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Abstract

We introduce the notion of an ordered face structure. The ordered face
structures to many-to-one computads are like positive face structures, c.f. [Z],
to positive-to-one computads. This allow us to give an explicit combinatorial
description of many-to-one computads in terms of ordered face structures.
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1 Introduction

The definition of multitopic categories the weak ω-categories in the sense of Makkai
contains two ingredients. The first constitutes a description of shapes of cells
that are considered (this includes the relation between cells and their domains and
codomains), c.f. [HMP] and the second constitutes a mechanism of composition, c.f.
[M]. This paper is a contribution to a better understanding of the first ingredient
of the M.Makkai’s definition of multitopic categories, and we provide a relatively
simple combinatorial description of the category many-to-one computads. The pa-
per goes much along with [Z] except it deals with all many-to-one computads rather
than positive-to-one computads. This generates some substantial complications and
the structure of cells turns out to be much richer.

Ordered face structures

Our main combinatorial device introduced and studied in this paper is the ordered
face structure. The ordered face structures correspond to all possible ’shapes’ of
cells (not only indeterminates) in many-to-one computads1. In order to relate them
to our previous work [MZ], [Z] we can draw an analogy in the following table.

shapes of
type of indeterminates arbitrary cells

computads described in terms of
graph−like computads graph−like computads
structures structures

one−to−one αn (αn)∗ simple simple
[MZ] ω−graphs categories

positive−to−one principal positive positive face positive
[Z] positive face computopes structures computypes

structures

many−to−one principal computopes ordered face pointed
[this paper] ordered face structures computypes

structures

Now are going to explain it in an intuitive way. In the table we describe cells in com-
putads of three kinds. The later being strictly more general than the former. The
one-to-one computads are the simplest. They are free ω-categories over ω-graphs2.
The positive-to-one computads are computads in which the indeterminates (or in-
dets) on the higher dimension have as codomains indeterminates and as domains
cells that are not identities. Finally, the many-to-one computads are computads in
which the indets have as codomains indets again but there is no specific restriction
for the domains (other than that they must be parallel to codomains).

Fix n ∈ ω. The ω-graph (also called globular set) αn, has one n-face and exactly
two faces of lower dimensions than n, i.e.

αnl =


∅ if l > n
{2n} if l = n
{2l + 1, 2l} if 0 ≤ l < n

with domain and codomain given by d, c : αnl −→ αnl−1, d(x) = {2l−1}, c(x) = 2l−2
for x ∈ αnl , and 1 ≤ l ≤ n. For example α4 can be pictured as follows:

1For the definition of many-to-one computad see the appendix.
2In the literature ω-graphs are sometimes called globular sets.
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i.e. 8 is the unique face of dimension 4 in α4 that has 7 as its domain and 6 as its
codomain, 7 and 6 have 5 as its domain and 4 as its codomain, and so on. More
visually we can draw α4 as follows
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The free category (αn)∗ generated by αn has the property that for any ω-category
C, the set ωCat((αn)∗, C) of ω-functors from (αn)∗ to C correspond naturally to
the set Cn of n-cells of C. Thus in one-to-one computads the shapes of indets are
particularly simple and this is why the ω-graphs describing them are called simple.
Simple ω-graphs are some ’special’ pushouts of α’s. Instead of trying to repeat the
definition from [MZ] we rather show an example:
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So indets have still indets as domains and codomains and even if there is no one
indet that generates all the ω-graph, as in αn’s, the domains and codomains of
indets so fit together that they could be (uniquely) composed ’if they were placed
in an ω-category’. Simple ω-categories, c.f. [MZ], are ω-categories generated by
such ω-graphs. The category of simple ω-categories is dual to the category of disks
introduced in [J] . Note that there are two definite ways the indets of the same
dimension can be compared. The face x is smaller from y in one way and from z
the other way. We write x <+ y and x <− z. The first order3 is called upper and
the second is called lower. More formally, the upper order on cells of dimension n is
the least transitive relation such that d(a) <+ c(a) for any face a of dimension n+ 1
(d and c are operations of domain and codomain, respectively). Similarly, the lower
order on cells of dimension n is the least transitive relation such that if d(x) = c(z)
then x <− z. In this case both orders are definable using d and c. For more on this
see [MZ].

The shapes of indeterminates in positive-to-one face structures are more compli-
cated. We again use drawing to explain what principal positive face structures are.
The one below has dimension 3.

3Here and later by order we mean strict order i.e. irreflexive and transitive relation.
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Thus in positive face structures the codomains of indets are still indets but the
domains are so called pasting diagrams of indets, i.e. domains contains indets that
’suitably fit together so that we could compose them’. In these structures we have
the usual operation of taking codomain but the ’operation’ of taking domain of a
face returns a non-empty set of faces rather than a single face. To emphasize this
change we use for these operations the Greek letters γ and δ instead of c and d.
Thus γ(α) = a0, γ(a3) = x3, δ(α) = {a1, a2, a3}, δ(a0) = {x1, x4, x5, x6}, δ(a2) =
{x3, x6}. From the table we have that positive face structures to principal positive
face structures are like simple ω-graphs to ω-graphs of form αn, for some n. Thus
it should be not surprising that positive face structures looks like this:
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Different points, arrows etc. denote necessarily different cells, and if we omit their
names in figures it is for making it less baroque. Note that in this case the indets
of the same dimension can be compared much the same way as indets in simple
ω-graphs in two definite ways. The face x12 is smaller than x9 in one way and than
x4 the other way, and again we write x12 <

+ x9 and x12 <
− x4. Again the first

order is called upper and the second is called lower. More formally, the upper order
on faces of dimension n is the least transitive relation such that x <+ y whenever
there is a face a of dimension n+ 1 such that x ∈ δ(a) and γ(a) = y. Similarly, the
lower order on faces of dimension n is the least transitive relation such that x <− y
whenever γ(x) ∈ δ(y). Any positive face structure T generates a computads T ∗.
The cells of dimension n of such a computad are positive face substructures of T
of dimension at most n. These computads are called positive computypes. If T is a
principal positive face structure then T ∗ is a positive computope4. In this case T ∗

determines T up to an isomorphism. For more on this see [Z].
The shapes of indeterminates in many-to-one face structures are even more com-

plicated as this time the domains of indets might be identities (=’empty on some-
thing’). This generates a lot of complications as we have three new kinds of faces.
Apart from positive faces like in previous case we have empty-domain faces and then
as a consequence we have loops (=faces with domain equal codomain) and we also
need to deal with empty faces. The last kind of faces is not indicated in the pictures.
On each face x of dimension n there is an empty face 1x of dimension n+ 1. They
are much like with identities whose role they play. We again use drawing to explain
intuitively what principal ordered face structures are:

4The word ’positive’ is used here more like a shorthand and in presence of ’other positive’ notions
this one should be named properly as ’positive-to-one’.
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In these structures we also use the Greek letters γ and δ for domains and codomains,
respectively. Similarly as in positive face structures the codomain is an operation
associating faces to faces. But the domain operation is still more involved as it
may associate to a face a non-empty set of faces or a single empty face. Thus we
have δ(α) = {a1, . . . , a6}, γ(α) = a0 but δ(a2) = 1s0 , δ(b0) = 1s. Note that we
should write δ(x1) = {s0} instead of δ(x0) = s0 but we will, as we did in [Z], mix
singletons with elements when dealing with faces or sets of faces e.g. both conditions
γ(x0) ∈ δ(x0) and γ(x0) = δ(x0) are meaningful in this convention and in fact, as
we will see later, due to this ’double meaning’ they are equivalent in all ordered
face structures saying that x0 is a loop. This time the relations between faces and
their domains and codomains does not encode all the needed data. The upper order
<+ can be defined like in positive face structures from γ and δ. However, due to
existence of loops, the relation <− defined as before is not a strict order in general.
In the above examples we have x3 <

− x4, x4 <
− x3 and similarly y2 <

− y1, y1 <
− y2.

But we definitely need to know that x4 comes before x3 and that y2 comes before y1.
This is why we need as a separate additional data a strict order <∼ that is contained
in <− telling us that x4 <

∼ x3 and y2 <
∼ y1 but not that x3 <

∼ x3 and y1 <
∼ y2.

As we need to have the strict order <∼ as an additional piece of data we call those
face structures ordered. Note however that in the above cases we could solve our
problem of ordering the faces locally that is having just restriction of the order <∼

to sets that are domains of other faces. But to describe all the cells of many-to-one
computads we need more than just that. Below we have some examples of ordered
face structure
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We see that faces x6 and x5 must be comparable via <∼ but they are not in domain
of any other face. Thus a kind of global order <∼ is needed. Note however that the
fact that x11 comes before both x6 and x4 and that x0 comes after all of them could
be deduced in a different way. The way the ordered face structure T generate a
many-to-one computad T ∗ is more involved then in case of positive face structures.
An n-cell in T ∗n is a local morphism ϕ : X → T where X is an ordered face structure
of dimension at most n and ϕ is a map that preserves γ, δ but the order <∼ is
preserved only locally i.e. for a ∈ X ϕ : (δ(a), <∼a ) → (δ(ϕ(a)), <∼ϕ(a)) is an order
isomorphism, where <∼a , <∼ϕ(a) are restrictions of orders <∼ to δ(a) and δ(ϕ(a)),
respectively. Thus we have a cell ϕ:

s s-x s-
y

s-
y

s-x

� ��� CCO⇓b y � ��� CCO⇓a x � ��� CCO⇓b y

in the computad generated by the ordered face structure T ∗ (where T is the last
example of an ordered face structure above). The faces of the above ordered face
structures are labelled by the faces they are sent to by the local morphism ϕ. Clearly,
in this case the local preservation of the order <∼ does not impose any restriction
on the map ϕ : X → T other than preservation of γ and δ. From this it should
be clear that we cannot in general determine T having just T ∗. For example the
ordered face structures

��⇓b�
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� 6
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A
AK

s

z
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are not isomorphic, as y <∼ x and z <∼ x in the left one and x <∼ y and x <∼ z
in the right one, but they generate isomorphic computads. In other word passing
from T to T ∗ we are loosing part of data and this is why T ∗ is not sufficient, in
general (unlike T ), to determine the shape of a cell in a many-to-one computad. To
keep this information we need to choose one cell in T ∗ with the natural choice being
the identity on T , idT : T → T . The ω-categories T ∗ together with a distinguished
cells idT are pointed computypes which are the computad-like descriptions of types
of all cells in many-to-one computads. The pointed computypes can be defined
abstractly but we are going to explain it elsewhere. If T is a principal ordered face
structure then this distinguished cell can be chosen in a unique way and hance it
does not to be chosen at all as we know anyway which one we were to choose. This is
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why the computopes, the computad-like descriptions of types of indets in many-to-
one computads are the ω-categories generated by principal ordered face structures
(without an additional cell chosen).

Primitive notions and axioms

Thus we related ordered face structures to simple ω-graphs and positive face struc-
tures and we have described the primitive notions γ, δ, <∼ that we had chosen
to axiomatize them. Now we shall describe some intuitions behind the axioms of
ordered faces structures. Even if they are more involved they are quite close in the
spirit to the axioms of positive face structures.

As in case of positive face structures, the most important axiom is the axiom of
globularity. In case of ω-graphs it is just cc = cd and dc = dd which, if we rebaptize
c as γ and d as δ, take form

γγ(α) = γδ(α), δγ(α) = δδ(α). (1)

As it was pointed out in [Z] this equations cannot hold even for positive-to-one faces
as the right hand sides might be much bigger the left hand sides. In the example of
a principal positive computad from page 4, we have

γγ(α) = x0 6= {x0, x2, x3} = γδ(α),

δγ(α) = {x1, x4, x5, x6} ⊆6 {x1, x2, x3, x4, x5, x6} = δδ(α).

Thus we corrected the formula (1) by subtracting some faces from the right side
getting

γγ(α) = γδ(α)− δδ(α), δγ(α) = δδ(α)− γδ(α). (2)

Now it works for positive-to-one faces but if we allow loops in the domains of faces,
and we must if we allow empty-domain faces, these formulas still doesn’t work as
we can see for the face a1 in positive ordered face structure on page 5. We have

γγ(a1) = s0 6= ∅ = γδ(a1)− δδ(a1), δγ(a1) = s4 6= ∅ = δδ(a1)− γδ(a1)

Thus we see that we subtracted too much. Correcting this we drop these loops and
we get

γγ(α) = γδ(α)− δδ−λ(α), δγ(α) = δδ(α)− γδ−λ(α). (3)

where δ−λ(α) means the set of those faces in δ(α) that are not loops. Now the
formula (3) works for the face a1 and even for the face α on page 5. But there is
still a problem with empty-domain faces, as we have for b0 in the same ordered face
structure.

γγ(b0) = s 6= ∅ = γδ(b0)− δδ−λ(b0),

δγ(b0) = s 6= ∅ = δδ(b0)− γδ−λ(b0).

As a remedy for this we shall still diminish the set that we subtract by dropping
empty faces which might be there. So we drop these empty-faces and we get

γγ(α) = γδ(α)− δδ̇−λ(α), δγ(α) = δδ(α)− γδ̇−λ(α). (4)

where δ̇−λ(α) means the set of those faces in δ(α)−λ that are not empty faces5. We
are almost there but if in the domain δ(α) of a face α we have both empty-domain
faces and faces with positive domains as we have in δ(α) in on page 5, then the
set δδ(α) may contain both empty and non-empty faces whereas δγ(α) definitely

5This means that this set is either empty if δ(α) is an empty face or it is δ(α)−λ.
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contain just one kind of faces either one single empty faces or a non-empty set of
non-empty faces. However if we have faces of both kinds in δδ(α) the empty faces
must be empty-faces on domains or codomains of the non-empty faces in this set.
And this is the final modification that we do to our equation:

γγ(α) = γδ(α)− δδ̇−λ(α), δγ(α) ≡1 δδ(α)− γδ̇−λ(α). (5)

where A ≡1 B is equivalence of two set of faces of the same dimension modulo empty
faces which means that

1. if one set contains only empty faces then the other also contains only empty
faces and these sets are equal,

2. or else both sets contain the same non-empty faces and any empty face in
either set is an empty face on domain or codomain of a non-empty face is
those sets.

In other words if Ȧ denote non-empty faces in A, Ä denote empty faces in A we have
A ≡1 B iff Ȧ = Ḃ and Ä ⊆ B̈ ∪ 1γ(Ḃ)∪δ(Ḃ) and B̈ ⊆ Ä ∪ 1γ(Ȧ)∪δ(Ȧ). Still in other
words A and B are sets of faces that generates, via γ and δ, the same substructures.

The last axiom, loop filling is the only other axiom that does not mention order
explicitly, it says that there are no empty loops, i.e. if there is a loop it must be a
codomain of at least one face which is not a loop.

The remaining four axioms talk about orders <+ and <∼. Local discreteness
says that faces in a domain of any other face cannot be comparable via the upper
order <+. The strictness, disjointness together with pencil linearity say in a sense
that <∼ is the maximal strict order order relation that is contained in the relation
<− and disjoint from <+.

Note that as <+, <− are the transitive closures of elementary relations so these
axioms are not first order axiom and in fact they are expressed in the transitive
closure logic.

Future work

This paper covers only part of the program developed in [Z] for positive-to-one
computads. We end this here as it is already very long paper. But the remaining
parts of the program from [Z] for many-to-one computads and the application of
this to the multitopic categories, c.f. [HPM],[M], will be presented soon.

