijection (if δ(a) = 1u we mean by that
δ(f(a)) = 1f(u)).

Notation and conventions. If a ∈ Sk we treat γ(a) sometimes as an element of
Sk−1 and sometimes as a subset {γ(a)} of Sk−1. Similarly δ(a) is treated sometimes
as a set of faces or as a single face if this set of faces is a singleton. In particular, we
say that a face a is a loop if γ(a) = δ(a) and by this we mean rather {γ(a)} = δ(a).
If X is a set of faces in S then by X−λ we denote the set of faces in X that are not
loops; δ̇−λ(a) = δ̇(a)∩S−λ. The set of internal faces of a is ι(a) = γδ̇−λ(a)∩δδ̇−λ(a).
The set θ(a) = δ(a) ∪ γ(a) (θ̇(a) = δ̇(a) ∪ γ(a)) is the sets of (non-empty) faces of
codimension 1 in a.

On each set Sk we introduce two binary relations <− and <+. On S0 the relation
<− is empty. If k > 0, <− is the transitive closure of the relation �− on Sk, such
that a �− b iff γ(a) ∈ δ(b). We write a ⊥Sk,− b if either a <Sk,− b or b <Sk,− a.
<+ is the transitive closure of the relation �+ on Sk, such that a�+ b iff a 6= b and
there is α ∈ S−λk+1, such that a ∈ δ(α) and γ(α) = b. We write a ⊥Sk,+ b if either
a <Sk,+ b or b <Sk,+ a.

Let A,B ⊆ Sk ∪ 1
¯Sk−1

. We set that A is 1-equal B, notation A ≡1 B, iff
A ∪ 1θ(A∩S) = B ∪ 1θ(B∩S).

An ordered face structure (S,<Sk,∼)k∈ω (also denoted S) is a hypergraph S to-
gether with a family of {<Sk,∼}k∈ω of binary relations (<Sk,∼ is a relation on Sk),
if S0 6= ∅ and

1. Globularity: for a ∈ S≥2: γγ(a) = γδ(a)− δδ̇−λ(a), δγ(a) ≡1 δδ(a)− γδ̇−λ(a)
and for any x ∈ S: δ(1x) = x = γ(1x).

2. Local discreteness: if x, y ∈ δ(a) then x 6⊥+ y.

3. Strictness: for k ∈ ω, the relations <+ and <∼ are strict orders4 on Sk; <+

on S0 is linear.

4. Disjointness: ⊥∼ ∩ ⊥+= ∅, and for any a, b ∈ Sk: if a <∼ b then a <− b
moreover if θ(a) ∩ θ(b) = ∅ then a <∼ b iff a <− b.

5. Pencil linearity: for any a, b ∈ S≥1, a 6= b,

if θ̇(a) ∩ θ̇(b) 6= ∅ then either a ⊥∼ b or a ⊥+ b

for any a ∈ S≥2such that δ(a) ∈ 1
¯S

, b ∈ S≥2,

if γγ(a) ∈ ι(b) then either a <∼ b or a <+ b
3In other words δ(a) is either equal to {1x} for some x ∈ Sk−1 or it is a non-empty subset of Sk.
4By strict order we mean an irreflexive and transitive relation.
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6. Loop-filling: Sλ ⊆ γ(S−λ) (where Sλ is the set of loops in S and S−λ = S−Sλ).

The monotone morphism of ordered face structures f : S −→ T is a hypergraph
morphism that preserves the order <∼. The category of ordered face structures and
monotone maps, is denoted by oFs.

The size of an ordered face structure S is the sequence natural numbers size(S) =
{|Sn − δ(S−λn+1)|}n∈ω, with almost all being equal 0. We have an order < on such
sequences, so that {xn}n∈ω < {yn}n∈ω iff there is k ∈ ω such that xk < yk and for
all l > k, xl = yl. This order is well founded and many facts about ordered face
structures can be proven by induction on the size. S is principal iff size(S)l ≤ 1,
for l ∈ ω. By pFs we denote full subcategory of oFs whose objects are principal
ordered face structures. In [Z2] it was shown that either an ordered face structure
is principal or there is a cut ǎ of S that is defining a proper decomposition of S
into two ordered face structures S↓ǎ and S↑ǎ of smaller size than S such that their
k-tensor product S↓ǎ⊗k S↑ǎ is isomorphic to S, where k is the dimension of the cut.
By Sd(S) we denote the set of cuts of S defining proper decompositions of S.

The relation <∼ induces a binary relation (δ̇(a), <∼a ) for each a ∈ S>0 (where
<∼a is the restriction of <∼ to the set δ̇(a)). The local morphism of ordered face
structures f : S −→ T is a hypergraph morphism that is a local isomorphism i.e.
for a ∈ S>1 the restricted map fa : (δ̇(a), <∼a ) −→ (δ̇(f(a)), <∼f(a)) is an order

isomorphism, where fa is the restriction of f to δ̇(a). The category of ordered face
structures and local morphisms is denoted by oFsloc.

3 Graded tensor theories

If we denote by oFsn the full subcategory of oFs containing object of dimension at
most n then for ordered face structures S, S′ we have operations of the k-th domain
d(k)S, the k-th codomain c(k)S and k-tensor S⊗k S′ (whenever c(k)S = d(k)S′), see
[Z2]. However the operations d(k)S and c(k)S are not functorial with respect to the
monotone morphisms and oFs is not a monoidal globular category in the sense of
Batanin, see [B], contrary to a public statement I have made. On the other hand
the category of ordered face structures and inner maps, defined in Section 10 is a
monoidal globular category.

To explain the essential abstract structure of the category oFs I introduce the
notion of a graded tensor category. N is the poset of natural numbers.

Graded tensor theory C (GT-theory for short) is a category C equipped with

1. a dimension functor dim : C → N; Ck is the full subcategory of C whose objects
have dimension at most k;

2. the objects of C are rigid (i.e. no non-trivial automorphisms5);

3. for any object S of C, such that k ≤ n = dim(S) there are domain and
codomain morphisms

d(k)S c(k)S

S

d(k)
S
�
�
��

c(k)
S
@

@
@I

5In particular if two objects are isomorphic in C the isomorphism is always unique. This allow
us treating isomorphic objects as equal and morphism with isomorphic domains and codomains as
parallel.
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such that dim(d(k)S) ≤ k = dim(c(k)S) and, for k < l ≤ n,

d(l)
S ◦ c

(k)

d(l)S
= c(l)

S ◦ c
(k)

c(l)S
= c(k)

S

c(l)
S ◦ d

(k)

c(l)S
= d(l)

S ◦ d
(k)

d(l)S
= d(k)

S

in particular the diagram

d(l)S c(l)S

S

d(l)
S

�
�
�
��

c(l)
S

@
@
@
@I

d(k)S c(k)S

6

d(k)

d(l)S

6

c(k)

c(l)S

��
�
��

�
��*

H
HH

HY

HH
H

d(k)

c(l)S
c(k)

d(l)S

commutes. If k ≥ n, we put d(k)S and c(k)S to be identities on S.

4. For k < n, the category Cn ×k Cn is the category whose objects consists of
three objects, two in Cn and one in Ck and two maps as follows

S S′

d(k)S ∼= c(k)S′

c(k)
S

@
@
@I

d(k)
S′

�
�
��

Clearly the objects of Cn ×k Cn can be thought of as pairs (S, S′) of objects of
Cn satisfying an obvious compatibility condition. The morphisms in Cn ×k Cn
are triples of morphisms in C commuting with the morphisms c(k) and d(k).
We have three functors

⊗k, π1, π2 : Cn ×k Cn −→ Cn

where π1 and π2 are the obvious projections and two natural transformations

π1 ⊗k-κ1
π2� κ2

so that the squares

c(k)S S′-

d(k)
S′

S S ⊗k S′-
κ1
S

6

c(k)
S

6

κ2
S′

commute, for any (S, S′) in Cn ×k Cn. Such squares, or squares isomorphic to
them, are called k-tensor squares or simply tensor squares.