Content of the paper

Section 2 contains the definition of a hypergraph and some notation needed to
introduce the notion of an ordered face structure. In section 3 we introduce the
main notion of this paper the notion of an ordered face structure. In section 4
we develop most of the needed elementary theory of ordered face structures. This
section should be more consulted when needed than read through. The monotone
morphism, is the stricter of two kind of morphisms between ordered face structures,
it preserves the order <∼ globally. The image of such a morphism is a convex set.
In section 5 we show that from the convex set we can recover the whole morphism
up to an isomorphism. The domain of such a morphism is recovered via cuts of
empty loops in the convex subset. The next two sections show the connection
between positive and ordered face structures. In section 6 we describe how we can
divide a positive face structure by an ideal to get an ordered face structure. In
section 7 we show that for any ordered face structure S there is a positive face
structure S† and ideal so that S† divided by this ideal is isomorphic to S. The
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positive face structure S† is defined with the help of cuts of so called initial faces.
In sections 8 and 9 we describe some abstract structure of the category oFs and
show some of their properties. This allow us to define in section 10 a free functor
(−)∗ : lFs −→ ωCat from the category of local face structures lFs to the category
of ω-categories. Local face structures are structures that have operations γ and
δ as in ordered face structures but with the order <∼ (in fact a binary relation)
restricted to domains of faces only. The section 11 discusses basic properties of
principal and normal ordered face structures the face structures that are generated
by a single face and such that can be domains (in the sense of monoidal globular
category oFs) of such structures. In section 12 we study decompositions of ordered
face structures. In [Z] we have defined the decompositions of positive face structures
along some faces. Here we decompose ordered face structure S along a cut of initial
faces ǎ rather than a face a as this decomposition in more like a decomposition of
the positive cover S† and then after decomposition divided to get the decomposition
of S. Doing it this way we can deduce most of the properties of this decomposition
from the corresponding decomposition of positive face structures. In section 13 we
show that the ω-category T ∗, for T being an ordered face structure, is in fact a
many-to-one computad. The next two sections 14 and 15 describe with the help of
ordered face structures the terminal many-to-one computad and all the cells in an
arbitrary many-to-one computad.

Notation and conventions

As we already indicated we will intensionally confuse singletons with elements when
dealing with faces in ordered face structures. In the paper we often will be using
cells of different but neighboring dimensions. As it is a bit confusing anyway we try
to make it a bit easier to follow by a careful use of the following convention. α, β
are faces of the same dimension, say n, then a, b are the faces of the same dimension
n − 1, x, y, z are the faces of the same dimension n − 2, t, s are the faces of the
same dimension n − 3, u, v are the faces of the same dimension n − 4. We may
use occasionally A, B to denote faces of dimension n + 1. These faces may appear
with indices but these letter should be a direct hint which dimension we are working
on. The above examples were already using this convention. Last but not least the
composition of two morphisms

X Y-
f

Z-
g

may be denoted as either g ◦ f or more often f ; g. In any case we will write which
way we mean the composition.
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2 Hypergraphs

A hypergraph S is

1. a family {Sk}k∈ω of finite sets of faces; only finitely many among these sets
are non-empty;

2. a family of functions {γSk : Sk+1 t· 1Sk → Sk}k∈ω; where 1Sk = {1u : u ∈ Sk} is
the set of empty faces of dimension k; the face 1u is the empty k-dimensional
face on a non-empty face u of dimension k − 1.
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3. a family of total relations {δSk : Sk+1 t· 1Sk → Sk t· 1Sk−1
}k∈ω; for a ∈ Sk+1

we denote δSk (a) = {x ∈ Sk t· 1Sk−1
: (a, x) ∈ δSk }; δSk (a) is either singleton

or it is non-empty subset of Sk. Moreover δS0 : S1 t· 1S0 → S0 t· 1S−1 is a
function (for this expression to make sense we assume that S−1 = ∅). We put
δ̇(a) = δ(a) ∩ S and δ̈(a) = δ(a) ∩ 1S .

Sk t· 1Sk−1
Sk

Sk+1 t· 1Sk

δSk

�
�

�
�	

γSk

@
@
@
@R

◦

A morphism of hypergraphs f : S −→ T is a family of functions fk : Sk −→ Tk, for
k ∈ ω, such that the diagrams

Sk Tk-
fk

Sk+1 Tk+1
-fk+1

?

γ
?

γ

Sk t· 1Sk−1
Tk t· 1Tk−1

-
fk + 1fk−1

Sk+1 Tk+1
-fk+1

?
δ

?
δ

commute (where 1fk−1
(1x) = 1fk−1(x), for x ∈ Sk−2), for k ∈ ω.

The commutation of the left hand square is the commutation of the diagram
of sets an functions but in case of the right hand square we mean more than
commutation of a diagram of relations, i.e. we demand that for any a ∈ S≥1,
fa : δ(a) −→ δ(f(a)) be a bijection, where fa is the restriction of f to δ̇(a) (if
δ(a) = 1u we mean by that δ(f(a)) = 1f(u)). The category of hypergraphs is de-
noted by Hg.

Convention. If a ∈ Sk we treat γ(a) sometimes as an element of Sk−1 and
sometimes as a subset {γ(a)} of Sk−1. Similarly δ(a) is treated sometimes as a set
of faces or as a single face if this set of faces is a singleton. In particular, when we
write γ(a) = δ(b) we mean rather {γ(a)} = δ(b) or in other words that δ(b) has one
element this element is a face (not an empty face) and that this face is γ(a). We
can also write γ(a) ∈ δ(b) to mean that δ(b) ⊂ S and that γ(a) is one (of possibly
many) elements of δ(b). This convention simplifies the formulas considerably.

Notation. Before we go on, we need some notation. Let S be an ordered hyper-
graph.

1. The dimension of S is max{k ∈ ω : Sk 6= ∅}, and it is denoted by dim(S).

2. The sets of faces of different dimensions are assumed to be disjoint (i.e. Sk ∩
Sl = ∅, for k 6= l); S is also used to mean the set of all faces of S i.e.

⋃n
k=0 Sk;

the notation A ⊆ S mean that A is a set of some faces of S; Ak = A ∩ Sk, for
k ∈ ω.

3. If a ∈ Sk then the face a has dimension k and we write dim(a) = k.

4. S≥k =
⋃
i≥k Si, S≤k =

⋃
i≤k Si. The set S≤k =

⋃
i≤k Si is closed under δ

and γ so it is a sub-hypergraph of S, called k-truncation of S.

5. δ(A) =
⋃
a∈A δ(a) is the image of A ⊆ S under δ;

γ(A) = {γ(a) : a ∈ A} is the image of A under γ.
Following the convention mentioned above if either γ(A) or δ(A) is a singleton
we may treat them as a (possibly empty) single face.
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6. For a ∈ S≥1, the set θ(a) = δ(a) ∪ γ(a) is the set of codimension 1 faces in a.
We put θ̇(a) = θ(a) ∩ S.

7. Let x, α ∈ S. We define the following subsets of faces of S:

(a) empty domain faces: Sε = {a ∈ S : δ(a) ∈ 1S};
(b) non-empty domain faces: S−ε = S − Sε; we write δ−ε(A) for δ(A)∩ S−ε;
(c) loops: Sλ = {a ∈ S : δ(a) = γ(a)};
(d) non-loops: S−λ = S − Sλ; we also write δ−λ(A) for δ(A) ∩ S−λ;

(e) unary faces: Su = {a ∈ S : |δ̇(a)| = 1};
(f) for α ∈ S≥2 we define the set of internal faces of α;

ι(α) = {x ∈ S : ∃a, b ∈ δ̇−λ(α) : γ(a) = x ∈ δ(b)} = γδ̇−λ(α) ∩ δδ̇−λ(α)

(g) internal faces: ι(S);

(h) initial faces: I = IS = Sε − γ(S−λ);

(i) x−cluster (of initial faces): Ix = ISx = {α ∈ IS : γγ(α) = x};
(j) initial faces over α: I≤+α = {β ∈ I : β ≤+ α};
(k) x−cluster (of initial faces) over α: I≤+α

x = I≤+α ∩ Ix.

8. On each set Sk we introduce two binary relations <Sk,− and <Sk,+. We usually
omit k in the superscript and sometimes even S.

(a) <S0,− is the empty relation. For k > 0, the relation <Sk,− is the transitive
closure of the relation �Sk,− on Sk, such that a �Sk,− b iff γ(a) ∈ δ(b).
We write a ⊥Sk,− b if either a <Sk,− b or b <Sk,− a, and we write a ≤− b
iff a = b or a <− b;

(b) <Sk,+ is the transitive closure of the relation �Sk,+ on Sk, such that
a�Sk,+ b iff there is α ∈ S−λk+1, such that a ∈ δ(α) and γ(α) = b. We write
a ⊥Sk,+ b if either a <Sk,+ b or b <Sk,+ a, and we write a ≤+ b if either
a = b or a <+ b.

(c) a 6⊥ b if both conditions a 6⊥+ b and a 6⊥− b hold.

9. Let a, b ∈ Sk. A lower path from a to b in S is a sequence of faces a0, . . . , am
in Sk such that a = a0, b = am and, γ(ai−1) ∈ δ(ai), for i = 1, . . . ,m.

A lower path is a flat lower path if it contains no loops other than a or b.

10. Let x, y ∈ Sk. An upper path from x to y in S is a sequence a0, . . . , am in Sk+1

such that x ∈ δ(a0), y = γ(am) and, γ(ai−1) ∈ δ(ai), for i = 1, . . . ,m.

An upper path is a flat upper path if it contains no loops.

11. The iterations of γ, δ and θ will be denoted in two different ways. By γk,
δk and θk we mean k applications of γ and δ, respectively. By γ(k), δ(k) and
θ(k) we mean the application as many times γ, δ and θ, respectively, to get
faces of dimension k. For example if a ∈ S5 then δ3(a) = δδδ(a) ⊆ S2 and
δ(3)(a) = δδ(a) ⊆ S3.
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3 Face structures

To simplify the notation, we treat both δ and γ as functions acting on faces as well
as on sets of faces, which means that sometimes we confuse elements with singletons.
Clearly, both δ and γ when considered as functions on sets are monotone.

We need the following relation. Let S be a hypergraph. We introduce an ’equal-
ity’ relations ≡1 on subsets of Sk ∪ 1Sk−1

, for k ∈ ω, that may ignore the 1S-part of
the sets in presence of faces from S. Let A,B ⊆ Sk ∪1Sk−1

. We set that A is 1-equal
B, notation A ≡1 B, iff A ∪ 1θ(A∩S) = B ∪ 1θ(B∩S).

An ordered face structure (S,<Sk,∼)k∈ω (also denoted S) is a hypergraph S to-
gether with a family of {<Sk,∼}k∈ω of binary relations (<Sk,∼ is a relation on Sk),
if it is non-empty, i.e. S0 6= ∅ and

1. Globularity: for a ∈ S≥2:

γγ(a) = γδ(a)− δδ̇−λ(a), δγ(a) ≡1 δδ(a)− γδ̇−λ(a).

and for any a ∈ S:
δ(1a) = a = γ(1a).

2. Local discreteness: if x, y ∈ δ(a) then x 6⊥+ y.

3. Strictness: for k ∈ ω, the relations <Sk,+ and <Sk+1,∼ are strict orders6; <S0,+

is linear; (i.e. no flat path is a cycle).

4. Disjointness: for k ∈ ω, the relation <Sk,∼ is a maximal strict order relation
contained in <Sk,− that is disjoint from <Sk,+, i.e. for k > 0,

⊥Sk,∼ ∩ ⊥Sk,+= ∅

for any a, b ∈ Sk:
if a <∼ b then a <− b

if θ(a) ∩ θ(b) = ∅ then a <∼ b iff a <− b

(i.e. if faces are not incident then <∼ is the same as <−).

5. Pencil linearity: for any a, b ∈ S≥1, a 6= b,

if θ̇(a) ∩ θ̇(b) 6= ∅ then either a ⊥∼ b or a ⊥+ b

for any a ∈ Sε≥2, b ∈ S≥2,

if γγ(a) ∈ ι(b) then either a <∼ b or a <+ b

(i.e. if faces are incident then they are comparable).

6. Loop-filling: Sλ ⊆ γ(S−λ); (i.e. no empty loops).

The relation <+ is called the upper order and <∼ is called lower order.
The morphism of ordered face structures, the monotone morphism, f : S −→ T

is a hypergraph morphism that preserves the order <∼. The category of ordered
face structures, is denoted by oFs.

The relation <∼ in an ordered face structure S induces a binary relation
(δ̇(a), <∼a ) for each a ∈ S>0 (where <∼a is the restriction of <∼ to the set δ̇(a)).
In the construction of the free ω-categories over an ordered face structure we need

6By strict order we mean an irreflexive and transitive relation.
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to consider hypergraph morphisms that preserves only this induced structure (not
the whole relation <∼). This is why we introduce the category of local face struc-
tures.

A local face structure (S,<Sk,∼a )a∈S is a hypergraph S together with a family of
{(δ(a), <Sk,∼a )}a∈S of binary relations. The morphism of local face structures, the
local morphism, f : S −→ T is a hypergraph morphism that is a local isomorphism
i.e. for a ∈ S>1 the restricted map fa : (δ̇(a), <∼a ) −→ (δ̇(f(a)), <∼f(a)) is an order

isomorphism, where fa is the restriction of f to δ̇(a). The category of local face
structures, is denoted by lFs.

Clearly we have a ’forgetful’ functor:

| − | : oFs −→ lFs

sending (S,<Sk,∼)k∈ω to (S,<∼a )a∈S>1 , where <∼a is the restriction of <∼ to δ̇(a),
for a ∈ S>1.

Remarks. Before we go on, we shall comment on the notions introduced above.

1. The reason why we call the first condition ’globularity’ is that it will imply
the usual globularity condition in the ω-categories generated by ordered face
structures. The word ’local’ in ’Local discreetness’ as anywhere else in the
paper refers to the fact that this property concerns sets of faces constituting
the domain of a face rather than the set of all faces.

The property of ’pencil linearity’ is strongly connected with the property of
positive face structures with the same name, c.f. [Z]. There it means that
the set of faces with a fixed codomain x, γ-pencil, (as well as the set of faces
whose domains contain a fixed face x, δ-pencil,) are linearly ordered by <+.
For ordered face structures the same is true about the faces that are not loops.
The full condition also has some implications for loops in pencils.

2. The relation ≡1, needed to express the δ-globularity, is a way to say that
two sets of faces, that may contain empty faces, are essentially equal, even if
they differ by some empty faces. We identify via ≡1 two such sets if those
empty faces are morally there anyway. A,B ⊆ Sk ∪ 1Sk−1

. Then the following
conditions are equivalent

(a) A ≡1 B;

(b) the subhypergraphs of S generated by A and B are equal;

(c) Ȧ = Ḃ, and Ä ∪ 1θ(Ȧ) = B̈ ∪ 1θ(Ḃ).

3. We shall analyze in details γ-globularity and δ-globularity but some easier
observations first:

(a) δδ−ε(a) = δ̇δ(a), δδε(a) = δ̈δ(a).

(b) If x ∈ T ε then δ̇−λ(x) = ∅ and γγ(x) = γδ(x) = γ(1u) = δ(1u) = δδ(x) =
γδ(x). In particular, γ(x) is a loop and δ(x) = 1γγ(x), (i.e. u = γγ(x)).

(c) If γ(a) ∈ T ε then δγ(a) = 1γγγ(a).

For δ-globularity we distinguish two cases γ(a) ∈ T ε and γ(a) ∈ T−ε, and each
has two parts, for faces, and for empty-faces (the condition for empty faces is
translated to the condition about faces one dimension lower).

Case γ(a) ∈ T−ε :

faces: δγ(a) = δ̇δ(a)− γδ̇−λ(a);
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e-faces: γγδε(a) ⊆ θδγ(a);
this is because we must have δδε(a) ⊆ 1θδγ(a).

Case γ(a) ∈ T ε :

faces: δ̇δ(a) ⊆ γδ̇−λ(a);
e-faces: γγγ(a) = γγδε(a);

this is because we must have 1γγγ(a) = δγ(a) = δδε(a) = 1γγδε(a).

The γ-globularity is much easier. We notice that if a ∈ T ε then the condition
is still slightly simpler, empty faces play no role. We consider again two cases:

Case a ∈ T ε: γγ(a) = γδ(a).

Case a ∈ T−ε: γγ(a) = γδ(a)− δδ̇−λ(a);
i.e. all elements of γδ(a) but γγ(a) are in δδ̇−λ(a). So we have x0 ∈ δ̇(a)
∼-maximal in δ̇(a) such that γγ(a) = γ(x0). x0 might be a loop in which
case, if γ(a) is not a loop, there is another (unique) element x1 ∈ δ̇−λ(a),
such that γ(x1) = γγ(a).

4. If S has dimension n, as a hypergraph, then we say that S is ordered n-face
structure.

5. A k-truncation of an ordered n-face structure S is not in general an an ordered
k-face structure. However k-truncation of a local n-face structure is a local
k-face structure. This will be important later, in the description of the many-
to-one computads.

6. The size of an ordered face structure S is the sequence natural numbers
size(S) = {|Sn − δ(S−λn+1)|}n∈ω, with almost all being equal 0. We have an
order < on such sequences, so that {xn}n∈ω < {yn}n∈ω iff there is k ∈ ω such
that xk < yk and for all l > k, xl = yl. This order is well founded and many
facts about ordered face structures will be proven by induction on the size.

7. Let S be an ordered face structure. S is k-normal iff dim(S) ≤ k and
size(S)l = 1, for l < k. S is k-principal iff size(S)l = 1, for l ≤ k. S is
principal iff size(S)l ≤ 1, for l ∈ ω. S is principal of dimension k iff S is
principal and dim(S) = k. By pFs (nFs) we denote full subcategories of oFs
whose objects are principal (normal) ordered face structures, respectively.

4 Combinatorial properties of ordered face structures

Local properties

Lemma 4.1 Let S be an ordered face structure, x, a ∈ S. Then

1. if δ(a) = 1x then x = γγ(a);

2. if a ∈ Sε then γ(a) ∈ Sλ;

3. if γ(a) ∈ Sε then δε(a) 6= ∅;

4. if a ∈ S−λ then γ(a) 6∈ δ(a);

5. θ̈θ(a) = δδε(a);

6. if x <+ y then y 6∈ I;

7. if x <∼ y then y 6 S−ε.
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Proof. Ad 1. Assume that δ(a) = 1x for some x ∈ S. Then δ̇−λ(a) = ∅ and using
γ-globularity we get

γγ(a) = γδ(a)− δδ̇−λ(a) = γδ(a) = γ(1x) = x

Ad 2. Suppose a ∈ Sε. By 1. we have δ(a) = 1γγ(a). Then δ̇−λ(a) = ∅. So using
δ-globularity we have

δγ(a) = δδ(a)− γδ̇−λ(a) = δ(1γγ(a)) = γγ(a)

i.e. γ(a) is a loop.
Ad 3. Assume γ(a) ∈ Sε. The using 2. and globularity we obtain

1γγγ(a) = δγ(a) = δδ(a)− γδ̇−λ(a).

Thus there is x ∈ δ(a) such that δ(x) = 1γγγ(a), i.e. x ∈ δε(a).
Ad 4. If we were to have γ(a) ∈ δ(a) then we would have γ(a) <+ γ(a) contra-

dicting strictness of <+.
Ad 5. As we have γγ(a), γδ(a) ⊆ S and δγ(a) ⊆ δδ(a) we have

θ̈θ(a) = (γγ(a) ∩ δγ(a) ∩ γδ(a) ∩ δδ(a)) ∩ 1S = δ̈δ(a) = δδε(a).

6. and 7. are obvious. 2

Lemma 4.2 Let S be an ordered face structure, t, a, b, α ∈ S.

1. If a 6= b, a, b ∈ Ṡ−λ, and either γ(a) = γ(b) or δ̇(a) ∩ δ̇(b) 6= ∅ then a ⊥+ b.

2. If a, b ∈ δ̇−λ(α), and either γ(a) = γ(b) or δ̇(a) ∩ δ̇(b) 6= ∅ then a = b.

3. Let t ∈ δ̇δ(a). Then there is a unique flat upper δ̇−λ(a)-path from t to γγ(α).

4. If α ∈ S−ε then there is the ∼-largest element a ∈ δ̇(α). For this a we have
γ(a) = γγ(α). All other elements of δ̇(α) have a well-defined ∼-successor.

5. If γ(α) ∈ S−λ then there is the ∼-largest element a ∈ δ̇−λ(α). For this a
we have γ(a) = γγ(α). All other elements of δ̇−λ(α) have a well-defined ∼-
successor in δ̇−λ(α).

6. If γ(α) ∈ S−λ and x ∈ δ̇γ(α) then there is a ∈ δ̇−λ(α) such that x ∈ δ(a).

7. If a <+ b then γ(a) ≤+ γ(b).

Proof. Ad 1. Let a, b be as in the Lemma. By pencil linearity, as θ̇(a)∩ θ̇(b) 6= ∅, it is
enough to show that a ⊥∼ b does not hold. Suppose contrary that a <∼ b. Then, by
disjointness, a <− b. Thus we have a flat lower path a = a0, . . . ak = b, with k > 0.
Now if γ(a) = γ(b) then we have a flat upper path γ(a), a1, . . . , ak, γ(a) showing that
γ(a) <+ γ(a). This contradicts strictness. on the other hand, if some x ∈ δ(a)∩δ(b)
then we have a flat upper path x, a0, . . . , ak−1, γ(ak−1). Hence x <+ γ(ak−1). As
x, γ(ak−1) ∈ δ(b) we get a contradiction with local discreetness.

Ad 2. This is immediate consequence of 1. and local discreetness.
Ad 3. Fix t ∈ δ̇δ(a). Let t, x1, . . . , xk, γ(xk) be the longest flat upper δ̇δ(a)-

path starting from t (it might be empty). Such a path exists by strictness. If
γ(xk) = γγ(a) we are done. So assume that γ(xk) 6= γγ(a). We have γ(xk) ∈ γδ(a).
So by globularity γ(xk) ∈ δδ̇−λ and hence there is xk+1 ∈ δ̇−λ(a) such that γ(xk) ∈
δ(xk+1), i.e. t, x1, . . . , xk, xk+1, γ(xk+1) is a longer flat path starting from t and we
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get a contradiction. Thus γ(xk) = γγ(a) and we have δ̇δ(a)-path from t to γγ(a).
The uniqueness of this path follows from 2.

Ad 4. As α ∈ S−ε, by globularity, there is a ∈ δ(α) such that γ(a) = γγ(α). If
there is a loop a ∈ δ(a) such that γ(a) = γγ(a) then by local discreetness there is
∼-largest such loop. Let a0 be the ∼-largest loop in δ(α) such that γ(a0) = γγ(α)
if such a loop exists or else the unique a0 ∈ δ−λ(α) such that γ(a0) = γγ(α). We
shall show that a0 is the ∼-largest element in δ(α).

We consider two cases. If γ(b) = γγ(α) by pencil linearity, 2. and definition of
a0 we have b ≤∼ a0. If γ(b) 6= γγ(α) then by 1. there is a flat upper δ(α)-path
γ(b), b1, . . . , bk, γγ(α) with k > 0. By the previous argument bk ≤∼ a0 and hence
b <∼ a0. Thus in either case a0 is the ∼-largest element in δ(α). For a ∈ δ(α)−{a0}
we define the successor in δ(α) as follows:

sucα(a) =

{
inf∼(A) if A = {a′ ∈ δλ(α) : γ(a) = γ(a′) and a′ <∼ a} 6= ∅,
a′′ such that a′′ ∈ δ−λ(α), γ(a) ∈ δ(a′′), otherwise.

The verification that it is a well defined successor is left for the reader.
Ad 5. Assume that γ(α) ∈ S−λ. First assume we have a0 ∈ δ̇−λ(α) such that

γ(a0) = γγ(α). Then by 2. such a0 is unique and by an argument similar to the one
above a0 is ∼-largest in δ̇−λ(α) and all other elements in δ̇−λ(α) have a successor
there. Thus it remains to find a0.

Note that to find a0 it is enough to find x ∈ δ̇δ(α) such that x 6= γγ(α). Having
such x, by 3., we have a flat upper δ̇−λ(α)-path x, b1, . . . , bk, γγ(α) with k > 0. We
put a0 = bk.

To find x we consider two cases. If γ ∈ S−ε then γγ(α) 6∈ δγ(α) ⊆ δ̇δ(α) and
δγ(α) 6= ∅. Then any element of δγ(α) can be taken as x.

If γ ∈ Sε then 1γγγ(α) = δγ(α) ⊆ δδ(α). So there is a ∈ δ(α) such that δ(α) =
1γγγ(α). If γ(a) = γγ(α) then we found a0 = a directly. Otherwise γγ(α) 6= γ(a) ∈
γδ(α). So γ(a) ∈ δ̇δ(a) and we put x = γ(a).

Ad 6. Suppose γ(α) ∈ S−λ and x ∈ δ̇γ(α). Then γ(α) ∈ S−ε and we have
γγ(α) 6∈ δγ(α) ⊆ δ̇δ(α). By 3. there is a flat upper δ̇−λ(α)-path x, a1, . . . , ak, γγ(α).
Then x ∈ δ(a1) and a1 ∈ δ̇−λ(α), as required.

Ad 7. The essential case a�+ b follows from 3. Then use induction. 2

Notation. Having 4.2.4 we can introduce farther notation. If α ∈ S−ε then the
∼-largest element in δ̇(α) will be denoted %(α).

If γ(α) ∈ S−λ then the ∼-largest element in δ̇−λ(α) will be denoted %−λ(α).
Clearly, whenever the formulas make sense, we have

γγ(α) = γ(%(α)) = γ(%−λ(α)).

Lemma 4.3 Let S be an ordered face structure, a, b, α ∈ S.

1. γ(a) ∈ Sλ iff δ(a) ⊆ Sλ or a ∈ Sε.

2. If b ∈ Sλ and a <+ b then a ∈ Sλ.

3. If a ∈ Sλ then there is α ∈ Iγ(a) such that γ(α) ≤+ a and δ(α) = 1γ(a).

4. If a ∈ Sε then there is b ∈ I such that b ≤+ a. In that case δ(b) = δ(a).

5. If x ∈ Sλ then there is b ∈ I such that γ(b) ≤+ x. In that case δ(b) = 1γ(x).

Proof. Ad 1. ⇐. By Lemma 4.1.2 if a ∈ Sε then γ(a) is a loop. So assume
that δ(a) ⊆ Sλ. Then δ̇−λ(a) = ∅(= δδ̇−λ(a) = γδ̇−λ(a). As for x ∈ δ(a) we have
γ(x) = δ(x), we also have γδ(a) = δδ(a). Thus by globularity, we have

γγ(a) = γδ(a)− δδ̇−λ(a) = γδ(a) = δδ(a) = δδ(a)− γδ̇−λ(a) = δγ(a)
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i.e. γ(a) is a loop, as required.
⇒. Suppose now that γ(a) ∈ Sλ. If δ(a) = 1γγ(a) then a ∈ Sε. So assume that

δ(a) ⊆ S. By globularity, we have

γδ(a)− δδ̇−λ(a) = γγ(a) = δγ(a) = δδ(a)− γδ̇−λ(a). (6)

If δ̇−λ(a) = ∅ then δδ̇−λ(a) = γδ̇−λ(a) = ∅ and γδ(a) = δδ(a) = γγ(a) i.e. δ(a) ⊆ Sλ,
as required.

So suppose now that δ̇−λ(a) 6= ∅. Let x ∈ δ̇−λ(a) be the ∼-largest element in
δ̇−λ(a). Such an x exists by Lemma 4.2. Then γ(x) ∈ γδ̇−λ(a) ⊆ γδ(a). By (6)
we have γ(x) ∈ δδ̇−λ(a), and hence we have x′ ∈ δ̇−λ(a) such that γ(x) ∈ δ(x′).
As x, x′ ∈ δ(a) we have x 6⊥+ x′. Moreover if we were to have γ(x′) ∈ δ(x) we
would have γ(x) <+ γ(x) contradicting strictness. Thus, by pencil linearity, we
have x <∼ x′, i.e. x is not ∼-largest element in δ̇−λ(a) contrary to the supposition.
Hence δ̇−λ(a) = ∅ indeed, and δ(a) ⊆ Sλ, as required.

Ad 2. Use 1. and then induction.
Ad 3. Use loop-filling, pencil linearity, strictness, and 1. to get a maximal

upper S − γ(S−λ)-path α1, . . . , αk, a ending at a with k > 0. Then α1 ∈ Iγ(a) and
γ(α1) ≤+ a.

Ad 4. Suppose γ(α) ∈ Sε. By globularity we have 1γγγ(α) = δγ(α) ⊆ δδ(α).
Then there is a ∈ δε(α) 6= ∅. The thesis follows form the above observation= ,
strictness, and inductions.

Ad 5. Fix x ∈ Sλ. By loop-filling and strictness there is a ∈ Sε such that
γ(a) ≤+ x. The rest follows from 4. 2

Lemma 4.4 Let S be an ordered face structure α, a, b ∈ S.

1. ιδ(α) = ιγ(α).

2. If a <+ b then ι(a) ⊆ ι(b).

Proof. Ad 1. First we prove ιγ(α) ⊆ ιδ(α). Fix u ∈ ιγ(α), i.e. we have
x, y ∈ δ̇−λγ(α) such that γ(x) = u ∈ δ(y). Let x, a1, . . . , ak, x

′ be a maximal flat
upper δ−λγ(α)-path starting from x such that γγ(ai) = u for i = 1, . . . , k. It might
be empty in which case x = x′. As x ∈ S−λ by Lemma 4.3.2, x′ ∈ S−λ. Since
γ(x′) = u ∈ ιγ(α) it follows that γ(x′) 6= γγγ(α). Thus x′ 6= γγ(α). By Lemma
4.2.3 there is a ∈ δ̇−λ(α) such that x′ ∈ δ(a). By maximality of x, a1, . . . , ak, x

′

we have γγ(a) 6= γ(x′). Again by Lemma 4.2.3 there is y′ ∈ δ̇−λ(a) such that
γ(x′) = u ∈ δ(y′). But then u ∈ ι(a) ⊆ ιδ(α).

Now we shall show ιδ(α) ⊆ ιγ(α). Let a ∈ δ(α) and u ∈ ι(a), i.e. there are
x′, y′ ∈ δ−λ(a) such that γ(x′) = u ∈ δ(y′). We shall construct x, y ∈ δ−λγ(α) such
that γ(x) = u ∈ δ(y), i.e. u ∈ ι(α).