5. These data are related by the existence of some isomorphisms between ob-
jects and morphisms. But, as C is rigid, these isomorphisms are necessarily
unique and hence there are no coherence conditions since any diagram of iso-
morphisms in C commutes. Thus we will put no names on those isomorphisms.
R,R′, S, S′, S′′ are assumed to be ordered face structures.
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(a) Domains and codomains of compositions. For k > l, there are isomor-
phism making the triangles

d(k)S ⊗l d(k)S′ d(k)(S ⊗l S′)-∼=

S ⊗l S′

d(k)
S ⊗l d

(k)
S′

�
�
��� d(k)

S⊗lS′
@

@
@@I

c(k)S ⊗l c(k)S′ c(k)(S ⊗l S′)-∼=

S ⊗l S′

c(k)
S ⊗l c

(k)
S′

�
�
��� c(k)

S⊗lS′
@

@
@@I

commute. For k ≤ l, there are isomorphism making the triangles

d(k)S d(k)(S ⊗l S′)-∼=

S ⊗l S′

κ1
S ◦ d

(k)
S
�
�
��� d(k)

S⊗lS′
@

@
@@I

c(k)S′ c(k)(S ⊗l S′)-∼=

S ⊗l S′

κ2
S′ ◦ c

(k)
S
�
�
��� c(k)

S⊗lS′
@

@
@@I

commute.

(b) Units. The following diagrams

d(k)X d(k)X-
1d(k)X

X X-
1X

6
d(k)
X

6
d(k)
X

c(k)X c(k)X-
1c(k)X

X X-
1X

6
c(k)
X

6
c(k)
X

are k-tensor squares.

(c) Associativity. Whenever any of the expressions make sense we have an
isomorphism

S ⊗k (S′ ⊗k S′′) ∼= (S ⊗k S′)⊗k S′′

(d) Middle exchange. For k < l, if we have a diagram

c(l)R c(k)R�c(k)

c(l)S-d(k)

R′
?

d(l)

R

6
c(l)

S′
?
d(l)

S

6
c(l)

then the two objects we can form out of it

(R⊗l R′)⊗k (S ⊗l S′) ∼= (R⊗k S)⊗l (R′ ⊗k S′)

are isomorphic.

A model of a GT-theory C in a category A, or A-model of C for short, is a functor
from Cop to A which sends tensor squares to pullbacks and the distinguished isomor-
phisms to the canonical isomorphisms. By Mod⊗(Cop,A) w denote the category of
A-models of C and natural transformations. A model GC : Cop → A is generic iff for
any other model M : Cop → B there is a unique (up to an iso) functor M : A → B
making the triangle

C A-
GC

M
@
@
@
@R
B
?

M
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commute up to an isomorphism, and for any natural transformation σ : M → M ′

between models there is a unique natural transformation σ : M → M ′ such that
σGC = σ. If identity functor on GT-theory C is a model then it is the generic model
of C and C is a called a realized GT-theory.

Examples.

1. The category ∆0 of finite linear graphs is clearly a GT-theory. It contains one
object [0] of dimension 0 and all the other objects are of dimension 1. The
domain and codomain maps d(0)

[n] , c
(0)
[n] : [0]→ [n] send the only vertex of [0] to

the first and last vertex in the in [n], respectively. The 0-tensor of any two
objects is defined and we have [n]⊗0 [m] = [n+m] with the obvious inclusions.
In this case the tensor squares are actual pushouts in ∆0, i.e. ∆0 is a realized
GT-theory. Note that this tensor operation does not make ∆0 a monoidal
category as + is not ’sufficiently functorial’.

2. The category sωGr of simple ω-graphs (or globular cardinals) is also a realized
GT-theory. If we look at the objects of sωGr as one-to-one pasting diagrams
then the domain and the codomain operations are the pasting diagrams of the
k-th domain and the k-th codomain of this diagram.

3. The whole GT-theory structure of the category Fs+/1 of positive face struc-
tures is described in [Z1] and even in this case the tensor squares are pushouts,
i.e. Fs+/1 is a realized GT-theory, as well.

4. The GT-theory structure of the category oFs of ordered face structures is
described in [Z2] but in this case the tensor squares are not pushouts in general.
This is because only part of the order <∼ in the tensor is determined by the
components, see [Z2] details. The embedding functor GoFs : oFsop → oFsoploc
is the generic model of oFs.

5. In Section 10 we shall define still another GT-theory oFsµ of ordered face
structures and monotone ω-maps which has a non-identity generic model
GoFsµ : oFsµ → oFsω.

We have the following

Proposition 3.1 Let C be an essentially small GT-theory and A be a locally small
category, and M : C −→ A be a functor such that its dual Mop : Cop −→ Aop is an
Aop-model of C. Then M induces a functor M̄ : A −→ ωCat.

Proof. I will give the construction of M̄ only. Let A be an object of A. The
n-cells of the ω-category M̄(A) are given by

M̄(A)n =
∐
S

A(M(S), A)

where the coproduct is taken over all (up to isomorphism6) objects of C of dimension
at most n. If S has dimension lower than n than the morphism M(S) → A is
considered as the identity at dimension n of a lower dimension cell. In particular,
the identity operations in the ω-category M̄ are inclusions. The k-th domain and
k-th codomain operations d(k), c(k) : M̄(A)n −→ M̄(A)k are defined by composition
as follows. For a : M(S)→ A ∈ M̄(A)n we put

d(k)(a) = a ◦M(d(k)
S ), c(k)(a) = a ◦M(c(k)

S ).
6In practice we think that we take the coproduct over all objects of C of dimension at most n

and we identify two maps a : M(S) → A with a′ : M(S′) → A if there is a (necessarily unique)
isomorphism i : S :→ S′ such that a′ ◦M(i) = a.
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If b : S′ → A ∈ M̄(A)n so that c(k)(a) = d(k)(b) the outer square in the following
diagram

M(c(k)S) M(S′)-

M(d(k)
S′ )

M(S) M(S ⊗k S′)-

6

M(c(k)
S )

6

a;kb
a

b

A

�
��

�
��
�*

��
���

���
���

���
��:



















�

commutes. Since M is a model of C the inner square is a pushout and we have a
morphism a;kb : M(S ⊗ S′)→ A making the remaining two triangles commute. 2

Remark. It is convenient to thing about oFs in terms of the abstract notion of
a graded tensor category. In fact more than the above Lemma can be stated for an
abstract graded tensor category not only oFs. But I think that the general theory of
GT-theories should wait until more non-trivial GT-theories that are not a realized
GT-theories are found.

4 The category oFsloc

The following Lemma subsume some properties of the category of ordered face struc-
tures and local maps oFsloc that are essentially in [Z2].

Lemma 4.1 Let f : S → T and g : P → T be morphisms in oFsoploc, with P
being a principal ordered face structure of dimension n, Pn = {mP }, a ∈ Sn. If
f(a) = g(mP ) then there is a unique map ḡ : P → S such that ḡ(mP ) = a and
hence f ◦ ḡ = g. In particular, any principal ordered face structure is projective in
oFsoploc.

Proof. The first statement follows from Lemmas 11.1 and 11.2 from [Z2]. To
see that this imply that principal ordered face structures are projective in oFsoploc it
is enough to note that the local maps in oFsloc are epi iff they are onto. 2

Let S be an ordered face structure. We have an obvious projection functor

ΣS : pFs ↓ S −→ pFs −→ oFsloc

such that
ΣS(f : P → S) = P

and the principal cocone over S

σS : ΣS −→ S

such that
σS(f :P→S) = f : ΣS(f : P → S) = P −→ S

We have

Lemma 4.2 The cocone σS : ΣS ·−→ S is a colimiting cocone in oFsloc.
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Proof. Simple check. 2

The colimits in oFsloc, as described above, are called principal colimits (and when
considered in oFsoploc are called principal limits). Note that we are not saying that
the above cocone is a colimit in oFs i.e. in the category of ordered face structures
and monotone maps. For example if S is

S :

x0
� ���6⇓b
x1

s

� �AAK⇓a
x0

then clearly the principal cocone over S is not a colimiting cocone in oFs as it
does not determine the order <∼ between faces x1 and x0. In fact the ordered face
structures S for which the cocone σS : ΣS ·−→ S is a colimiting cocone in oFs have
several good properties that are going to be studied elsewhere.

The following Lemma states some properties of principal cocones over tensors.

Lemma 4.3 Let S and S′ be ordered face structures such that c(k)(S) = d(k)(S′),
P a principal ordered face structure, and f : P −→ S ⊗k S′ a map in oFsloc. Then

1. either f factorizes (uniquely) via κ1
S or f factorizes (not necessarily uniquely)

via κ2
S′;

P

g

@
@

@
@I

S S ⊗k S′-
κ1
S

6
f h

�
�
�
��

S′�
κ2
S′

2. if there are both g and h factorizations of f then there is a factorization l
making the diagram

c(k)S

c(k)
S

@
@

@
@I

S P� g

?

l d(k)
S′

�
�
�
��

S′-h

commute;

3. finally, if there are two factorizations h and h′ of f via κ2
S′ then there a fac-

torization g via κ1
S.