Construction of x. Let al, . . . , a1, x
′ be the maximal flat δ−λε(α)-path (possibly

empty) ending at x′ such that γγ(ai) = γ(x′) and γ(ai) ∈ S−λ, for i = 1, . . . , l.
Thus there is x ∈ δ−λ(al) such that γ(x) = γγ(al). If x ∈ δγ(α) we have x with
the required property (if the sequence is empty x = x′). So suppose contrary that
x 6∈ δγ(α). Since x ∈ δδ(α), by globularity, it follows that x ∈ γδ̇−λ(α). So there
is al+1 ∈ δ̇−λ(α) such that γ(al+1) = x. Since x ∈ S−λ, we have al+1 ∈ S−ε.
But then the path al+1, al, . . . , a1, x

′ is longer then the maximal one and we get a
contradiction.

Construction of y. Let bk, . . . , b1, x′ be the maximal flat δ−λε(α)-path (possibly
empty) ending at y′ such that u ∈ δδ̇−λ(bi) = γ(x′) and γ(bi) ∈ S−λ, for i = 1, . . . , k.
By Lemma 4.2.6 there is y ∈ δ−λ(bk) such that u ∈ δ(y) (if the sequence is empty
y = y′). If y ∈ δγ(α) we have y as required. So suppose that y 6∈ δγ(α). As
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y ∈ δδ(α), by globularity, we have that y ∈ γδ̇−λ(α). So there is bk + 1 ∈ δ̇−λ(α)
such that γ(bk+1) = y. Since y ∈ S−λ, we have bk+1 ∈ S−ε. But then the path
bk+1, bb, . . . , b1, y

′ is longer then the maximal one and we get a contradiction again.
Ad 2. Use 1. and induction. 2

Lemma 4.5 Let S be an ordered face structure α, a, b ∈ S.

1. We have inclusions

δ̇δγ(α) δ̇δδ(α)-

δ̇γγ(α) δ̇γδ(α)-

? ?

2. θ̇θ(a) = γγ(a) ∪ δ̇δ̇−λ(a), γγ(a) ∩ δ̇δ̇−λ(a) = ∅.

3. θ̇θ(a) = δ̇γ(a) ∪ γδ̇−λ(a), δ̇γ(a) ∩ γδ̇−λ(a) = ∅.

4. θ̇θ(a) = γγ(a) ∪ ι(a) ∪ δγ−λε(a) (disjoint sum).

5. θ̇θ(a) = θ̇θ̇(a) = θ̇δ(a).

6. θ̇θθ(α) = θ̇θγ(α).

7. If a <+ b then θ̇θ(a) ⊆ θ̇θ(b).

8. θ̇θ(k+1)(a) = δ̇δ̇−λγ(k+2)(a) ∪ γ(k)(a).

9. γθ̈θ(k+2)(a) ⊆ θ̇(k)(a). (don’t bother with 1x’s)

10. γδ̇−λδ(α) = γδ̇−λγ(α).

11. γδ̇−λθ(k+2)(α) = γδ̇−λγ(k+2)(α).

Proof. Ad 1. This is an easy consequence of δγ(a) ⊆ δδ(a) and γγ(a) ⊆ γδ(a).
Ad 2. Let A = γγ(a) ∪ δ̇δ̇−λ(a). Clearly A ⊆ θ̇θ(a). We shall show the converse

inclusion. From globularity we have γγ(a) ∈ γδ(a) ⊆ A and δ̇γ ⊆ δ̇δ(a) = δ̇δ̇−λ(a)∪
δ̇δλ(a) ∪ δ̇δ̈(a). Moreover δ̇δλ(a) = γδλ(a) ⊆ γδ(a). Finally, if δ̈(a) 6= ∅ then
δ̈(a) = 1γγ(a). So δ̇δ̈(a) = δ(1γγ(a)) = γγ(a) ∈ A. Thus the other inclusion holds as
well. The second part follows directly from γ-globularity.

Ad 3. Let B = δ̇γ(a)∪ γδ̇−λ(a). Clearly B ⊆ θ̇θ(a). We shall show the converse
inclusion. From globularity we have δ̇δ(a) ⊆ B and γγ ∈ γδ(a) = γδ̇−λ(a)∪γδλ(a)∪
γδ̈(a) Moreover γδλ(a) = δδλ(a) ⊆ δδ(a). Finally, if δ̈(a) 6= ∅ then δ̈(a) = 1γγ(a). So
γδ̈(a) = γ(1γγ(a)) = γγ(a) ∈ A. Thus the other inclusion holds as well. The second
part follows directly from δ-globularity.

Ad 4. Using 2. and 3. we have

ι(a) ∩ (γγ(a) ∪ δγ(a)) = (γδ̇−λ(a) ∩ δδ̇−λ(a)) ∩ (γγ(a) ∪ δγ(a)) ⊆

⊆ (γδ̇−λ(a) ∩ δγ(a)) ∪ (γγ(a) ∩ δδ̇−λ(a)) = ∅ ∪ ∅ = ∅

ι(a) ∪ (γγ(a) ∪ δγ(a)) = (γδ̇−λ(a) ∩ δδ̇−λ(a)) ∪ (γγ(a) ∪ δγ(a)) ⊇

⊇ (γδ̇−λ(a) ∪ δγ(a)) ∩ (γγ(a) ∪ δδ̇−λ(a)) = θ̇θ(a) ∩ θ̇θ(a) = θ̇θ(a)

Note that δ̇γ(a) = δγ−ε(a) and if γ(a) ∈ Sλ then δ̇γ(a) = γγ(a). From these
observations the rest follows.
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5. Easy application of 2. and 3.
6. We need to show that θ̇θδ(α) ⊆ θ̇θγ(α). By 4. it is enough to show the

following three inclusions: ιδ(α) ⊆ θ̇θγ(α), γγδ(α) ⊆ θ̇θγ(α), δ̇γδ(α) ⊆ θ̇θγ(α). The
first follows immediately from 4. If γ(α) ∈ Sλ then, as in this case γδ(α) = γγ(α
the second and third inclusions hold as well. Thus we shall show the second and
third inclusion in case γ(α) ∈ S−λ.

Assume t ∈ γγδ(α). Pick ∼-minimal a ∈ δ(α) such that t = γγ(a). Then either
a ∈ Sε or a ∈ S−ε. In the former case δ(a) = 1γγ(a) ∈ δδ(α), and by δ-globularity
(see definition of ≡1) we have that t = γγ(a) ∈ θ̇δγ(α). In the later case by Lemma
4.2.4 (see also notation after the proof) x = %−λ(a) ∈ δ−λ(a) is well defined and we
have γ(x) = γγ(a). By ∼-minimality of a, we get x 6∈ γδ̇−λ(α). As x ∈ δδ(α) again
by δ-globularity we have that x ∈ δγ(α). Thus t = γ(x) ∈ γδγ(α). Thus in either
case t ∈ θ̇θγ(α). This end the proof of the second inclusion.

Now assume t ∈ δγδ(α). Pick ∼-minimal a ∈ δ(α) such that t ∈ δγ(a). Then
either a ∈ Sε or a ∈ S−ε. In the former case γ(a) ∈ Sλ. Then using the second
inclusion we get

t ∈ δγ(a) = γγ(a) ∈ γγδ(α) ⊆ θ̇θγ(α)

In the later case by Lemma 4.2.6 there is x ∈ δ(a) (i.e. x ∈ δδ(α)) such that
t ∈ δ(x). By ∼-minimality of a, x 6∈ γδ̇−λ. So by δ-globularity we have x ∈ δγ(α).
Thus t ∈ δ̇(x) ⊆ δ̇δγ(α). Thus in either case t ∈ θ̇θγ(α). This end the proof of the
third inclusion and the whole statement 6.

For 7. and 8. Use 1., 5., 6., and induction.
9. Exercise.
Ad 10. ⊇. As δγ(α) ⊆ δδ(α) we have δ̇−λγ(α) ⊆ δ̇−λδ(α). So γδ̇−λγ(α) ⊆

γδ̇−λδ(α).
⊆. Let t ∈ γδ̇−λδ(α). Pick ∼-minimal a ∈ δ(α) such that there is x ∈ δ̇−λ(a)

so that t = γ(x). By ∼-minimality of a x 6∈ γδ̇−λ(α) and hence by δ-globularity
x ∈ δ̇−λγ(α). Thus t = γ(x) ∈ γδ̇−λγ(α), as required.

11. follows from 10. by induction. 2

Lemma 4.6 (θ̇θ induction) Let S be an ordered face structure α, a, b ∈ S.

1. if a ∈ δ̇−λε(α) then γγ(α) 6∈ δ(a);

2. if a, b ∈ δ̇−λε(α) then δ(a) ∩ δ(b) = ∅;

3. θ̇θ(α) = γγ(α) ∪ δδ̇−λε(α);

4. θ̇θ-induction. Whenever

(a) if A ⊂ θ̇θ(α);

(b) γγ(α) ∈ A;

(c) for all a ∈ δ̇−λε(α), if γ(a) ∈ A then δ̇(a) ⊆ A

we have A = θ̇θ(α).

Proof. 1. and 2. follows from pencil linearity. 3. follows from Lemma 4.5.2 and
that δ ˙δ−λε = δ̇ ˙δ−λ. The θ̇θ-induction follows from 3. 2

Lemma 4.7 Let S be an ordered face structure a, a′ ∈ S.

1. If a, a′ ∈ S−λ and γ(a) ∈ δ(a′) then a <∼ a′.

2. If a <− a′ and θ(a) ∩ θ(a′) 6= ∅ then γ(a) ∈ δ(a′).
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Proof. Ad 1. Let a, b ∈ S−λ such that γ(a) ∈ γ(b). By strictness we cannot have
b <− a. Thus by pencil linearity it is enough to to show that a 6⊥+ b.

Suppose a <+ b, i.e. there is a flat upper path a, α1, . . . , αr, b. As a ∈ S−λ,
by Lemma 4.3, γ(αi) ∈ S−λ, for i = 1, . . . , r. Now either γ(a) = γγ(αr) = γ(b)
or there is 1 ≤ i ≤ r such that γ(a) 6= γγ(αi). As b ∈ S−λ and γ(a) ∈ δ(b) the
former is impossible. Fix minimal i0 such that γ(a) 6= γγ(αi0). Then, by Lemma
4.5.2, γ(a) ∈ δδ̇(αi0). As γ(αi0−1) ∈ S−λ (or a ∈ S−λ if i0 = 1) using Lemma
4.4 we get γ(a) ∈ ι(αi0) ⊆ ι(αr). On the other hand γ(a) ∈ δ(a) ⊆ δγ(αr) and
δγ(αr) ∩ ι(αr) = ∅. But this contradicts Lemma 4.5.4. Thus a <+ b cannot hold.

Now suppose that b <+ a, i.e. there is a flat upper path b, β1, . . . , βr, b. As
a ∈ S−λ, by Lemma 4.3, γ(βi) ∈ S−λ, for i = 1, . . . , r. Now either γ(a) ∈ δγ(βr)
or there is 1 ≤ i ≤ r such that γ(a) ∈ δγ(βi). As a ∈ S−λ and γ(βr) = a the
former is impossible. Fix minimal i1 such that γ(a) 6∈ δγ(βi1). By Lemma 4.5.3
we have γ(a) ∈ γδ̇(βi1). As b ∈ S−λ, if i1 > 1 then γ(βi1−1) ∈ S−λ, as well. Thus
γ(a) ∈ ι(βi1) ⊆ ι(βr). But γ(a) = γγ(βr). But this contradicts Lemma 4.5.4. again
and hence b <+ a cannot hold either.

Therefore a 6⊥+ b and then a <∼ b.
Ad 2. If a <− b then we have a lower path a = a0, a1, . . . , ak, ak+1 = a′, with

k ≥ 0, such that a1, . . . , ak is flat. If k = 0 then γ(a) ∈ δ(a′) and we are done. We
shall show, using θ(a) ∩ θ(a′) 6= ∅, that k > 0 is impossible.

If γ(a) = γ(a′) then γ(a), a1, . . . , ak, (ak+1), γ(a′) is a flat upper path, where the
face (ak+1) in parenthesis () is optional i.e. it is in the path iff it is not a loop. If
k > 0 then <+ is not strict.

If x ∈ δ(a) ∩ δ(a′) then we have a flat upper x, (a0), a1, . . . , ak, γ(ak), with a0

optional. If k > 0 then x <+ γ(ak) ∈ δ(a′). If x = γ(ak) then <+ is not strict and
if x 6= γ(ak) then, as x, γ(ak) ∈ δ(a′), we get contradiction with local discreetness.

If γ(a′) = δ(a) then γ(a′), (a0), a1, . . . , ak, (ak+1), γ(a′) is a flat upper path, and
again if k > 0, we get contradiction with strictness of <+. 2

Lemma 4.8 Let S be an ordered face structure α, a, b, x ∈ S.

1. If θ(a) ∩ ι(α) 6= ∅ then a <+ γ(α).

2. If α ∈ S − γ(S−λ) and x ∈ θ(a) ∩ ι(α) then there is b ∈ δ̇(α) such that a ≤+ b
and x ∈ θ(b).

Proof. 2. can be easily deduced from the proof of 1.
Ad 1. First we show that if x ∈ ι(α) then there is α′ ≤+ α such that x ∈ ι(α′) and

α′ ∈ S − γ(S−λ). Take as α′ a +-minimal face such that x ∈ ι(α′) and α′ ≤+ α. If
α′ ∈ γ(S−λ) then there is ξ ∈ S−λ such that γ(ξ) = α′. As x ∈ ι(α′) = ιγ(ξ) = ιδ(ξ)
there is α′′ ∈ δ(ξ) such that x ∈ ι(α′′). As α′′ <+ α′, α′ was not minimal contrary
to the supposition. Thus α′ ∈ S − γ(S−λ).

Next we show that it is enough to show 1. in case α ∈ S−γ(S−λ). Suppose that
x ∈ θ(a)∩ι(α) for some x ∈ S. By the above there is α′ ≤+ α such that x ∈ ι(α′) and
α′ ∈ S − γ(S−λ). So by Lemma 4.2.7 and the above we have a <+ γ(α′) ≤+ γ(α),
as required.

So assume that α ∈ S−γ(S−λ) and x ∈ θ(a)∩ ι(α) for some x ∈ S. We consider
three cases:

1. a ∈ S−λ and γ(a) = x ∈ ι(α);

2. a ∈ S−λ and x ∈ δ(a) ∩ ι(α);

3. a ∈ Sλ.
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We fix b, c ∈ δ−λ(α) such that γ(b) = x ∈ δ(c) for the rest of the argument.
Case 1. By Lemma 4.2.1 we have a ⊥+ b or a = b. If a ≤+ b then we are done. So

we need to show that b 6<+ a. Suppose contrary that b <+ a and b, β1, . . . , βr, a is a
flat upper (S−γ(S−λ))-path from b to a. As b ∈ δ(β1)∩δ(α) and β1, α ∈ S−γ(S−λ)
we have β1 = α. Thus x = γ(a) ∈ ι(α) = ι(β1) ⊆ ι(βr) and x = γ(a) = γγ(βr) 6∈
ι(βr) and we get a contradiction.

Case 2. Again by Lemma 4.2.1 we get that a ⊥+ c or a = c. If a ≤+ c
we are done. We shall show that c 6<+ a. Suppose contrary that c <+ a and
c, β1, . . . , βr, a is a flat upper (S − γ(S−λ))-path from c to a. As c ∈ δ(β1) ∩ δ(α)
and β1, α ∈ S− γ(S−λ) we have β1 = α. Hence x = γ(a) ∈ ι(α) = ι(β1) ⊆ ι(βr) and
x ∈ δ(a) = δγ(βr) 6∈ ι(βr) and we get a contradiction again.