Proof. This easily follows from the explicite description of the tensors in [Z2].
2

5 Simple adjunction

The proof of the main theorem proceeds by establishing three adjoint equivalences.
By Lemma 11.1 of [Z2], the inclusion functor i : pFs −→ oFsloc is full and

faithful. It induces the adjunction

-Rani

�
i∗

SetpFsop SetoFsop
loc
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where i∗ is the functor of composing with i and Rani is the right Kan extension
along i. Recall that for F in SetpFsop , S in oFs, it is defined as the following limit

(RaniF )(S) = LimF ◦ (ΣS)op

where (ΣS)op : S ↓ pFsop → pFsop. Clearly RaniF preserves principal limits. As i
is full and faithful the right Kan extension Rani(F ) is an extension, i.e. the counit
of this adjunction

εF : (Rani F ) ◦ i −→ F

is an isomorphism. In particular, Rani is full and faithful. It is easy to see, that for
G in SetoFsop

loc the unit of adjunction

ηG : G −→ Rani(G ◦ i)

is an isomorphism iff G preserves principal limits. Thus we have proved

Proposition 5.1 The above adjunction restricts to the following equivalence of cat-
egories

-Rani

�
i∗

SetpFsop pLim(oFsoploc, Set)

where pLim(oFsoploc, Set) is the category of principal limits preserving functors and
natural transformation. 2

6 Tensor squares vs principal limits

We shall define an adjunction

SetoFsop
loc Mod⊗(oFsop, Set)
� e

-
L

The functor e is sending Set-models of oFs to the presheaves on oFsloc along the
generic model GoFs and natural transformations to the same natural transformations.
Thus e can be thought of as an embedding that is extending the models of oFs by
defining them on all the local maps in oFsloc. We tend to omit e in formulas writing
for example the unit of this adjunction as ηF : F → L(F ), understanding that it is
a morphism in SetoFsop

loc rather than in Mod⊗(oFsop, Set).
Let F : oFsoploc → Set be a presheaf. Then

L(F ) = Lim(F ◦ (Σ(−))op) : oFsoploc −→ Set

i.e. L(F )(S) is the limit of the following functor

(pFs ↓ S)op oFsoploc-(ΣS)op
Set-F

with the limiting cone σF,S : L(F )(S) −→ F ◦ (ΣS)op. For a monotone map
f : S → S′ the function L(F )(f) is so defined that for any h : P → S in (pFs ↓ S)op

the triangle

L(F )(S) L(F )(S′)-L(F )(f)

F (P )

σF,Sh

@
@
@@R

σF,S
′

f◦h
�

�
��	
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commutes. For a natural transformation τ : F −→ F ′ and S ∈ oFs, L(τ)S is the
unique map making the squares

F (P ) F ′(P )-
τP

L(F )(S) L(F ′)(S)-L(τ)S

?

σF,Sh

?

σF
′,S

h

commutes, for any h : P → S ∈ oFs.

Proposition 6.1 L is well defined functor and L a e.

Proof. The fact that L(F ) is a functor and L(τ) is a natural transformation is
left to the reader. We shall verify that L(F ) is a model of oFs, i.e. sends tensor
squares to pullbacks.

Let S and S′ be ordered face structures such that c(k)S = d(k)S′. As L is a
functor it sends commuting squares to commuting squares and hence we have a
unique function ϕ making the diagram

L(F )(S) L(F )(S)×L(F )(c(k)S) L(F )(S′)�π
F,S

L(F )(S′)-πF,S
′

L(F )(c(k)S)

PPPPPPPPPqL(F )(c(k)
S )

���������) L(F )(d(k)
S′ )

L(F )(S ⊗k S′)

?

ϕL(F )(κ1
S)

�
���

�����

L(F )(κ2
S′)

H
HHH

HHHHj

commute. We shall define a function

ψ : L(F )(S)×L(F )(c(k)S) L(F )(S′) −→ L(F )(S ⊗k S′)

the inverse of ϕ, by defining a cone ξ from L(F )(S) ×L(F )(c(k)S) L(F )(S′) to the
functor

(pFs ↓ (S ⊗k S′))op oFsoploc-(ΣS⊗kS′)op
Set-F

Let f : P → S ⊗k S′ be a map in oFsloc

ξf =

{
πF,S ;σF,Sg if f = g;κ1

S for some g : P → S,
πF,S

′
;σF,S

′

h if f = h;κ2
S′ for some h : P → S′,

The Lemma 4.3 guarantee that this definition gives in fact a cone ξ over
F ◦ (ΣS⊗kS′)op. Thus we have ψ as in the diagram

L(F )(S)×L(F )(c(k)S) L(F )(S′)

L(F )(S)

πF,S

C
C
C
C
CCW

L(F )(S′)

H
HHH

HHj
πF,S

′

PPPPPq
σF,S

′

h

L(F )(S ⊗k S′)

F (Q) = F ◦ (ΣS⊗kS′)op(f)
?

σF,S⊗kS
′

f

-
σF,Sg

-ψ

As both ϕ and ψ are defined using universal properties of limits, it is easy to see
that they are mutually inverse, i.e. L(F ) preserves special pullbacks.

As the image under F of the principal cocone σS from ΣS to S is a cone from
F (S) to F ◦ (ΣS)op we have a unique map (ηF )S : F (S) −→ L(F )(S) making the
triangles
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F (S) L(F )(S)-(ηF )S

F (P )

F (h)
@
@
@R

σF,Sh

�
�
�	

commute, for any h : P → S ∈ oFsloc. That defines the unit of adjunction L a e.
For any principal ordered face structure P , the category pFs ↓ P has the terminal
object 1P : P → P . Thus any P -component of the unit of adjunction (ηF )P :
F (P ) −→ L(F )(P ) is an isomorphism.

The counit of adjunction εG : L(G) → G is defined using the fact that both
G and L(G) are models of oFs. The map (εG)S : L(G)(S) → G(S) is defined by
induction on the size of S. If S = P is a principal ordered face structure then we
put (εG)P = (ηF )−1

P . If S is not principal than with ǎ ∈ Sd(S)k, and we have
S = S↓ǎ ⊗k S↓ǎ we put

(εG)S = (εG)S↓ǎ ×(εG)
c(k)(S↓ǎ)

(εG)S↑ǎ

To verify the triangular equalities it is enough to show that the triangles

L(F )(S) L(F )(S)-
1L(F )(S)

L(L(F ))(S)

L((ηF )S)

�
�
�
��

(εL(F ))S)
@
@
@
@R

G(S) G(S)-
1G(S)

L(G)(S)

(ηG)S
�
�
�
��

(εG)S
@
@
@
@R

commute, for each ordered face structure S separately. The commutation of the left
triangle can be shown using the fact that all functors involved preserves principal
limits and the commutation of the right triangle can be shown by induction on
the size of S using the fact that all the involved functors are models of oFs. The
remaining details are left for the reader. 2

Proposition 6.2 The above adjunction restricts to the following equivalence of cat-
egories

pLim(oFsoploc, Set) Mod⊗(oFsop, Set)
� e

-
L

Proof. As e is full and faithful the counit of the adjunction e a L is an iso-
morphism. From the description of the functor L it is clear that, for any functor
F : oFsoploc → Set, L(F ) preserves principal limits and that ηF : F → L(F ) is an
isomorphism iff F preserves principal limits. 2

7 Third adjunction

Recall that in [Z2] we have defined a functor (−)∗ : oFs→ Compm/1 associating to
any ordered face structure S the many-to-one computad S∗ generated by S. The
n-cells of S∗ are (equivalence classes of) local maps a : R → S from ordered face
structures R of dimension at most n. The k-domain and the k-codomain of a are
d(k)(a) = a ◦ d(k)

R and c(k)(a) = a ◦ c(k)
R , respectively. If b : R′ → S is another local

morphisms such that c(k)(a) = d(k)(b) then the unique local map a;k b : R⊗kR′ → S
such, that a;k b ◦ κ1 = a and a;k b ◦ κ2 = b, is the composition of a and b in S∗. For
more details on functor (−)∗ see [Z2].

Now we will set up the adjunction
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-(̃−)
�

(̂−) = Compm/1((')∗,−)
Mod⊗(oFsop, Set) Compm/1

which will turn out to be an equivalence of categories. The functor (̂−) is sending a
many-to-one computad P to a functor

P̂ = Compm/1((−)∗,P) : oFsop −→ Set

(̂−) is defined on morphism in the obvious way, by composition. We have

Lemma 7.1 Let P be a many-to-one computad. Then P̂ defined above sends tensor
squares to pullbacks.