Case 3. By loop-filling, pencil linearity, and strictness we have a flat (S−γ(S−λ))-
path α0, . . . , αk ending at a such that α0 ∈ Sε. As a ∈ Sλ we have γ(αi) ∈ Sλ ,for
i = 0, . . . , k, and γγ(α0) = γ(a). Thus by pencil linearity we have either α0 <

∼ α
or α0 <

+ α. As α0, α ∈ S − γ(S−λ) the later is impossible. It remains to show that
if α0 <

∼ α then a <+ γ(α). Let α0, β1, . . . , βr = α be a flat lower S − γ(S−λ)-path.
Since αi, βj ∈ S − γ(S−λ) we have αi = βi for i = 1, . . . ,min(k, r). If r ≤ k then
γ(α) ≤+ a. But γ(α) 6∈ Sλ 3 a. This is a contradiction with Lemma 4.3.1. So k < r
and hence a = γ(αk) ≤+ γ(βr) = γ(α). Since a ∈ Sλ 3 γ(α), we have in fact that
a <+ γ(a), as required. 2

Lemma 4.9 Let S be an ordered face structure a, b, c, d ∈ S.

1. If a <∼ b <∼ c and a, c <+ d then b <+ d.

Proof. 1. is easy. 2

Global properties

Let S be an ordered face structure, n, i ∈ ω, a, ai ∈ Sn, for i = 1, . . . , k. The weight
of a face a is the number

wt(a) = |{b ∈ S−λ : b <+ a}|

The weight of a flat path ~a = a1, . . . ak is is the sum of weights of its faces wt(~a) =∑k
i=1wt(ai).

Lemma 4.10 Let S be an ordered face structure α, a ∈ S, and a1, . . . , ak flat lower
δ̇−λ(α)-path with k > 0. Then

wt(γ(α)) >
k∑
i=1

wt(ai).

Moreover, wt(a) = 0 iff a ∈ Sλ or a 6∈ γ(S−λ).

Proof. Let α, ai be as in assumptions of Lemma. Then for b ∈ S, if b <+ ai then
b <+ γ(α). As ai 6<+ aj for any 1 ≤ i, j ≤ k, to prove the inequality we need to show
that the faces on the right hand side are calculated at most once, i.e. for b ∈ S−λ,
if b <+ ai then b 6<+ aj for j 6= i. Suppose contrary, that b <+ ai and b <+ aj , with
i < j. Then, by Lemma 4.2.7, γ(b) ≤+ γ(ai) and hence b <− aj . So by Lemma 4.7
b <∼ aj . But b <+ aj and we get a contradiction with disjointness.

The last statement of Lemma is left for the reader. 2

Lemma 4.11 Let S be an ordered face structure, X convex subset of S, x, y ∈ X.
If x <+ y then there is a unique flat upper (X − γ(X−λ))-path from x to y.
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Proof. Let X, x, and y be as in assumptions of Lemma. As X is convex there
is a flat upper X-path x, a1, . . . , ak, y. Assume that it is a path with the smallest
weight. Suppose that there is i ≤ k such that ai ∈ γ(X−λ). Hence there is α ∈ X−λ
such that γ(α) = ai. Let

x′ =

{
x if i = 1,
γ(ai−1) otherwise.

Then x′ ∈ δ(ai) ∩ δγ(α) ⊆ δδ(ai). By Lemma 4.2.3 there is a flat upper δ−λ(α)-
path x′, b1, . . . , br, γ(ai). By Lemma 4.10, wt(b1, . . . , br) < wt(ai), and hence
wt(a1, . . . , ai−1, b1, . . . , br, ai+1, . . . , ak) < wt(a1, . . . , ak), contrary to the supposi-
tion that the weight of the path x, a1, . . . , ak, y is minimal. Thus x, a1, . . . , ak, y is a
(X − γ(X−λ))-path, as required. The uniqueness of the path follows from Lemma
4.7 and pencil linearity. 2

A lower flat path a0, . . . , ak is a maximal path if δ(a1) ⊆ δ(S) − γ(S−λ) and
γ(ak) ∈ γ(S)− δ(S−λ), i.e. if it can’t be extended either way.

Lemma 4.12 (Path Lemma) Let k ≥ 0, a0, . . . , ak be a maximal lower flat path
in an ordered face structure S, b ∈ S, 0 ≤ s ≤ k, as <+ b. Then there are
0 ≤ l ≤ s ≤ p ≤ k such that

1. ai <+ b for i = l, . . . , p;

2. γ(ap) = γ(b);

3. either l > 0 and γ(al−1) ∈ δ(b)
or l = 0 and either a0 ∈ Sε and γγ(a0) ∈ θδ(b) or a0 ∈ S−ε and δ(a0) ⊆ δ(b);

4. ai <∼ b <∼ aj, for i = 1, . . . , l − 1 and j = p+ 1, . . . , k;

5. γ(ai) ∈ ι(S), for l ≤ i < p.

Proof. We put

l = min{l′ ≤ s : ∀l′≤i≤s ai <+ b} p = max{p′ ≥ s : ∀s≤i≤p′ ai <+ b}.

Then 1. holds by definition.
Ad 2. Suppose contrary that γ(ap) 6= γ(b). Let ap, β0, . . . βr, b be a flat upper

path from ap to b. As a ∈ S−λ we have γ(βr) ∈ S−λ for i = 1, . . . , r. Let i0 =
min{i : γ(ap) 6= γ(βi)}. Then γ(ap) ∈ ι(βi0) and hence, by maximality of the path,
p < k and δ(ap+1) ∩ ι(βi0) 6= ∅. Thus, by Lemma 4.8, ap+1 <

+ γ(βi0) ≤ γ(βr) = b
contrary to the definition of p.

Ad 3. Let al, β1, . . . , βr, b be a flat upper path. We consider two cases: l > 0
and l = 0.

Case l > 0. Suppose contrary that γ(al−1) 6∈ δγ(βr). Let i1 = min{i : γ(al−1) 6∈
δγ(βi)}. Then γ(al−1) ∈ ι(βi1) and hence, by Lemma 4.8, al−1 <+ γ(βi1) ≤+

γ(βr) = b contrary to the definition of l.
Case l = 0. If a0 ∈ Sε then, using Lemma 4.5, we have

γγ(a0) ∈ θθδ(β0) ⊆ θθγ(βr) = θθ(α) = θδ(α),

as required in this case.
So now assume that a0 ∈ S−ε. As, by maximality of the path, there is no face

a ∈ S−λ such that γ(a) ∈ δ(a0), we have δ(a0) ∩ γδ̇−λ(βi) = ∅ for i = 1, . . . , r.
Clearly δ(a0) ⊆ δδ(β0). Suppose that δ(a0) ⊆ δδ(βi) with i ≤ r. Then
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δ(a0) ⊆ δδ(βi)− γδ̇−λ(βi) = δγ(βi) ⊆ δδ(βi+1)

(last ⊆ make sense only for i < r). Thus δ(a0) ⊆ δγ(βr) = δ(b), as required.
4. follows easily from Lemma 4.3.7.
Ad 5. Fix l ≤ i ≤ p. Let ai, β1, . . . , βr, b be a flat upper path. If we were to

have γ(ai) 6∈
⋃r
i=0 ι(βr), by an argument similar as in 2., we would have γ(ai) = γ(b)

contradicting strictness. 2

Lemma 4.13 (Second Path Lemma) Let k ≥ 0, a0, . . . , ak be a flat lower path
in an ordered face structure S, x ∈ δ(a0) − γ(S−λ), b ∈ S, ak <+ b. Then either
x ∈ δ(b) or there is 0 ≤ i < k, such that γ(ai) ∈ δ(b), and hence x ≤+ y for some
y ∈ δ(b), (y = γ(ai)).

Proof. This is an easy consequence of Path Lemma. 2

Convex sets

Let S be an ordered face structure, n, i ∈ ω, a, ai ∈ Sn, for i = 1, . . . , k. The height
of a face a in S is the length of the longest flat upper (S − γ(S−λ))-path ending
at a. The height of a is denoted by htS(a) or if it does not lead to confusions by
ht(a). The height of a flat path ~a = a1, . . . ak is is the sum of heights of its faces
ht(~a) =

∑k
i=1 ht(ai).

The depth of a face a in S is the length of the longest flat upper (S − γ(S−λ))-
path starting from a. The depth of a is denoted by dhS(a) or if it does not lead to
confusions by dh(a). The depth of a flat path ~a = a1, . . . ak is is the sum of depths
of its faces dh(~a) =

∑k
i=1 dh(ai).

Let X be a subhypergraph of S. We say that X is a convex subset in S if it is
non-empty and the relation <X,+ is the restriction of <S,+ to X.

Let X be a convex subset of S, a ∈ X. The X-depth of a face a is the length
of the longest flat upper (X − γ(X−λ))-path starting from a. The X-depth of
a is denoted by dhX(a). If X = S and it does not lead to confusions we write
dh(a). The X-depth of a flat path ~a = a1, . . . ak is is the sum of depths of its faces
dhX(~a) =

∑k
i=1 dhX(ai).

Lemma 4.14 Let X be a convex subset of an ordered face structure S. Then X
satisfy all the axioms of ordered face structures but loop-filling, where as <X,∼ we
take <S,∼ restricted to X.

Proof. The only fact that needs a comment is that if a <X,∼ b then a <X,− b. But
this follows from the observation that a = a0, a1, . . . , ak−1, ak = b, (k > 0) is a lower
path iff γ(a0), a1, . . . , ak−1, γ(ak−1) is a (possibly empty) upper path. 2

Lemma 4.15 Let X be a convex subset of an ordered face structure S, and α, a, b ∈
X.

1. dhX(a) = 0 iff a 6∈ δ̇−λ(X).

2. If α ∈ X−λ − γ(X−λ) and b ∈ δ̇(α) then dhX(b) = dhX(γ(α)) + 1.

3. a <+ b then dhX(a) > dhX(b)).

Proof. Easy. 2
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Lemma 4.16 Let S be an ordered face structure, X convex subset of S, x, y ∈
X − ι(X) and x <+ y. Then there is a flat upper (X − δ(X−λ))-path from x to y.

Proof. Let x, y ∈ X − ι(X) and x <+ y. Let x, a1, . . . , am, y be a flat upper
X-path of least X-depth. Suppose that it is not (X − δ(X−λ))-path. Thus by
Lemma 4.15 dhX(a1, . . . , am) > 0. Pick as of maximal X-depth in a1, . . . , am. Let
α ∈ X − γ(X−λ) such that as ∈ δ(α). Let

l = min{l′ ≤ s : ∀l′≤i≤s ai ∈ δ(α)} p = max{p′ ≥ s : ∀s≤i≤p′ ai ∈ δ(α)}.

Since x, y ∈ X − ι(X), by an argument similar to the one given in Path Lemma, we
get that γ(ap) = γγ(α) and with

x′ =

{
x if l = 1,
γ(al−1) otherwise.

x′ ∈ δγ(α). Thus x, a1, . . . , al−1, γ(α), ap+1 . . . , am, y is a path of a smaller X-depth
then x, a1, . . . , am, y, contrary to the assumption. Therefore x, a1, . . . , am, y is in fact
a (X − δ(X−λ))-path. 2

Order

Lemma 4.17 Let S be an ordered face structure, a ∈ S. Then the set

{b ∈ S : a ≤+ b}

is linearly ordered by ≤+.

Proof. Let a, α1, . . . , αk be a maximal flat upper S − γ(S−λ)-path starting from a.
Then the set

{a} ∪ {γ(αi) : i = 1, . . . , k} = {b ∈ S : a ≤+ b}

is obviously linearly ordered. 2

Lemma 4.18 Let S be an ordered face structure a, b, c ∈ S.

1. If a <+ b and b <∼ c then a <∼ c.

2. If a <∼ b and b <+ c then either a <∼ c or a <+ c.

Proof. Ad 1. Assume a <+ b and b <∼ c. Let a, α1, . . . , αk, b be a flat upper path
from a to b and b = b0, b1, . . . , bl = c a lower path from from b to c. Using Lemma
4.2 we get a flat upper

⋃
i δ(αi)-path γ(a), a1, . . . , arγ(b). Thus we have a lower path

a, a1, . . . , ar, b1, . . . , bl = c, i.e. a <− c. If θ(a) ∩ θ(c) = ∅ then clearly a <∼ c.
If θ(a) ∩ θ(c) 6= ∅ then by pencil linearity we have a ⊥+ c or a ⊥∼ c. We shall

show that the only condition that does not lead to a contradiction is a <∼ c.
If a <+ c, then, as a <+ b, by Lemma 4.17 we have b ⊥+ c. Contradiction.
If c <+ a, then, as a <+ b, we have c ⊥+ b. Contradiction.
If c <∼ a, then, as b <∼ c, we have b ⊥∼ a. Contradiction.
Ad 2. Assume a <∼ b and b <+ c. First note that by an argument as above

we can show that if a and c are comparable at all then either a <∼ c or a <+ c.
Thus it is enough to show that a and c are comparable. Let a, a1, . . . , ak, b be a
lower path with k ≥ 0. We can assume that a1, . . . , ak is a flat path. As, b <+ c by
Path Lemma either a0 <

∼ b or a0 <
+ b. In the former case we have θ(a) ∩ θ(c) = ∅

and that a <− c. Thus a <∼ c. In the later either γ(a) ∈ δ(c) and we are done or
there is a flat upper path a, α1, . . . , αr, c and i ≤ r such that γ(a) ∈ ι(αi). Then by
Lemma 4.8 we have a <+ γ(αi) ≤+ γ(αr) = c, as required. 2
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Lemma 4.19 Let S be an ordered face structure, a, b ∈ S. Then we have

1. If a <+ b then γ(a) ≤+ γ(b);

2. If a <∼ b then γ(a) ≤+ γ(b);

3. If γ(a) = γ(b) then either a = b or a ⊥+ b or a ⊥∼ b;

4. If γ(a) <+ γ(b) then either a <+ b or a <∼ b;

5. If γ(a) ⊥∼ γ(b) then a 6⊥∼ b and a 6⊥+ b.

Proof. 1. is repeated from Lemma 4.2.7.
Ad 2. If a <∼ b then there is a lower path a = a0, a1, . . . , am = b. Hence

γ(a), a1, . . . , am, γ(b) is an upper path. So either γ(a) = γ(b) or after dropping loops
from the sequence a1, . . . , am we get a flat upper path from γ(a) to γ(b), as required.

Ad 3. This is an immediate consequence of pencil linearity.
Ad 4. Suppose that γ(a) <+ γ(b). If θ(a) ∩ θ(b) 6= ∅ then the thesis is obvious.

So assume that θ(a) ∩ θ(b) = ∅. Thus, by disjointness, it is enough to show that
either a <+ b or a <− b. There is a flat upper path γ(a), a1, . . . , am, γ(b), with
m ≥ 1.

Now we argue by cases. If b is a loop the clearly a <− b. Similarly, if b = am
then m > 1 and hence a <− b. Finally, assume that am <+ b. If a1 <

∼ b then a <b.
If a1 <

+ b then we have a flat path a1, α1, . . . , αr, b. Using our assumptions we find
i ≤ r such that γ(a) ∈ ι(αi). Then by Lemma 4.8.1 we get that a <+ γ(αi) ≤+ b,
as required.