Proof. This is an immediate consequence of the fact that the functor
(−)∗ : oFs→ Compm/1 sends tensor squares to pushouts, Corollary 13.3 in [Z2].
2

The functor (̃−) that we describe below is the induced functor described in
Proposition 3.1 for the model (−)∗ : oFsop → (Compm/1)op. As we need to establish
some properties of (̃−) we give here a more detailed description.

Suppose we have a model F : oFsop −→ Set. We shall define a many-to-one
computad F̃ . As the set of n-cells of F̃ we take

F̃n =
∐
S

F (S)

where the coproduct7 is taken over all (up to a monotone isomorphisms) ordered
face structures S of dimension at most n. By κF,Sn : F (S) −→ F̃n we denote the
coprojection into the coproduct. For k ≤ n, the identity map

1(n) : F̃k −→ F̃n

is the obvious embedding induced by identity maps on the components of the co-
products. For k ≤ n, we define the k-domain and the k-codomain functions in
F̃

d(k), c(k) : F̃n −→ F̃k.

Abstractly, d(k) is the unique map, that makes the diagram

F (S) F (d(k)S)-

F (d(k)
S )

F̃n F̃k
-d(k)

6

κF,Sn

6

κF,d
(k)S

n

commute, for any ordered face structure S. c(k) is defined similarly. In more concrete
terms d(k) and c(k) are defined as follows. Let S be an ordered face structure of
dimension at most n, a ∈ F (S) −→ F̃n an n-cell in F̃ . We have in oFs the morphisms
of the k-th domain and the k-th codomain introduced in [Z2]:

7In fact, we think about such a coproduct
∐
S
F (S) as if it were to be taken over sufficiently

large (so that each isomorphism type of ordered face structures is represented) set of ordered face
structures S of dimension at most n. Then, if ordered face structures S and S′ are isomorphic via
(necessarily unique) monotone isomorphism h : S′ → S, then the cells x ∈ F (S) and x′ ∈ F (S′) are
considered equal iff F (h)(x) = x′.
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d(k)S c(k)S

S

d(k)
S
�
�
��

c(k)
S
@

@
@I

We put
d(k)(a) = F (d(k)

S )(a) ∈ F (d(k)S) −→ F̃k,

c(k)(a) = F (c(k)
S )(a) ∈ F (c(k)S) −→ F̃k.

Finally, we define the compositions in F̃ . Again we shall do it first abstractly
and then in concrete terms. Note that the pullback

F̃n F̃k
-

c(k)

F̃n ×F̃k F̃n F̃n-π1

?

π0

?
d(k)

can be describe as a coproduct

F̃n ×F̃k F̃n =
∐
S,S′

F (S)×F (c(k)S) F (S′) (∼=
∐
S,S′

F (S ⊗k S′))

where the coproduct is taken over all (up to monotone isomorphisms) pairs of ordered
face structures S and S′ of dimension at most n such that c(k)S = d(k)S′. The
coprojections are denoted by

κF,S,S
′

n,k : F (S)×F (c(k)S) F (S′) −→
∐
S,S′

F (S)×F (c(k)S) F (S′) = F̃n ×F̃k F̃n

Then the composition morphism

;k : F̃n ×F̃k F̃n −→ F̃n

is the unique map that for any pair S, S′ as above makes the square

F (S)×F (d(k)S) F (S′) F (S ⊗k S′)-
ζS,S′

F̃n ×F̃k F̃n F̃n-;k

6

κF,S,S
′

n,k

6

κF,S⊗kS
′

n

commute, where ζS,S′ is the inverse of the canonical isomorphism

F (S ⊗k S′) −→ F (S)×F (c(k)S) F (S′)

that exists as F preserves special pullbacks. In concrete terms, the composition in
F̃ can be described as follows. Let k < n, dim(S), dim(S′) ≤ n, c(k)S = d(k)S′,

a ∈ F (S) −→ F̃n b ∈ F (S′) −→ F̃n,

such that
c(k)(a) = F (c(k)

S )(a) = F (d(k)
S′ )(b) = d(k)(b).

We shall define the cell a;kb ∈ F̃n. We have a tensor square in oFs:
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c(k)S S′-

d(k)
S′

S S ⊗k S′-κS

6

c(k)
S

6
κS′

As F is a model of oFs the square

F (c(k)S) F (S′)-

F (d(k)
S′ )

F (S) F (S ⊗k S′)-F (κS)

6

F (c(k)
S )

6
F (κS′)

is a pullback in Set. Thus there is a unique element

x ∈ F (S ⊗k S′) −→ F̃n

such that
F (κS)(x) = a, F (κS′)(x) = b.

We put
a;kb = x.

This ends the definition of F̃ .
For a morphism α : F −→ G in Mod⊗(oFsop, Set) we put

α̃ = {α̃n : F̃n −→ G̃n}n∈ω

such that
α̃n =

∐
S

αS : F̃n −→ G̃n

where the coproduct is taken over all (up to monotone isomorphism) ordered face
structures S of dimension at most n. This ends the definition of the functor (̃−).

We have

Proposition 7.2 The functor

(̃−) : Mod⊗(oFsop, Set) −→ Compm/1

is well defined.

Proof. The verification that (̃−) is a functor into ωCat is left for the reader. We
shall verify that, for model F : oFsop −→ Set of oFs, F̃ is a many-to-one computad,
whose n-indets are

|F̃ |n =
∐

P∈pFs,dim(P )=n

F (P ) −→
∐

S∈oFs,dim(S)≤n
F (S) = F̃n.

Let P be the n-truncation of F̃ in Commam/1n , i.e. P = F̃ \,n in the notation
from Appendix of [Z2]. We shall show that F̃n is in a bijective correspondence with
Pn described in [Z2]. We define a function

ϕ : Pn −→ F̃n
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so that for a cell f : S],n −→ P in Pn we put

ϕ(f) =


1fn−1(S) if dim(S) < n,
fn(mS) if dim(S) = n, S principal, Sn = {mS}
ϕ(f↓ă);k ϕ(f↑ǎ) if dim(S) = n, ă ∈ Sd(S)k.

and the morphisms in ϕ(f↓ǎ) and ϕ(f↑ǎ) in Commam/1n are obtained by composi-
tions so that the diagram

�
��

S],n

@
@R

(S↑ǎ)],n

(S↓ǎ)],n

P-
f

f↑ǎ
PPPPPPPPq

f↓ǎ
��

��
��

��1

commutes. We need to verify, by induction on n, that ϕ is well defined, bijective
and that it preserves compositions, identities, domains, and codomains.

We shall only verify (partially) that ϕ is well defined, i.e. that the definition of
ϕ for any non-principal ordered face structure S of dimension n does not depend
on the choice of the saddle point of S. Let ǎ, b̌ ∈ Sd(S). We shall show, in case
dim(a) = dim(b) = k and a <l b, that we have

ϕ(f↓ǎ);k ϕ(f↑ǎ) = ϕ(f↓b̌);k ϕ(f↑b̌)

Using Lemma 12.6 of [Z2] and the fact that (−)],n preserves special pushouts
(Corollary 13.2 of [Z2]), we have

ϕ(f↓ǎ);k ϕ(f↑ǎ) =

= ϕ(f↓a);k (ϕ(f↑ǎ↓b);k ϕ(f↑ǎ↑b̌)) =

= (ϕ(f↓a);k ϕ(f↑ǎ↓b));k ϕ(f↑b̌↑ǎ) =

= ϕ(f↓a;k f↑ǎ↓b);k ϕ(f↑b̌↑ǎ) =

= ϕ(f↓b;k f↑b̌↓a);k ϕ(f↑b̌↑ǎ) =

= (ϕ(f↓b);k ϕ(f↑b̌↓a));k ϕ(f↑b̌↑ǎ) =

= ϕ(f↓b);k (ϕ(f↑b̌↓a);k ϕ(f↑b̌↑ǎ)) =

= ϕ(f↓b);k ϕ(f↑b̌)

The reader can compare these calculations with the those, in the same case, of
Proposition 13.1 of [Z2] (f replaces ϕ and ϕ replaces F ). So there is no point to
repeat the other calculations here. 2

For P in Compm/1 we define a computad map

ηP : P −→ ˜̂P
so that for x ∈ Pn we put

ηP,n(x) = τx : T ∗x P ∈ P̂(Tx)- ˜̂Pn-κTxn

such that τx(1Tx) = x.
For F in Mod⊗(oFsop, Set) we define a natural transformation

εF : ̂̃
F −→ F,
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such that, for an ordered face structure S of dimension n,

(εF )S : ̂̃
F (S) −→ F (S)

and g : S∗ → F̃ ∈ ̂̃
F (S) we put

(εF )S(g) = gn(1S).

Proposition 7.3 The functors

-(̃−)
�

(̂−) = Compm/1((')∗,−)
Mod⊗(oFsop, Set) Compm/1

together with the natural transformations η and ε defined above form an adjunc-
tion ((̂−) a (̃−)). It establishes an equivalence of categories Mod⊗(oFsop, Set) and
Compm/1.

Proof. The fact that both η and ε are bijective on each component follows
immediately from Proposition 15.1 of [Z2]. So we shall verify the triangular equalities
only.

Let P be a computad, and F be a functor in Mod⊗(oFsop, Set). We need to
show that the triangles

P̂ P̂-1P̂

̂̃̂
P

η̂P
�
�
�� εP̂

@
@
@R

F̃ F̃-1
F̃

˜̂̃
F

η
F̃
�
�
��

ε̃F
@
@
@R

commute. So let f : S∗ → P ∈ P̂(S). Then, we have

εP̂ ◦ η̂P(f) = εP̂(ηP ◦ f) = (ηP ◦ f)n(1S) =

= (ηP)n(fn(1S)) = τfn(1S) = f

Last equation follows from the fact that (τfn(1S))n(1S) = fn(1S) and Proposition
15.1 of [Z2]. Now let x ∈ F (S) −→ F̃n. Then we have

ε̃F ◦ ηF̃ (x) = ε̃F (τx) = (τx)n(1Tx) = x

So both triangles commute, as required. 2

If we compose the three established adjoint equivalences we get from Propositions
5.1, 6.2, and 7.3

Corollary 7.4 The functor

(̂−) : Compm/1 −→ SetpFsop

such that for a many-to-one computad X,

X̂ = Compm/1((−)∗, X) : pFsop −→ Set

is an equivalence of categories.

The fact that the category Compm/1 is a presheaf category was first established
in [HMZ] using an earlier result from [HMP]. From this we know that the category
of Compm/1 is equivalent the category of presheaves on the category of multitopes
Mlt introduced in [HMP].
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Theorem 7.5 The category pFs of principal ordered face structure is equivalent to
the category of multitopes Mlt.

Proof. The categories of presheaves on both categories are equivalent to the cate-
gory of many-to-one computads. As these categories have no nontrivial idempotents
they must be equivalent. 2

8 The shapes of cells in computads

Let Comp?/? be a full subcategory of the category of computads Comp8 of some
kind of computads. The particular examples we have in mind and we will be refereing
to later are free categories over graphs Comp1/1

1 , one-to-one computads Comp1/1,
positive-to-one computads Comp+/1, many-to-one computads Compm/1, or even
all computads Comp.

One of the ways to think about the shape of a cell α in a computad C from the
category Comp?/? is the following. We consider the category of pointed computads
Comp?/?

∗ whose objects are computads with chosen cells and morphisms are com-
putad maps preserving the distinguished cells. Then the shape of a cell α ∈ C (if
exists) can be identified with the initial object of the slice category Comp∗ ↓ (C,α).
It is obvious that the computad maps preserve so understood shapes i.e. if f : C → D
is a computad map, τα : (S, s)→ (C,α) is the initial object of Comp∗ ↓ (C,α) then
F ◦ τα : (S,m) → (D, f(α)) is the initial object of Comp∗ ↓ (D, f(α)). Unfortu-
nately not every cell has a shape. For example if we take two 2-indets α and β whose
domain and codomain is 1x the identity of a 0-cell x then β ◦0 α does not have a
shape. This ’innocent’ problem is responsible for very serious complications and it is
one of the reasons for the restriction of shapes of cells in weak ω-categories to more
manageable shapes like one-to-one, many-to-one, etc. Note that the shape (S,m) of
the cell α is not necessarily determined by what we can call the (pure) shape S.

Now assume that all cells in all computads in the given category of computads
Comp?/? have shapes. To define the category Shape?/? of shapes of cells for
Comp?/? we could just take all the computad maps between shapes of all cells
in computads from Comp?/?. But such morphisms can identify different shapes
by making them isomorphic. This is why we shall take a longer route by specify-
ing some of the morphisms that we definitely want in the category Shape?/? and
then we shall generate all the other morphisms inside Comp?/? via composition and
graded tensor operation. The closure under the later operation is to ensure that the
graded tensor operation is functorial.

First kind of morphisms we shall consider comes from the fact that we have in
computads the k-domain d(k) and the k-codomain c(k) operations that associate the
domain and the codomain of dimension k, respectively. Thus if (S,m) is a shape,
m is a cell in S of dimension n and k ≤ n, then (S, d(k)(m)) and (S, c(k)(m)) are
pointed computads in Comp?/?. Thus the cells d(k)(m) and c(k)(m) in S have shapes
which we denote

d(k)
S : (d(k)S, d(k)(m)) −→ (S, d(k)(m))

c(k)
S : (c(k)S, c(k)(m)) −→ (S, c(k)(m))

In particular, we have the computad maps

d(k)
S : d(k)S −→ S, c(k)

S : c(k)S −→ S

8By a computad we mean here an ω-category C that is levelwise free, i.e. if we truncate it to an
n+ 1-category Cn+1 then it arises as an n-category Cn with freely added n+ 1-indeterminate cells
(=indets). Morphisms of computads are ω-functors that are required to send indets to indets.
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such that d(k)
S (d(k)(m)) = d(k)(m) and c(k)

S (c(k)(m)) = c(k)(m). Note that both
d(k)(m) and c(k)(m) name two different cells in two different computads.

The second kind of morphism comes from the fact that we can (de)compose cells
in computads. Suppose (S,m) is a shape such that the cell m can be decomposed
as m = m1;km2. Then we have shapes of m1 and m2 in S:

κ1 : (S1,m1) −→ (S,m1), κ2 : (S1,m2) −→ (S,m2)

so that m = m1;km2 = κ1(m1);k κ2(m2) in S. Here again both m1 and m2 name
two different cells in two different computads. If we denote by (S3,m3) the shape of
c(k)(m1) = d(k)(m2) in S then we obtain a commuting square

(S3,m3) (S2,m2)-

c(k)
S2

(S1,m1) (S,m)-κ1

6

d(k)
S1

6

κ2

called the tensor square.
Note that it is very likely that the computad S will turn out to be the pushout

S1 +S3 S2 in Comp?/? but this doesn’t mean that (S,m) will be the pushout
(S1,m1) +(S3,m3

(S2,m2) in Shape?/?.
The graded tensor operation is defined as follows. Suppose we have tensor

squares defined form decompositions of cells m = m1;km2 and m′ = m′1;km′2 in
shapes (S,m) and (S′,m′), respectively, and for some morphisms f1, f2, f3, the
squares

(S′1,m
′
1) (S′3,m

′
3)�

c(k)
S′1

(S1,m1) (S3,m3)�
c(k)
S1

?

f1

?

f3

(S′2,m
′
2)-

d(k)
S′2

(S2,m2)-
d(k)
S2

?

f2

commute. Then we require to exist a unique morphism f1 ⊗k f1 : S → S′, called a
graded tensor of f1 and f1, making the squares

(S′1,m
′
1) (S′,m′)-

κ1
S′1

(S1,m1) (S,m)-
κ1
S1

?

f1

?
(S′2,m

′
2)�

κ2
S′2

(S2,m2)�
κ2
S2

f1 ⊗k f2

?

f2

commute.
The category of ?/?-shapes Shape?/? has as objects shapes (S,m) of cells in

Comp?/? and as morphisms the least class of computad morphism containing d(k),
d(k), κ1, κ2, identities closed under composition and graded tensor operation.

Examples.
1. For the category of free categories over graphs i.e. Comp1/1

1 the category of
shapes defined above in (equivalent to) ∆0. Recall that ∆0 is the full subcategory
of the category of graphs whose objects are linear graphs [n] with n edges and n+ 1
vertices. The morphism d(0)

[n] : [0]→ [n] is the inclusion sending the unique vertex of

[0] to the first vertex of [n] and c(0)
[n] : [0] → [n] is the inclusion sending the unique
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vertex of [0] to the last vertex of [n]. The morphisms κ1
[n] : [n] → [n + m] and

κ2
[m] : [n] → [n + m] are the inclusions onto the first n and the last m edges of the

graph [n + m], respectively. The tensor morphisms are also obvious. Note that in
this case we generate all the graph morphisms between the objects of ∆0.