Ad 5. It is an immediate consequence of 1., 2. and disjointness. 2

Proposition 4.20 Let S be an ordered face structure, a, b ∈ S. Let {ai}0≤i≤n,
{bi}0≤i≤n be two sequences of codomains of a and b, respectively, so that

ai = γ(i)(a), bi = γ(i)(b)

(i.e. dim(ai) = i), for i = 0, . . . , n. Then, there are two numbers l and k such that
0 ≤ l ≤ k ≤ n, 1 ≤ k and either

1. ai = bi for i < l,

2. ai <+ bi for l ≤ i < k,

3. ai <∼ bi for k = i ≤ n,

4. ai 6⊥ bi for k < i ≤ n,

or 1.-4. holds with the roles of a and b interchanged.

Proof. The above conditions we can present more visually as:

a0 = b0, . . . , al−1 = bl−1, al <
+ bl, . . . ak <

+ bk,

ak+1 <
− bk+1, ak+2 6⊥ bk+2, . . . , an 6⊥ bn.

These conditions we will verify from the bottom up. Note that by strictness <S0,+ is
a linear order. So either a0 = b0 or a0 ⊥+ b0. In the later case l = 0. As a 6= b then
there is i ≤ n such that ai 6= bi. Let l be minimal such, i.e. l = min{i : ai 6= bi}. By
Lemma 4.19.3, al ⊥+ bl or al ⊥∼ bl. We put k = max{i ≤ n : ai ⊥+ bi or i = l}. If
k = n we are done. If k < n then by Lemma 4.19.4, we have ak+1 ⊥∼ bk+1. Then
if k + 1 < n, by Lemma 4.19.5, ai 6⊥ bi for k + 2 ≤ i ≤ n. Finally, by Lemma 4.19.1
and .2 all the inequalities head in the same direction. This ends the proof. 2

For a, b ∈ S we define a <∼l b iff γ(l)(a) <∼ γ(l)(b).
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Corollary 4.21 Let S be an ordered face structure, a, b ∈ Sn, a 6= b. Then either
a ⊥+ b or there is a unique 0 ≤ l ≤ n such that a ⊥∼l b, but not both.

The above Corollary allows us to define an order <S (also denoted <) on all cells
of S as follows. For a, b ∈ Sn,

a <S b iff a <+ b or ∃l a <∼l b.

Corollary 4.22 For any ordered face structure S, and k ∈ ω, the relation <S

restricted to Sk is a linear order.

Proof. In the proof we use Lemma 4.18 without mention. We need to verify that
<S is transitive. Let a, b, c ∈ Sn, l, k ≤ n ∈ ω. We argue by cases.

Case a <+ b <+ c. Then by transitivity of <+ we have a <+ c.
Case a <+ b <∼l c. Then γ(l)(a) <+ γ(l)(b) <∼ γ(l)(c). Therefore γ(l)(a) <∼

γ(l)(c) and hence a <∼l c.
Case a <∼l b <+ c. Then γ(l)(a) <∼ γ(l)(b) <+ γ(l)(c). Thus either γ(l)(a) <∼

γ(l)(c) and hence a <∼l c or γ(l)(a) <+ γ(l)(c). In the later case by Proposition 4.20
we have either a <+ c or there is l′ such that l ≤ l′ ≤ n and a <∼l′ c.

Case a <∼k b <
∼
l c. If k = l then by transitivity of <∼ we have a <∼k c.

If k > l then γ(l)(a) ≤+ γ(l)(b) <∼ γ(l)(c). Therefore γ(l)(a) <∼ γ(l)(c) and
hence a <∼l c.

If k < l then γ(k)(a) ≤∼ γ(k)(b) <+ γ(k)(c). Therefore either γ(k)(a) ≤∼ γ(k)(c)
and hence a <∼k b or γ(k)(a) ≤+ γ(k)(c). In the later case again by Proposition 4.20
we have either a <+ c or there is k′ such that k ≤ k′ ≤ n and a <∼l′ c. 2

Monotone morphisms

From Corollary 4.22 we also get

Corollary 4.23 Let f : S → T be a monotone morphism of ordered face structures,
and l, k ∈ ω, l ≤ k, x, y ∈ Sk. Then

1. x <∼l y iff f(x) <∼l f(y);

2. x ≤+ y iff f(x) ≤+ f(y).

Proof. Obvious. 2

Remak. Note however that monotone morphisms do not preserve the relation
<+ in general.

Corollary 4.24 Any monotone morphism of ordered face structures which is a bi-
jection is an isomorphism.

Proof. If f is a monotone bijection of ordered face structures it is clearly a local
isomorphism. But by Lemma 4.23 it reflects <∼ as well, i.e. it is a monotone
isomorphism. 2

Lemma 4.25 Let f : S → T be a monotone morphism of ordered face structures.
If a ∈ T then if f−1(a) 6= ∅ there are b, c ∈ f−1(a) and a flat upper Su−γ(S−λ)-path
b, α1, . . . , αr, c, with r ≥ 0, such that f−1(a) = {b} ∪ {γ(αi)}1≤i≤r. In particular all
faces in f−1(a) are parallel to each other and the whole set is linearly ordered by
<+.
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Proof. Suppose b, c ∈ S such that f(b) = f(c) = a ∈ T . Then for any l, f(b) 6<∼l f(c).
Therefore for any l, b 6<∼l c. Thus, by Lemma 4.20, b <+ c. Hence There is a flat
upper S − γ(S−λ)-path b, α1, . . . , αr, c. As f(b) = f(c), we have f(αi) ∈ T λ, for
i = 1, . . . , r. In particular, αi ∈ Su, for i = 1, . . . , r. So we have shown that between
any two different elements of f−1(a) there is a flat upper Su − γ(S−λ)-path. This
clearly imply all the remaining parts of Lemma. 2

Corollary 4.26 Any endomorphism of an ordered face structures is an identity.

Proof. Let f : S → S be a monotone morphism. First note that as S0 is linearly
ordered by <+, if x, y ∈ S0 then ht(x) + dh(x) = ht(y) + dh(y), and x = y iff
ht(x) = ht(y). As f preserves <∼, using Lemma 4.7, we get that f0 : S0 → S0 is an
identity.

In order to get a contradiction we suppose that f is not identity. Let k be the
minimal such that fk 6= 1Sk and let a ∈ Sk be <S-minimal such that f(a) 6= a.
By minimality of k we have f(a)‖a. We shall show that f(a) ⊥+ a. By previous
observation and pencil linearity we have that either f(a) ⊥+ a or f(a) ⊥∼ a. If
a <∼ f(a) then we get an infinite sequence a <∼ f(a) <∼ ff(a) <∼ . . . contradicting
strictness of <∼. The condition f(a) <∼ a cannot hold for the similar reasons.
Suppose that a <+ f(a) (the argument for the case f(a) <+ a is similar). Let
a, α1, . . . , αr, f(a) be a flat upper path with r > 0. Then, by Lemma 4.7, we have
αi <

∼ αi+1 for i = 1, . . . , r − 1. Hence we get an infinite sequence

α1 <
∼ f(α1) <∼ ff(α1) <∼ . . .

again contradicting strictness of <∼. Thus f must be an identity indeed. 2

Proposition 4.27 Let f : S → T be a local morphism of ordered face structures
that preserves <∼ on sets Sk−δ(S−λk+1), for k ∈ ω. Then f is a monotone morphism.
In particular if S is n-normal then f is a monotone morphism iff fn : Sn −→ Tn
preserves <∼.

Proof. Let ≺ denote the relation <S,∼ restricted to such pairs of elements a, b that
either a, b ∈ δ(α) for some α ∈ S or a, b ∈ S − δ(S−λ). Thus we must show that if a
hypergraph morphism f : S → T between ordered face structures preserves ≺, i.e.
is such that for any a, b ∈ S if a ≺ b then f(a) <T,∼ b then it preserves <∼, i.e. for
any a, b ∈ S if a <S,∼ b then f(a) <T,∼ b.

So fix f : S → T preserving ≺ and a, b ∈ S such that a <∼ b. Then by
disjointness and few other facts, there is a lower path a = a0, . . . , ak = b such that
ai <

∼ ai+1, for i = 0, . . . , k − 1. By transitivity of <∼ it is enough to show that
f(a) <∼ f(b) only in case γ(a) ∈ δ(b). We shall prove by induction of the sum of
depth of a and b, s = dh(a)+dh(b) that if γ(a) ∈ δ(b) and a <∼ b then f(a) <∼ f(b).

If s = 0 then a, b ∈ S − δ(S−λ) and hence, by assumption on f , f(a) <∼ f(b).
So assume that s > 0 and that for s′ smaller than s the inductive hypothesis

holds. We consider two cases.
Case dh(a) ≥ dh(b). So we have α ∈ S−λ − γ(S−λ) such that a ∈ δ(α). Hence

δ(b)∪θδ(α) 6= ∅. If δ(b)∩ι(α) 6= ∅ then, by Lemma 4.8, b <+ γ(α). If δ(b)∩θγ(α) 6= ∅
then either b <+ γ(α) or γ(α) <∼ b, as two other cases easily lead to a contradiction.
If b <∼ γ(α) then a <∼ γ(α), and if γ(α) ≤+ b then a <+ b. So in both cases we
get a contradiction. Now if b <+ γ(α), as α ∈ S−λ − γ(S−λ) and dh(a) ≥ dh(b) we
have b ∈ δ(α). Hence a ≺ b and then by assumption on f we get f(a) <∼ f(b), as
required. If γ(α) <∼ b then, as γγ(α) ∈ δ(b) by strictness and induction hypothesis,
we have f(a) ≤+ f(γ(α)) <∼ f(b). So by Lemma 4.18 f(a) <∼ f(b), as well.
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Case dh(a) < dh(b). So we have β ∈ S−λ − γ(S−λ) such that b ∈ δ(β). Then
a 6∈ δ(α) and a 6⊥+ γ(β). We shall show that γ(a) ∈ δγ(β). Clearly we have
γ(a) ∈ δδ(β). If we were to have γ(a) ∈ ι(β) then a <+ γ(β) and hence dh(a) ≥
dh(γ(β)) + 1 ≥ dh(b) contradicting our assumption. Therefore γ(a) ∈ δγ(β). Now,
to get a contradiction, we assume that γ(a) = γγ(β) 6∈ δγ(β). By δ-globularity we
have c ∈ δ̇−λ(β) such that γ(c) = γ(a). Thus, by pencil linearity, either c ⊥∼ a
or c ⊥+ a. As if a <+ c then a <+ γ(β), if c <+ a then b <+ a, and if a <∼ c
then γ(a) 6= γ(c) the only non-trivial case, we have to consider, is c <∼ a. Thus
by Lemma 4.9 we have a <+ γ(β), and we get a contradiction again. Therefore
γ(a) ∈ δγ(β) as claimed.

As b <+ γ(β) <∼ a would lead to b <∼ a and contradiction, we must have
a <∼ γ(β). Thus by induction hypothesis we have f(a) <∼ f(γ(β)). Clearly, we
also have f(b) ≤+ f(γ(β)). As γ(a) ∈ δ(b) we have γ(f(a)) ∈ δ(f(b)) and hence, by
pencil linearity, either f(a) ⊥∼ f(b) or f(a) ⊥+ f(b). We shall show that the only
condition that does not lead to a contradiction is f(a) <∼ f(b). If f(a) <+ f(b)
then f(a) <+ f(γ(β)) and contradiction. If f(b) <∼ f(a) then, by Lemma 4.17,
f(a) ⊥+ f(γ(β)) and contradiction. If f(b) <∼ f(a) then f(b) <∼ f(γ(β)) and
again we get a contradiction. Thus f(a) <∼ f(b), as required. 2

Corollary 4.28 The ordered face structure S is uniquely determined by its local face
structure part |S| and the order <∼ restricted to the sets Sk − δ(S−λk+1), for k ∈ ω.

Proof. Let S and S′ be ordered face structures such that their local parts are
equal, i.e. |S| = |S′| and that the relation <∼,S agree with <∼,S

′
on the set S −

δ(S−λ). Then the identity morphism is preserving <∼ on the set S − δ(S−λ). Thus
by Proposition 4.27 it is a monotone morphism, considered as a map either way, i.e.
S = S′. 2

In general, there are more local than monotone morphisms between ordered
face structures. However if we restrict our attention to the principal ordered face
structures those two notions agree. We have

Corollary 4.29 The embedding | − | : pFs −→ lFs is full and faithful.

Proof. Fix a local morphism f : S −→ T between ordered face structures, with S
being principal. Then for k ∈ ω the sets Sk − δ(S−λk+1) has at most one element. So
<∼ is obviously preserved on these sets, i.e. by Lemma 4.27 f is monotone. 2

The limits and colimits in oFs are rather rare and in lFs also do not always exist.
For example if we take a local face structure S such that S0 = {u}, S1 = {x, y, z},
S2 = {a}, and with γ(x) = γ(y) = γ(z) = δ(x) = δ(y) = δ(z) = u, δ(a) = {x, y},
γ(a) = z, and <a being empty relation, then we have two local isomorphisms from
S to itself identity 1S and a map σ switching x and y. Clearly in the coequalizer Q
of 1S and σ the faces x and y should be identified but then the map q : S → Q in
to it cannot be local as there cannot be a bijection from δ(a) to δ(q(a)). Thus the
coequalizer 1S and σ does not exists in lFs. However we have

Proposition 4.30 The colimits and connected limits of diagrams from oFs exists
in lFs and are calculated in Set in each dimension separately.

Proof. The main property of the monotone morphisms of order face structures that
allow calculations of the above limits and colimits is the following. If f, g : S → T
are monotone morphisms and a ∈ S>0 such that f(a) = g(a) = b then the functions
fa, ga : δ(a) → δ(b) are equal. This is an immediate consequence of Corollary 4.23.
2
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5 Stretching the convex subhypergraphs

From Corollary 4.23 follows immediately that the (hypergraph) image of a monotone
morphism is a convex subset of the codomain. In this section we shall show that the
converse is also true and it is true in an essentially unique way, i.e. if X is a convex
subset of T then there is a monotone morphism νX : [X] → T such that image of
νX is X, i.e. we can cover a convex set by an ordered face structure. Moreover, if
fi : Si → T , i = 0, 1, are monotone morphisms such that their images are equal,
im(f0) = im(f1), then there is a monotone isomorphism g : S0 → S1 making the
triangle

S0 S1
-g

T

f0@@R
f1�

�	

commutes, i.e. the covering is essentially unique. As the title of the section suggests,
the construction of [X] is done by stretching X. The stretching means in this case
the splitting all the empty loops in the convex set X.

Let T be an ordered face structure, and X ⊆ T a subhypergraph. Recall that X
is convex in T if it is non-empty and the relation <X,+ is the restriction of <T,+ to
X. For the rest of the section assume that X is a convex subhypergraph of T . We
shall define an ordered face structure [X] and a monotone morphism νX : [X] −→ T .
But first we need to explain what are cuts of empty loops.

We define the set of empty loops in X as

EX = Xλ − γ(X−λ)

and the set of empty loops in X over x ∈ X as

EXx = {a ∈ E : γ(a) = x}.

As X is convex, the relation <T,∼ restricted to EXx is a linear order. We say that a
triple (x, L, U) is an x-cut i.e. a cut of EXx iff L ∪ U = EXx and for l ∈ L and l′ ∈ U ,
l <∼ l′. Note that both L and U might be empty and hence, there is an x-cut for
any x ∈ X (e.g. (x, ∅, EXx )). Let C(EXx ) be the set of x-cuts.

We need some notation for cuts in X. If (x, L, U) is a x-cut then L determines
U and vice versa (L = EXx − U and U = EXx − L).

Therefore we sometimes denote this cut by describing only the lower cut (x, L,−)
or only the upper cut (x,−, U), whichever is easier to define. Let a be an arbitrary
face in X, y ∈ δ̇(a). We define two sets

↑ a = {b ∈ EXγ(a) : a <∼ b}, ↓y a = {b ∈ EXy : b <∼ a}

that determine the cuts (x,−, ↑ a) and (y, ↓y a,−). We often omit subscript y inside
the cuts, i.e. we usually write (y, ↓ a,−) when we mean (y, ↓y a,−). If γ(a) = then
we sometimes write ↑x a instead of ↑ a to emphasis that the cut is overx.

Now we are ready to define [X]. We put for k ∈ ω

[X]k =
⋃
x∈Xk

C(EXx )

We put, for (x, L, U) ∈ [X]l

γ(x, L, U) = (γ(x),−, ↑ x)

29



and

δ(x, L, U) =

{
1(γγ(x),−,↑γ(x)) if δ(x) = 1γγ(x),
{(t, ↓ x,−) : t ∈ δ̇(x)} otherwise.

We have a hypergraph map

νX : [X] −→ T

such that νX(x, L, U) = x, for (x, L, U) ∈ [X]. The order <[X],∼ is inherited from T
via νX , i.e. (x, L, U) <[X],∼ (x′, L′, U ′) iff x <T,∼ x′, for (x, L, U), (x′, L′, U ′) ∈ [X].

Let Z ⊆ T . By < Z > we mean the least subhypergraph of T containing Z. We
call Z convex set if < Z > is a convex subhypergraph. If Z is a convex set we write
EZ , [Z] and νZ instead of E<Z>, [< Z >] and ν<Z>. Moreover, if Z = {α} we write
Eα, [α] and να instead of E{α}, [{α}] and ν{α}.

Example. An ordered face structure T

u2 u1-
x5

u0-
x0T

��⇓a2

�
�
� 6

x3

� ���6⇓a3
x4
� �AAK⇓a1
x2
� �AA @@I⇓a0
x1

has a convex subset X

u2 u1-
x5

u0-
x0X

��⇓a2

�
�
� 6

x3

� ���6
x4
� �AAK⇓a1
x2
� �AA @@I x1

with EX = {x4, x1} whose stretching is the following ordered face structure [X]:

[X]
u2 (u1, ∅, {x4, x1})-

x5

-x4

(u1, {x4}, {x1})-
x3

⇓a2 (u1, {x4, x1}, ∅)-
x1

u0
-
x0

� ��� CCO⇓a1 x2

We adopt the convention that the empty cut in [X], say (x5, ∅, ∅), is identified with
the corresponding face in X, x5 in this case.

Lemma 5.1 Let T be an ordered face structure, X be a convex subset of T ,
(a, L, U), (a′, L′, U ′) ∈ [X]. Then

1. (a, L, U) is an empty domain face in [X] iff a is an empty domain face in T ;

2. (a, L, U) is a loop in [X] iff a is a loop in T and there is no empty loop l ∈ EX
such that l ≤T,+ a;

3. (a, L, U) <+ (a′, L′, U ′) iff a <+ a′ or (a = a′ and L ⊆6 L′);

4. (a, L, U) <− (a′, L′, U ′) iff a <− a′ and (if γ(a) ∈ δ(a′) then Eγ(a) =↑γ(a)

a∪ ↓γ(a) a
′);

5. If (a, L, U) ∈ [X]−ε then ’δ(a, L, U) is δ(a) with colors’: if x, y ∈ δ(a) such that
y is <∼-successor of x in δ(a) then (y, ↓ a,−) is <∼-successor of (x, ↓ a,−)
in δ(a, L, U); in particular γ(x, ↓ a,−) ∈ δ(y, ↓ a,−).

6. If (a, L, U) ∈ [X]ε then δ(a, L, U) = 1(γγ(a),↓γ(a),−).
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Proof. 1., 5. and 6. are obvious.
Ad 2. If (a, L, U) is a loop in [X] so must be a in T . So fix a cut (a, L, U) in

[X] such that a is a loop. Let us denote γ(a, L, U) = (γ(a),−, ↑ a) and δ(a, L, U) =
(γ(a), ↓ a,−).

If there is l ∈ EXγ(a) such that l ≤+ a, then a 6⊥∼ l. Hence l ∈ L′ and l ∈ U ′. So
γ(a, L, U) 6= δ(a, L, U) and (a, L, U) is not a loop.

If there is no l ∈ EXγ(a) such that l ≤+ a then any empty loop l ∈ EXγ(a) is <∼-
comparable with a. Thus γ(a, L, U) = (γ(a),−, ↑ a) = (γ(a), ↓ a,−) = δ(a, L, U).

Ad 3. Fix (a, L, U), (a′, L′, U ′) in [X].
First we shall show that the condition is necessary. Suppose that

(a, L, U), (α1, L1, U1), . . . , (αk, Lk, Uk), (a′, L′, U ′) is a flat upper path in [X].
Suppose that a 6= a′. Clearly a, α1, . . . , αk, a

′ is an upper path in X. So after
deleting loops we get a flat upper X-path from a to a′, i.e. a <+ a′.

Suppose now that a = a′ and L 6= L′. As (a, L, U) ∈ δ(α1, L1, U1) 6= ∅ we have
L =↓a α1. Moreover, γ(αk, Lk, Uk) = (a′, L′, U ′) implies that ↑a αk = U ′. Since

(a,−, ↑a αi) = γ(αi, Li, Ui) ∈ δ(αi+1, Li+1, Ui+1) = (a, ↓a αi+1,−)

we have that (a, ↓a αi+1, ↑a αi) is a cut, for i = 1, . . . , k − 1. As ↑a αi∩ ↓a αi = ∅,
we have that ↓a αi ⊆↓a αi+1, for i = 1, . . . , k − 1. Thus

L =↓a α1 ⊆↓a αk ⊆ EXa − ↑a αk = EXa − U ′ = L′

i.e. the condition is necessary.
Now we shall show that the condition is sufficient. First note that if l ∈ EXa then

δ(l, ∅,−) = (a, ↓ l,−) = (a, ↓ l, {l}∪ ↑ l),

γ(l, ∅,−) = (a,−, ↑ l) = (a, ↓ l ∪ {l}, ↑ l).

Thus if a = a′ we have that (a, L, U) <+ (a′, L′, U ′) iff L ⊆6 L′.
Assume now that a <+ a′. Let a, α1, . . . , αk, a

′ be a flat upper X-path of minimal
weight. We claim that it is X − γ(X−λ)-path. Suppose contrary that there is
A ∈ X−λ such that γ(A) = αi, for some i. Then we will have a flat upper δ(A)-path
β1, . . . , βr from γ(αi−1) (or a if i = 0) to γ(αi). Replacing αi by β1, . . . , βr we get
a flat upper X-path of smaller weight than α1, . . . , αk contrary to the choice of this
path. This α1, . . . , αk is a flat upper X − γ(X−λ)-path indeed.

As αi ∈ X − γ(X−λ) we have

δ(αi, ∅,−) = {(b, ↓ αi, ∅) : b ∈ δ(αi)}, γ(αi, ∅,−) = (γ(αi), ∅, ↑ αi).

From this and previous we get that

(a, L, U) ≤+ (a, ↓ α1, ∅) ∈ δ(αi+1, ∅,−),

γ(αi, ∅,−) ≤+ (γ(αi), ↓ αi+1, ∅) ∈ δ(α1, ∅,−)

γ(αk, ∅,−) ≤+ (a′, L′, U ′)

and this shows that (a, L, U) <+ (a′, L′, U ′), as required.
Ad 4. Using 3. we have the following equivalent statement

(a, L, U) <− (a′, L′, U ′)
∃x∈δ(a′) (γ(a),−, ↑ a) ≤+ (x, ↓ a′,−)

∃x∈δ(a′) γ(a) <+ x or (γ(a) = x and Eγ(a)− ↑γ(a) a ⊆↓γ(a) a
′)

a <− a′ and (if γ(a) ∈ δ(a′) then Eγ(a) =↑γ(a) a∪ ↓γ(a) a
′)

2
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Lemma 5.2 Let S be an ordered face structure, X a convex subset of S, a ∈ X,
u ∈ θδ(a), l ∈ EXu . Then

1. If a ∈ Sε then γ(a) ⊥∼ l.

2. If a ∈ S−ε then

(a) if u = γγ(a) then γ(a) <∼ l iff %(a) <∼ l;

(b) if u ∈ ι(a) then if x, y ∈ δ(a) and x <∼ l <∼ y there is z ∈ δ(a) such that
l ≤+ z and x <∼ z <∼ y;

(c) if u ∈ δγ(a) then l <∼ γ(a) iff l <∼ x0, where x0 is the ∼-minimal
element in δ(a) such that u ∈ δ(x).

Proof. Ad 1. By pencil linearity we have that either γ(a) ⊥∼ l or γ(a) ⊥+ l.
As l is an empty loop we cannot have γ(a) ≤+ l. We shall show that l <+ γ(a) is
impossible, as well.

Suppose not, and that we have a flat upper X − γ(X−λ)-path l, a1, . . . , ak, γ(a).
As ak ∈ X−ε we have that ak <+ a. But a ∈ Xε, so by Path Lemma, we have
ai <

+ a, for i = 1, . . . , n. Let a1, α1, . . . , αr, a be a flat upper X-path. As l ∈ δ(a)
and δγ(αi) ∪ γδ̇−λ(αi) = θδ(αi), either for all i, l ∈ δγ(αi), or there is i0 such that
l ∈ γδ̇−λ(αi0). In the former case l ∈ δγ(αr) = δ(a) and we get a contradiction, as
a ∈ T ε. In the later case l is not an empty loop in X contrary to the assumption.

Ad 2(a). First, assume γ(a) <∼ l. As γγ(a) = γ(l), by pencil linearity we have
either %(a) ⊥∼ l or %(a) ⊥+ l. We shall show that the other cases then %(a) <∼ l
lead quickly to a contradiction. If l <∼ %(a) then γ(a) <∼ %(a) and this is a
contradiction. If l <+ %(a) then l <+ γ(a) and this is a contradiction. If %(a) <+ l
then l ⊥+ γ(a) and this is again a contradiction. Thus we must have %(a) <∼ l7.

Next we assume %(a) <∼ l. By pencil linearity we have either γ(a) ⊥∼ l or
γ(a) ⊥+ l. We need to show that γ(a) <∼ l. We shall show that the condition
l <+ γ(a) leads to a contradiction. The other two are easily excluded. Clearly
l 6∈ δ(a).

So suppose that l <+ γ(a). Let l, a1, . . . , ak, γ(a) be a flat upper X − γ(X−λ)-
path. By Path Lemma, either there is i < k such that γ(ai) ∈ δ(a) or ai <+ a for
i = 1, . . . , k. In the former case we have l <+ γ(ai) <∼ %(a). Thus, by Lemma
4.18, l <∼ %(a) and this is a contradiction. In the later case, there is a flat upper
X-path a1, α1, . . . , αr, a. As l ∈ δ(a1) and l 6∈ δ(a) there is i such that l ∈ ι(αi). In
particular l is not an empty loop in X and we get a contradiction again.

Ad 2(b). Fix x, y ∈ δ(a) such that γ(x) = u ∈ δ(a), l ∈ EXu such that x <∼

l <∼ y. If l ∈ δ(a) 2(ii) obviously holds, so assume that l 6∈ δ(a). We have
γ(l) ≤+ γ(y) ≤+ γγ(a). Thus by Proposition 4.19, either l <∼ γ(a) or l <+ γ(a).
The former case gives immediately x <∼ γ(a) and a contradiction.

Thus we have l <+ γ(a). Fix a flat X-path l, a1, . . . , ak, γ(a). By Path Lemma,
either there is i < k such that γ(ai) ∈ δ(a) or ai <+ a for all 1 ≤ i ≤ k. In the
former case γ(ai) is the z we are looking for. We shall show that the later case leads
to a contradiction. Take a flat upper X-path a1, α1, . . . , αr, a. As l ∈ δ(a1) and
l 6∈ δ(a), there is 1 ≤ i ≤ r such that l ∈ γδ̇−λ(αi). In particular, l 6∈ Eu, contrary to
the assumption.

Ad 2(c). Suppose l <∼ γ(a). Then, as other cases are easily excluded, we have
l < x0 indeed.

On the other hand, if l <∼ x0 the only case not easily excluded is l <+ γ(a). Let
l, a1, . . . , ak, γ(a) be a flat upper X − γ(X−λ)-path. By Path Lemma either there is

7In the following, the similar simple arguments we will describe in a shorter form as follows: as
other cases are easily excluded, we have %(a) <∼ l.
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i0 < k such that γ(ai0) ∈ δ(a) or ai <+ a for i = 1, . . . , k. In the later case, there is
a flat upper X-path a1, α1, . . . , αk, a. As l 6∈ δ(a) and l ∈ δ(a1), there is 1 ≤ i ≤ k
such that l ∈ ι(αi). In particular l 6∈ EXu , contrary to the assumption.

In the former case we shall show that u ∈ δγ(ai), for i = 1, . . . , i0. We have
u = γ(l) ∈ δδ(a1). Note that if for some i ≤ i0, we would have that u ∈ ι(ai),
then, as u ∈ δ(x0), by Lemma 4.8, we would have x0 <

+ γ(ai0), contradicting local
discreteness. Now suppose contrary, that for some i1 ≤ i0, we have u 6∈ δγ(ai1).
Then, by the previous observation, we have u = γγ(ai1) ∈ γδ̇−λ(ai1). In particular,
δ̇−λ(ai1) 6= ∅ and γ(ai) is not a loop, for i1 ≤ i ≤ i0. As u 6∈ ι(ai) for i ≤ i0, we
have u = γγ(ai) for i ≤ i0. In particular u = γγ(ai0) ∈ γδ̇−λ(a). But u ∈ δγ(a) and
δγ(a) ∩ γδ̇−λ(a) = ∅ so we get a contradiction. 2

Proposition 5.3 Let T be an ordered face structure, X be a convex subset of T .
Then

1. [X] is an ordered face structure, and νX : [X]→ T is a monotone morphism;

2. if fi : Si → T , i = 0, 1, are monotone morphisms such im(f0) = im(f1), then
there is a monotone isomorphism g : S0 → S1 making the triangle

S0 S1
-g

T

f0@@R
f1�

�	

commutes;

3. EX is empty iff νX is an embedding;

4. if X is a proper subset of T then size(T ) > size([X]).

Proof. Ad 1. The fact that νX is a monotone morphism is immediate from the
definition of [X]. We need to check that [X] satisfies the axioms of ordered face
structures. Local discreteness and Strictness, are easy using Lemma 5.1.

Disjointness. We shall check that if θ(a, L, U)∩θ(a′, L′, U ′) = ∅ and (a, L, U) <−

(a′, L′, U ′) then (a, L, U) <∼ (a′, L′, U ′). The remaining parts of the condition are
easy.