2. The shapes of cells for the category of one-to-one computads Comp1/1 are
determined by what is called in different terminologies globular cardinals, simple ω-
graphs sωGr, T -cardinals for the free category monad on ω-graphs. By this I mean
that for every n-cell α in every one-to-one computad C there is a unique (up to iso)
simple ω-graph S and a unique cell S in the ω-category S∗ generated9 by S, and a
unique pointed computad morphism τα : (S∗, S)→ (C,α). Moreover this map τα is
the initial object in Comp1/1

∗ ↓ (C,α). The shape (S∗, S) is uniquely determined by
ω-graph S and even by the ω-category S∗.

3. The shapes of cells for the category of positive-to-one computads Comp+/1,
see [Z1], are determined by positive face structures. The category Fs+/1 of positive
face structures is the category of shapes for Comp+/1. Despite the fact that it is
considerably more complicated than sωGr, it shares some good properties of sωGr.
For example the embedding (−)∗ : Fs+/1 → Comp+/1 is full.

4. The shapes of cells for the category of many-to-one computads Compm/1,
see [Z2], are determined by ordered face structures. The category oFs of positive
face structures and monotone maps is the category of shapes for Compm/1. Here
however the theory changes considerably. The main reason is that the (−)∗ : oFs→
Compm/1 is not full. The full image of (−)∗ in this case is the category of ordered
face structures and local maps.

5. As not all the cells in arbitrary computads have shape, there is no category
of shapes for the category of all computads Comp.

9 Pra monads and nerves

The idea that algebras can be presented as a full subcategory of the category of free
algebras preserving some limits goes back to the thesis of our jubilee. In [Law] F.W.
Lawvere have shown that finitary algebras can be presented as a full subcategory of
presheaves on the finitely generated free algebras that preserve some finite products.
The next step was made by F.E.Linton, c.f. [Lin], when he has shown that for any10

monad T on Set it is true that the category Alg(T ) of the Eilenberg-Moore algebras
for T is equivalent to the category of product preserving functors from the dual
of the category K(T ) of Kleisli algebras11. He also noticed that under further size
restrictions on T one can take an essentially small full subcategory of K(T ).

The recent development due to T. Leinster, c.f. [Lei1], and then to M. Weber,
c.f. [W], brought some new light on this construction. Below I will describe briefly
the theory developed by them but not in full generality of M. Weber and changing
slightly the perspective occasionally.

T. Leinster’s setup consists of a parametric right adjoint monad (T, ν, µ), pra
monad for short, on a presheaf category SetC

op
. By this he means that both natural

transformations are cartesian and that functor T a parametric right adjoint i.e. that
the functor T1 : SetC

op −→ SetC
op ↓ T (1) induced by T has a left adjoint. He has

shown that in this case there is a canonical choice for a small category θT a full
subcategory of K(T ) and a canonical choice of the limits in θT so that the category
of presheaves preserving those limits is equivalent to Alg(T ).

9The n-cells of S∗ can be identified with simple subgraphs of S of dimension at most n
10In fact F.E.Linton needed some minor size restricting condition called tractable saying that

operation of any (possibly infinitary) arity form a set.
11At that time it was not expressed in these terms.
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A functor T defined on a presheaf category is pra iff it preserves wide pull-
backs iff it is family representable, c.f. [Lei1], [W]. Recall that a functor on a
presheaf category SetC

op
is a family representable iff for every object c ∈ C there is

a set of objects {Tc,i}i∈Ic of SetC
op

such that we have an isomorphism of functors
evc ◦ T ∼=

∐
i∈Ic Y (Tc,i), where evc : SetC

op → Set is the evaluation on c, and Y (Tc,i)
is the covariant functor representable by Tc,i. The category θT is the full subcate-
gory of Alg(T ) whose objects are the free T -algebras over the representing objects
{Tc,i}i∈Ic,c∈C .

In M. Weber’s terminology the objects of form Tc,i for c ∈ C, i ∈ Ic are called
T -cardinals. In order to make the distinction I will call his category Θ0 a full
subcategory of SetC

op
as the category of T -cardinals and the full image of it in

Alg(T ) denoted by him ΘT as the T -cardinal algebras.
M. Weber is considering a more general setup than T. Leinster. The monad

(T, ν, µ) is defined on a cocomplete category A. In this more general situation the
choice of the category of T -cardinals, called there the category of arities, does not
need to be canonical and is given explicitly as full dense subcategory of A. M.
Weber also requires η and µ to be cartesian but the condition on T is slightly more
technical and I will not recall it here. The more general setup covers some cases
not covered by T. Leinster approach but the additional level of generality has in the
present context only restricted and negative application to which I will come back
later. On the other hand, the Theorem 4.10 in [W] seems to be more informative
even when applied to the original setup of T. Leinster. In fact I will state it in
combination with other results from [W] and [Lei1] in the form that is relevant to
the present context.

Now let pΘ be a small category (T, η, µ) be a pra monad on a presheaf category
SetpΘ, Θ0 the full subcategory of SetpΘ whose objects are T -cardinals, ΘT the
full image of the category Θ0 in Alg(T ), M the class of morphisms in Θ0. Then,
following M. Weber, we can conclude that there is a class E orthogonal toM so that
(E ,M) form a factorization system in ΘT moreover we have a commuting square of
categories and functors

SetpΘ
op

SetΘ
op
0

-

Alg(T ) SetΘ
op
T-NT

?

U

?

i∗

which is a pseudo-pullback, where the horizontal maps are the obvious maps gen-
erated by the (full) embeddings Θ0 −→ SetpΘ and ΘT −→ Alg(T ). As the first
embedding is full (and faithful) so is the nerve functor NT . We can think about
this result as saying that all the monadic functors (like U : Alg(T ) −→ SetpΘ

op
) for

pra monads can be obtained via pseudo-pullbacks along full and faithful functors
from particularly simple monadic functors namely those coming from presheaf pra
monads, (like i∗ : SetΘ

op
T −→ SetΘ

op
0 ), see Example 1 below.

Examples.
1. There is a whole class of simple examples of pra monads. Let Ξ be a small

category with a factorization system (E ,M) on Ξ. Let ΞM be the subcategory
for Ξ consisting of all objects of Ξ and morphisms from the class M only. We
have a non-full bijective on objects embedding i : ΞM → Ξ. Then the functor
i∗ : SetΞ

op → SetΞ
op
M is a monadic and the monad (T i, ηi, µi) on SetΞ

op
M induced by

i is pra. For X ∈ SetΞ
op
M and S ∈ ΞM the functor T i is given by

T i(X)(S) =
∐
e:S→S′∈E X(S′) X(S′)� κX,Se
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where the coproduct is taken over all (up to iso) morphisms in E with domain S.
For X ∈ SetΞ

op
M , ηX : X → T i(X) is given by

X(S)
∐
e:S→S′∈E X(S′) = T i(X)(S)-

(ηX)S = κX,S1S

for S ∈ oFs, and µX : (T i)2(X) −→ T i(X) is so defined that for any morphisms
e : S → S′ and e′ : S′ → S′′ in E the triangle

(T i)2(X)(S) =
∐
e:S→S′

∐
e′:S′→S′′ X(S′′)

∐
f :S→S′′ X(S′′) = T i(X)(S)-(µX)S

X(S′′)

κX,Se′◦eκX,Se,e′
�
�
�
���

@
@
@

@@I

commutes, where

X(S′′)
∐
e:S→S′∈E

∐
e′:S′→S′′∈E X(S′′) = (T i)2(X)(S)-

κX,Se,e′

is the obvious embedding. Bothη and µ are cartesian since for any τ : X → Y ∈
SetΞ

op
M and S ∈ oFs the squares

Y (S)
∐
f :S→S′′ X(S′′)-

(ηY )S

X(S)
∐
f :S→S′′ X(S′′)-(ηX)S

?

τS

?

∐
f :S→S′′ τS′′

and

∐
e:S→S′

∐
e′:S′→S′′ Y (S′′)

∐
f :S→S′′ X(S′′)-

(µY )S

∐
e:S→S′

∐
e′:S′→S′′ X(S′′)

∐
f :S→S′′ X(S′′)-(µX)S

?

∐
e:S→S′

∐
e′:S′→S′′ τS′′

?

∐
f :S→S′′ τS′′

are pullbacks. As for such monad T i not only the base category SetΞ
op
M but also the

category of algebras Alg(T ) is a presheaf category SetΞ
op

, I will call such monads
presheaf pra monads.

2. As it was pointed out in [Lei1] and [W] this framework fits well the free
category monad over graphs and the free ω-category monad over simple ω-graphs. I
will elaborate on the first case as both cases are in a sense quite similar, well known
and the first is simpler. In this case pΘ is the full subcategory of the category of
graphs containing two graphs [0] and [1]. The category of T -cardinals Θ0 is ∆0 and
the category of T -cardinal algebras ΘT is ∆. The free category monad T on SetΘ

op
0

is pra and the left adjoint LT to the functor T1 : SetΘ
op
0 −→ SetΘ

op
0 ↓ T (1) can be

described explicitly12. We shall sketch this definition to show the role of ∆0 in it.
In many-to-one case the role of ∆0 will be taken by oFs.

Let (G, | − |) be an object of the slice category of graphs Graph ↓ T (1). Thus
we have a pair of function d, c : E → V from the set edges to the set of vertices and
a function | − | : E → N from the set of edges to the set of natural numbers. We
define the diagram

Γ(G,|−|) : G̃ −→ ∆0 −→ Graph

12In Example 2.5 of [W] the functor LT is correctly described in words but LT is not given by
the left Kan extension contrary to what was claimed there. I will came back to this point later.
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whose colimit is LT (G, | − |). The second functor is the usual embedding. The set
Ṽ of vertices of G̃ contains both vertices and edges of G as disjoint sets. The set Ẽ
of edges of G̃ has two edges

d(e) se−→ e, c(e) te−→ e

for each edge e ∈ E with the domain and codomain as displayed. The functor
G̃ −→ ∆0 sends vertices from V to [0] and the vertex e ∈ E ⊂ Ṽ to the linear graph
[|e|]. Moreover it sends the edges se and te to

d0
[|e|] : [0] −→ [|e|], and c0

[|e|] : [0] −→ [|e|]

respectively. In particular, here and in all the other cases considered to get the
formula for LT we use the domain and the codomain maps.

3. The case of positive-to-one computads also fits this setup and seems to be
new. The category of positive face structures Fs+/1 is both the category of shapes
for many-to-one computads Shape+/1 and the category of T+/1-cardinals for the
free ω-category monad T+/1 on positive-to-one computads Comp+/1. Its image in
ωCat is the category of T+/1-cardinal algebras. The left adjoint LT+/1 to the T+/1

1

functor can be described much as in the previous case.
4. For the many-to-one computads the above setup does not seem to be sufficient.

This is the first case where the category of many-to-one shapes Shapem/1 exists but
it is not a full subcategory of the category Compm/1 of many-to-one computads.
The category Shapem/1 is equivalent to the category oFs of ordered face structures
and monotone maps. But the category of Tm/1-cardinals, for the free ω-category
monad Tm/1 on many-to-one computads Compm/1 is equivalent to the category
oFsloc of ordered face structures and local maps. The category oFsω of Tm/1-
cardinal algebras will be described in the next section. Note that in the previous
examples the categories of cardinals were GT-theories but this time only the category
of shapes oFs is a GT-theory and the category oFsloc is not.

5. Finally let me point out one non-example namely the category of all com-
putads Comp. It is still true, by a beautiful argument of V. Harnik [H], that ωCat
is monadic over Comp via right adjoint to the inclusion functor. However Comp
is not a presheaf category, c.f. [MZ2], the free ω-category monad on Comp is not
pra as can be easily shown using Proposition 2.6 from [W]. This adds to the long
list of reasons why we don’t get a good theory of weak categories when considering
all possible shapes of cells.

10 GT-theories and nerves

I formulate below the general setup to show where it modifies the previous one. After
stating the abstract pattern I shall make a case study on the many-to-one computads
to show the usefulness of this approach. However I do not provide any general results
concerning this abstract setup as I prefer to collect more than one true example
(oFs) before developing this theory any farther. The present approach is in a sense
much more modest than the one from previous section. We deal here exclusively
with the monads whose categories of algebras are equivalent to the category of strict
ω-categories ωCat only (or its truncations). Moreover we want these monad to be
defined on various reflective in ωCat subcategories of the category of computads
Comp. On the other hand taking advantage of this more specific situation one may
hope to get a more convenient description of concrete cases as in case of the category
of many-to-one computads Compm/1. Still a word why all sorts of nerves of strict
ω-categories might be of interest. In the presheaf approach to weak categories (as
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opposed to the algebraic approach) the weak categories are presheaves with some
properties. If we believe that strict ω-categories should be special cases of weak ones,
we need to study various nerves of strict ω-categories as they will provide abundance
of examples.

The setup consists of GT-theory Φ with a full subcategory pΦ so that the obvious
induced functor

Mod⊗(Φop, Set) −→ SetpΦ
op

is an equivalence of categories. With this data we want to get the following.

1. The generic model GΦ : Φ→ Φl induces an equivalence of categories

Mod⊗(Φop, Set) ' pLim(Φop
l , Set)

where pLim(Φop
l , Set) is the category of functors that preserves the principal

limits, i.e. the canonical limits defined over the diagrams consisting objects
from pΦ only.

2. There is a dense embedding

Φ −→Mod⊗(Φop, Set)

S 7→ S̄ = Φl(−, S)

3. Φ induces a pra monad (T, η, µ) on Mod⊗(Φop, Set).

4. There is an explicit formula for the left adjoint LT to T1.

5. Let ΦT denote the full image of Φ in Alg(T ) and i : Φ → ΦT the embedding.
Then pra monadic functor Alg(T ) −→ Mod⊗(Φop, Set) is a pseudo-pullback
of the presheaf pra monadic functor i∗ : SetΦT

op −→ SetΦ
op

, i.e. we have a
pseudo-pullback

Mod⊗(Φop, Set) SetΦ
op
l-

Alg(T ) SetΦ
op
T-

?

U

?

i∗∼=

6. In particular, the image of the full nerve functor Alg(T ) in SetΦT
op

consists of
those functors that send ⊗-squares in ΦT to pullbacks.

7. The category of T -algebras Alg(T ) is equivalent to ωCat.

Now I will show how all this can be produced from the GT-theory oFs playing
the role of Φ, together with its full subcategory of principal ordered face structures
pFs playing the role of pΦ.

The generic model of oFs is the inclusion functor oFsop → oFsoploc. Thus the
first two points are clear. In order to define the monad T on Mod⊗(Φop, Set) it is
convenient to have already the full image of the category oFs in Alg(T ) defined.
This category oFsω, playing the role of ΦT , can be defined directly from oFs alone.
The objects of oFsω are the objects of oFs. A morphism ξ : R→ S is oFsω is an ω-
map that is a transformation between presheaves ξ : oFsloc(−, R) −→ oFsloc(−, S)
which associate to a morphism a : V → R in oFsloc(−, R) a morphism ξa : Va → S
in oFsloc(−, S) so that

1. dim(Va) ≤ dim(V );
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2. ξ(a ◦ d(k)
V ) = ξ(a) ◦ d(k)

Va
, ξ(a ◦ c(k)

V ) = ξ(a) ◦ c(k)
Va

,

3. if V = V 1 ⊗k V 2 then Va = V 1
a◦κ1

V 1
⊗k V 2

a◦κ2
V 2

and moreover

ξ(a ◦ κ1) = ξ(a) ◦ κ̄1, ξ(a ◦ κ2) = ξ(a) ◦ κ̄2

where κi = κiV i , κ̄
i = κi

V i
a◦κi

for i = 1, 2.

We identify two ω-maps ξ and ξ′ iff for every a : V → R there is an isomorphism σa
making the triangle

Va V ′a
-σa

S

ξa@@R
ξ′a��	

commute.
Let ξ : R→ S be an ω-map. ξ is an inner ω-map iff ξ(1R) = 1S . ξ is a monotone

ω-map iff ξ(1R) a monotone morphism. Its is easy to see that ω-maps, inner ω-
maps and monotone ω-maps do compose. We have categories oFsω of ordered face
structures and ω-map and oFsµ of ordered face structures and monotone ω-map.
We write f : R −→◦ S to indicate that f is an inner map. Clearly the ω-maps and
the monotone ω-maps do compose. Thus we have categories oFsω of ordered face
structures and ω-maps, and oFsµ of ordered face structures and monotone ω-maps.
We have an embedding

ιω : oFsloc −→ oFsω

sending the local map f : R → S to the ω-map ιω(f) : R → S such that for
h : V → R in oFsloc(−, R) we have ιω(f)(h) = f ◦ h. We shall identify ιω(f) and f .
ιω restricts to the embedding

ιµ : oFs −→ oFsµ

Thus we have a commuting square of categories and functors

oFsµ oFsω-
GoFsµ

oFs oFsloc-GoFs

?

ιµ
?

ιω

Note that the generic models GoFs and GoFsµ can be considered as a process sym-
metrization of the tensor as the pushouts tend to be more symmetric than tensors.
Thus one cannot expect these functors to be full even on isomorphisms. On the
other hand, both ιµ, ιω are full on isomorphisms and they fall under the scheme of
the Example 1 from the previous section. In particular, the composition functors
induced by them SetoFsopµ −→ SetoFsop and SetoFsopω −→ SetoFsop

loc are pra monadic.
Now the monad T can be defined as follows. Let X be a model in Mod⊗(Φop, Set)

and k : R→ S a monotone morphism. For S ∈ oFs we put

T (X)(S) =
∐

g:S−→◦ S′

X(S′)

where the coproduct is taken over all (up to iso) inner ω-maps g with the domain
S. For a monotone morphism k : R → S, the function T (X)(k) is so defined that
the square
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T (X)(S) =
∐
g:S→◦ S′ X(S′) X(S′)�

κX,Sg

T (X)(R) =
∐
f :R→◦ R′ X(R′) X(R′)�

κX,Rf

6

T (X)(k)

6

X(k̄)

commutes, for every inner ω-map g : S −→◦ S′ so that f and k̄ is the inner-monotone
factorization of g ◦ k, i.e. the square

S S′-
g

R R′-f

?k ?k̄

commutes. Clearly both f and k̄ are unique up an isomorphism. For the natural
transformation α : X → Y in Mod⊗(Φop, Set) we define the natural transformation
T (α) so that the square

X(S′) Y (S′)-
αS′

T (X)(S) T (Y )(S)-T (α)S

6
κX,Sg

6
κY,Sg

commutes, for any S ∈ oFs and any inner ω-map g : S → S′. This ends the
definition of T .

The transformations η and µ are defined like in Example 1 in Section 9. For
X ∈Mod⊗(Φop, Set) the unit

ηX : X → T (X)

is so define that for any S ∈ oFs, we have (ηX)S = κX,S1S
. The multiplication

µX : T 2(X)→ T (X)

is so define that for any R ∈ oFs and a pair of inner ω-maps f : R → R′ and
g : R′ → R′′ the triangle

T 2(X)(R) T (X)(R)-(µX)S

‖ ‖∐
f :R→◦ R′

∐
g:R′→◦ R′′ X(R′′)

∐
h:R→◦ R′′ X(R′′)

HH
H
HH

HY

��
�
��
�*

X(R′′)
κX,Sf,g κX,Sg◦f

commutes. The fact that both η and µ are cartesian can be easily checked as in
Example 1 in Section 9.

To show that (T, η, µ) is a pra monad, it remains to show that the functor T is a
parametric right adjoint functor. We shall construct this left adjoint LT explicitly,
again with a help of the category oFs. First let us describe T (1). We can assume
that for R ∈ oFs

T (1)(R) = {f : R −→◦ R′ : f ∈ oFs, f inner} ∼=
∐

f :R−→◦ R′

1(R′)

Moreover, for k : R→ S in oFs and g : S → S′ an inner ω-map we have T (1)(k)(g) =
f if we have a square in oFsω
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S S′-
g

R R′-f

?k ?k
′

with f an inner ω-map and k′ monotone morphism.

T1 : Mod⊗(Φop, Set) −→Mod⊗(Φop, Set) ↓ T (1)

X 7→ T (!X) : T (X) −→ T (1)

has a left adjoint

LT : Mod⊗(Φop, Set) ↓ T (1) −→Mod⊗(Φop, Set)

The construction of LT we give below is very similar in spirit to the construction from
Example 1 in Section 9. Let |−| : Z −→ T (1) be an object ofMod⊗(Φop, Set) ↓ T (1).
We shall define a diagram

Γ(Z,|−|) : D(Z,|−|) −→Mod⊗(Φop, Set)

whose colimit is LT (Z, | − |). The set of objects of D(Z,|−|) is
∐
S∈oFs Z(S), where

as usual we take the coproduct over isomorphism classes of objects of oFs. In other
words an object of D(Z,|−|) is a pair (y, S) so that S ∈ oFs y ∈ Z(S). We identify
to such pairs (y, S) and (y′, S′) if there is a monotone isomorphism f : S → S′ such
that Z(h)(y′) = y. For any object (y, S) and k < dim(S) there are two arrows d(k)

y,S

and c
(k)
y,S in D(Z,|−|) with codomain (y, S). To describe the domains of d(k)

y,S and c
(k)
y,S

let us note that since |y| : S → R is an inner ω-map we can form a diagram

d(k)R R-

d(k)
R

d(k)S S-
d(k)
S

?
d(k)(|y|)

?

d(k)R-

c(k)
R

c(k)S-
c(k)
S

|y|
?
c(k)(|y|)

with d(k)
S , c(k)

S , d(k)
R , c(k)

R , monotone and d(k)(|y|), c(k)(|y|) inner ω-maps. Then d(k)
y,S

and c
(k)
y,S have the domains as displayed in the diagram:

(Z(d(k)
S )(y),d(k)S) (y, S)-

d
(k)
(y,S)

(Z(c(k)
S )(y), c(k)S)�

c
(k)
(y,S)

We have a projection functor

D(Z,|−|) oFs-
π(Z,|−|)

which, in the notation as above with |y| : S → R, is given by

(Z(d(k)
S )(y),d(k)S) (Z(c(k)

S )(y), c(k)S)

(y, S)

d
(k)
(y,S)

�
�
�
��

c
(k)
(y,S)

@
@

@
@I

d(k)R c(k)R

R

d(k)
R
�
�
��

c(k)
R
@

@
@I

-

so that the composition of π(Z,|−|) with the embedding oFs −→ Mod⊗(Φop, Set) is
the required diagram Γ(Z,|−|) for which we have LT (Z, | − |) = ColimΓ(Z,|−|).

Next I will describe explicitly the adjunction:
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Mod⊗(Φop, Set) ωCat
-Fm/1

�
Um/1

For X ∈Mod⊗(Φop, Set) the set of n-cells is give by the coproduct

Fm/1(X)n =
∐

S∈oFsn

∐
S→◦ R

X(R)

The k-domain of n-cell operation is the unique morphism that for any S ∈ oFsn,
and f : S → R inner ω-map makes the square

X(S) X(d(k)S)-

X(d(k)
S )

Fm/1(X)n Fm/1(X)k-d(k)

?

κX,Sn,f

?

κX,d
(k)S

k,d(k)(f)

commute. The k-codomain of n-cell operation is defined analogously and the identity
operation is the obvious embedding. Then the set of k-composable n-cells is

Fm/1(X)n,k,n =
∐

S,S′∈oFsn, c(k)S=d(k)S′

∐
f :S→◦ R, f ′:S′→◦ R′

X(R⊗k R′)

The composition morphism is the unique morphism making the triangles

Fm/1(X)n,k,n Fm/1(X)n-
mn,k,n

X(R⊗k R′)

κX,S,S
′

n,k,f,f ′

@
@

@
@
@@I

κX,S⊗kS
′

n,f⊗kf ′

�
�
�
�
���

commute, for any inner ω-maps f : S → R, f ′ : S′ → R′ so that c(k)S = d(k)S′.
The ω-map f ⊗k f ′ : S ⊗k S′ −→ R ⊗k R′ is well defined as as both f and f ′ are
inner ω-maps. This ends the definition of the ω-category Fm/1(X). The definition
of Fm/1(X) on morphism is obvious.

The right adjoint to Fm/1 is induced by the embedding ε : oFs → ωCat. For
C ∈ ωCat and S ∈ oFs we have

Um/1(C)(S) = ωCat(ε(S), C)

The adjunction Fm/1 a Um/1 induces the above pra monad (T, η, µ). Moreover, by
the Harnik argument c.f. [H]13, Um/1 is monadic. Then from the theory developed
by T. Leinster and M. Weber the left square is a pseudo-pullback

@
@R�

�

Nµ

Mod⊗(oFsop, Set) SetoFsop
loc-

ωCat SetoFsopω-Nω

?

Um/1

?

ι∗ω

SetoFsop-

SetoFsopµ-

? ?

ι∗µ

13This argument was presented in [MZ1] for the case of positive-to-one computads but it works
without changes for the many-to-one computads as well.
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Thus the pra monadic functor Um/1 is a pseudo-pullback of pra monadic functor
ι∗ω. As the left bottom functor, induced by the generic model oFs→ oFsloc, is full
and faithful so is the many-to-one nerve functor Nω whose essential image contains
those presheaves whose restriction to oFsoploc preserves principal limits. It is not true
that the right hand square in the above diagram is a pseudo-pullback but the outer
square still is and the composition of the bottom functors is full and faithful. Hence
the pra monadic functor Um/1 is a pseudo-pullback of pra monadic functor ι∗µ as
well. Thus we have another full nerve functor Nµ whose essential image consists of
those functors whose restriction to oFsop are models of oFs.
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