Suppose that θ(a, L, U) ∩ θ(a′, L′, U ′) = ∅ and (a, L, U) <− (a′, L′, U ′). By
Lemma 5.1 we have that a <− a′. If θ(a) ∩ θ(a′) = ∅, we get by disjointness in T
that a <∼ a′, and we are done. Assume that θ(a) ∩ θ(a′) 6= ∅. Thus by Lemma
4.7.2 γ(a) ∈ δ(a′). By characterization of <− in [X] we have ↑γ(a) a∪ ↓γ(a) a

′ =
Eγ(a). As (γ(a),−, ↑ a) ∈ θ(a, L, U) and (γ(a), ↓ a′,−) ∈ θ(a′, L′, U ′) we get that
(γ(a),−, ↑ a) 6= (γ(a), ↓ a′,−). So Eγ(a)− ↑γ(a) a 6=↓γ(a) a

′. But then there is
l ∈↑γ(a) a∩ ↓γ(a) a

′. Hence a <∼ l <∼ a′, i.e. a <∼ a′ as required.
Loop filling. Suppose (a, L, U) is a loop in [X]. If L 6= ∅ then let l = max∼(L). By

Lemma 5.1 (l, ∅,−) is not a loop in [X]. We have γ(l, ∅,−) = (a,−, ↑ l) = (a, L, U).
Now consider the case L = ∅. a is not an empty loop since otherwise (a, L, U)

wouldn’t be a loop in [X]. Thus there is α ∈ X−λ such that γ(α) = a. Clearly, we
can choose such α in X−λ − γ(X−λ). Then (α, ∅,−) is not a loop and

γ(α, ∅,−) = (γ(α),−, ↑ α) = (a, ∅, ↑ α) = (a, L, U).

Pencil linearity. Let (a, L, U) 6= (a′, L′, U ′) be some faces in [X] such that
θ̇(a, L, U) ∩ θ̇(a′, L′, U ′) 6= ∅. Then either a ⊥∼ b or a ⊥+ b or (a = b and L 6= L′).
In the first case we have (a, L, U) ⊥∼ (a′, L′, U ′) and in the remaining cases we have
(a, L, U) ⊥+ (a′, L′, U ′).

33



To see the second part of the pencil linearity assume that ǎ = (a, L, U) ∈ [X]ε,
b̌ = (b, L′, U ′) ∈ [X], x ∈ δ(b), such that (x, ↓ b,−), (y, ↓ b,−) ∈ δ−λ(b, L′, U ′), and

γγ(ǎ) = γ(x, ↓ b,−) ∈ δ(y, ↓ b,−)

i.e. for some t ∈ δ(y)

(γγ(a),−, ↑ γ(a)) = (γ(x),−, ↑ x) = (t, ↓ y,−) (7)

We need to show that either ǎ <∼ b̌ or ǎ <+ b̌. From the characterization of <∼

and <+ in [X] it is enough to show that either a <∼ b or a <+ b. And for that, by
Lemma 4.19.4, it is enough to show that γ(a) <+ γ(b). We shall consider four cases
separately:

1. x, y ∈ T−λ;

2. x ∈ T−λ and y ∈ T λ and there is ly ∈ Eγγ(a) such that ly ≤+ y;

3. y ∈ T−λ and x ∈ T λ and there is lx ∈ Eγγ(a) such that lx ≤+ x;

4. x, y ∈ T λ and there are lx, ly ∈ Eγγ(a) such that lx ≤+ x and ly ≤+ y.

Case 1. If x, y ∈ T−λ then γγ(a) ∈ ι(b). So, by pencil linearity in T , we get that
either a <∼ b or a <+ b.

Case 2. In this case we have γ(a) <∼ ly. As γ(x) = γγ(a) we have either
x ⊥∼ γ(a) or x ⊥+ γ(a). We have γ(a) 6<− x. Moreover, by Lemma 4.3, x 6<+ γ(a),
as x ∈ T−λ and γ(a) ∈ T λ. So we have either either γ(a) <+ x or x <∼ γ(a). In
the former case we get immediately γ(a) <+ γ(b). In the later case, we have

x <∼ γ(a) <∼ ly, x <+ γ(b) >+ ly. (8)

So we have γγ(a) ≤+ γ(ly) ≤+ γγ(b). Thus, by Lemma 4.19, we have γ(a) ⊥+ γ(b)
or γ(a) ⊥∼ γ(b). Using (8) we see that of four conditions only the γ(a) <+ γ(b)
does not lead to a contradiction.

Case 3. First note that γ(lx) = γ(x) = γγ(a) and hence γ(a) ⊥+ lx or γ(a) ⊥∼ lx.
The inequality γ(a) <∼ lx is impossible as lx 6∈↑ x =↑ γ(a). γ(a) ≤+ lx is impossible
since lx is an empty loop and γ(a) is not. Finally, lx <+ γ(a) is impossible as
(γ(a),−,−) is a loop in [X], and cannot contain any empty loops. So we have shown
that lx <∼ γ(a). As γγ(a) ∈ δ(y) and y ∈ T−λ, we have γ(a) <− y and y 6<− γ(a).
As y ∈ T−λ and γ(a) ∈ T λ, by Lemma 4.3, we cannot have y <∼ γ(a). So we must
have either γ(a) <+ y or γ(a) <∼ y. If γ(a) <+ y then clearly γ(a) <+ γ(b). If
lx <

∼ γ(a) <∼ y then having lx <+ γ(b) >+ y we can easily verify, as before in (8),
that we must have γ(a) <+ γ(b).

Case 4. As ly <+ y and ↓ y = Eγγ(a)− ↑ γγ(a), we have γ(a) <∼ ly. As
γγ(a) = γ(lx), we also have γ(a) ⊥+ lx or γ(a) ⊥∼ lx. It is easy to see that the only
inequality that does not lead to a contradiction in lx <

∼ γ(a). So we have

lx <
∼ γ(a) <∼ ly, lx <

+ γ(b) >+ ly. (9)

From (9) we get, as before from (8), that γ(a) <+ γ(b).
Globularity. Let us fix a face ǎ = (a, L, U) ∈ [X]≥2. As different a-cuts are

parallel, i.e. they have the same domains and codomains, to verify Globularity
condition in [X] we don’t need know in fact the very cut over a for which we check
the condition. It is enough to know that it is a cut over a. So in the following ǎ
will be treated as a cut over a, for which we don’t bother to specify exactly which
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one it is. In the following γ and δ when applied to cuts are meant in [X] and when
applied to faces are meant in T .

γ-globularity. If ǎ ∈ [X]ε then we have

γγ(ǎ) = (γγ(a),−, ↑ γ(a)) = γ(1(γγ(a),−,↑γ(a))) = γδ(ǎ)

Now assume that ǎ ∈ [X]−ε. We need to verify the following three conditions:

(i) γγ(ǎ) ∈ γδ(ǎ);

(ii) γγ(ǎ) 6∈ δδ̇−λ(ǎ);

(iii) γδ(ǎ) ⊆ γγ(ǎ) ∪ δδ̇−λ(ǎ).

Ad (i). We have (%(a), ↓ a,−) ∈ δ(ǎ) and then using Lemma 5.2.2.(a) we have

γγ(ǎ) = (γγ(a),−, ↑ γ(a)) = (γ%(a),−, ↑ γ(a)) = γ(%(a), ↓ a,−)

Ad (ii). Suppose that x ∈ δ(a) and u ∈ δ(x) so that (x, ↓ a,−) ∈ δ̇−λ(ǎ) and
(u, ↓ x,−) ∈ δδ̇−λ(ǎ). If u 6= γγ(a) then clearly (u, ↓ x,−) 6= (γγ(a),−, ↑ γ(a)). If
u = γγ(a) then x ∈ δλ(a) and by characterization of loops in [X], Lemma 5.1, there
is l ∈ EXγγ(a) such that l ≤+ x. Then l ≤+ γ(a). So ↓γγ(a) x 63 l 6∈↑ γ(a) and hence

γγ((̌a)) = (γγ(a),−, ↑ γ(a)) 6= (u, ↓ x,−) ∈ δ(x, ↓ a,−).

Ad (iii). Let x ∈ δ(a) so that

γ(x, ↓ a,−) = (γ(x),−, ↑ x) 6= (γγ(a),−, ↑ γ(a)) = γγ(ǎ).

Then either γ(x) 6= γγ(a) or γ(x) = γγ(a) and there is l ∈ EXγγ(a) so that x <∼ l and
γ(a) 6<∼ l. This implies that the face

y0 = min
∼
{y ∈ δ(a) : γ(x) ∈ δ(y) and either y ∈ T−λ or ∃l∈EX

γ(x)
l ≤+ y}

is well defined, i.e. the set over which the minimum is taken is not empty. Then we
have (y0, ↓ a,−) ∈ δ̇−λ(ǎ) and (γ(x),−, ↑ x) = (γ(x), ↓ y0,−) ∈ δδ̇−λ(ǎ).

δ-globularity. We consider separately two cases γ(ǎ) ∈ [X]ε and γ(ǎ) ∈ [X]−ε.
In the former case we need to verify two conditions

(i) δ̇δ(ǎ) ⊆ γδ̇−λ(ǎ);

(ii) γγγ(ǎ) = γγδε(ǎ).

Ad (i). Let x ∈ δ̇(a) and u ∈ δ̇(x) so that (u, ↓ x,−) ∈ δ̇δ(ǎ). As T is an ordered
face structure, δ̇δ(a) ⊆ γδ̇−λ(a) and hence u ∈ γδ̇−λ(a). Thus there is a y ∈ δ̇−λ(a)
such that γ(y) = u. From this follows that the face

y1 = max
∼
{y ∈ δ(a) : γ(y) = u, y <∼ x and either y ∈ T−λ or ∃l∈EX

γ(x)
l ≤+ y}

is well defined. Then we have (y1, ↓ a,−) ∈ δ̇−λ(ǎ) and, using Lemma 5.2.2.(b), we
get

γ(y1, ↓ a,−) = (γ(y1),−, ↑ y1) = (u, ↓ x,−).

This shows (i).
Ad (ii). First note that if γ(ǎ) ∈ [X]ε then γ(a) ∈ Xε and hence δε(a) 6= ∅. So

δε(ǎ) 6= ∅, as well. Thus we need to show that γγδε(ǎ) ⊆ γγγ(ǎ).

35



Fix (x, ↓ a,−) ∈ δε(ǎ) and l ∈ EXγγγ(a). It is enough to show that

γ(x) <∼ l iff γγ(a) <∼ l. (10)

Clearly x ∈ δε(a). By Lemma 5.2.1 γγ(a) ⊥∼ l. Since l ∈ EX and γ(x) ≤ γγ(a) we
have l 6⊥∼ γ(x).

Thus (γγ(a) <∼ l and l <∼ γ(x)) or (γ(x) <∼ l and l <∼ γγ(a)) then γ(x) ⊥∼
γγ(a) and this is a contradiction. Therefore (10) holds. This shows (ii) and end up
the case γ(ǎ) ∈ [X]ε.

In case γ(ǎ) ∈ [X]−ε we need to verify the following four conditions

(i) δ̇δ(ǎ) ⊆ δγ(ǎ) ∪ γδ̇−λ(ǎ);

(ii) δγ(ǎ) ⊆ δ̇δ(ǎ);

(iii) δγ(ǎ) ∩ γδ̇−λ(ǎ) = ∅;

(iv) γγδε(ǎ) ⊆ θδγ(ǎ).

Ad (i). Fix x ∈ δ(a) and u ∈ δ(x) so that (u, ↓ x,−) ∈ δ̇δ(ǎ). Assume that
(u, ↓ x,−) 6∈ δγ(ǎ). Then either u 6∈ δγ(a) or u ∈ δγ(a) and there is l ∈ EXu such
that l <∼ x and l 6<∼ γ(a). Then, by Lemma 5.2.2.(c), the face

y2 = max
∼
{y ∈ δ(a) : γ(y) = u, and either y ∈ T−λ or ∃l∈EXu l ≤

+ y}

is well defined. Clearly, (y2, ↓ a,−) ∈ δ̇−λ(ǎ). By Lemma 5.2.2.(b), we have

(u, ↓ x,−) = (u,−, ↑ y2) = γ(y2, ↓ a,−) ∈ γδ̇(ǎ)

Ad (ii). Fix u ∈ δγ(a) so that (u, ↓ γ(x),−) ∈ δγ(ǎ). If a ∈ Xε then δ(ǎ) =
1(u,↓γ(x),−) and hence (u, ↓ γ(x),−) ∈ δδ(ǎ). So suppose that a ∈ X−ε. Then the
face

y3 = min
∼
{y ∈ δ̇(a) : u ∈ δ(y)}

is well defined. By Lemma 5.2.2.(c), we have

(u, ↓ γ(a),−) = (u, ↓ y3,−) ∈ δδ(ǎ)

Ad (iii). Let u ∈ δγ(a) so that (u, ↓ γ(a),−) ∈ δγ(ǎ). We shall show that
if (u, ↓ γ(a),−) ∈ γδ(ǎ) then (u, ↓ γ(a),−) ∈ [X]λ. So fix z ∈ δ(a) such that
(u, ↓ a,−) = γ(z, ↓ a,−) = (γ(z),−, ↑ z). As γ(z) = u ∈ δγ(a), z is a loop. If we
were to have l ∈ Eu such that l ≤+ z then l ≤+ γ(a) and hence l 6∈↓u γ(a) and
l 6∈↑ z. Thus

(u, ↓ γ(a),−) 6= (γ(z),−, ↑ z)

contrary to the assumption.
Ad (iv). Let x ∈ δε(a) so that (x, ↓ a,−) ∈ δε(ǎ). We shall show that

γγ(x, ↑ a,−) = (γγ(x),−, ↑ γ(x)) ∈ θδγ(ǎ). (11)

Note that as T is an ordered face structure, we have γγ(x) ∈ γγδε(a) ⊆ θδγ(a).
First we claim that for any t ∈ δγ(a) we have t 6⊥+ γ(x). Fix t ∈ δγ(a). As

γ(x) ∈ γδ̇−λ(a), using γδ̇−λ ∩ δγ(a) = ∅ we get that γ(x) 6≤+ t. Now suppose
contrary, that t <+ γ(x). Thus there is a flat upper path t, x1, . . . , xn, γ(x), with
r ≥ 1. As γ(x) is a loop and x is an empty domain face, by Path Lemma, we
have xi <

+ x for i = 1, . . . , n. In particular, there is a flat upper path in T ,
x1, a1, . . . , am, x. As x ∈ T ε and x1 ∈ T−ε, for some 1 ≤ j0 ≤ m, we have t ∈ ι(aj0).
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Thus t ∈ δγ(a)∩ι(aj0). Hence by Lemma 4.8, we have γ(a) <+ γ(aj0) ≤+ γ(as) = x.
But x ∈ δ(a) and we get a contradiction with strictness. This ends the proof of the
claim.

Now let u = γγ(x). Using the claim it is easy to see that one of the following
conditions holds:

(a) u = γγγ(a) and %γ(a) <∼ γ(x);

(b) u ∈ δγγ(a) and with s1 = min∼{s ∈ δγ(a) : u ∈ δ(s)} we have γ(x) <∼ s1;

(c) there are s0, s1 ∈ δγ(a) such that γ(s0) = u ∈ δ(s1) and s0 <
∼ γ(x) <∼ s1.

In each case we shall show (11).
Ad (a). Using Lemma 5.2.2.(a), we have

(u,−, ↑ %γ(a)) ≤+ (u,−, ↑ γ(x)) ≤+ (u,−, ↑ γγ(a)) ≤+ (u,−, ↑ %γ(a))

Thus γγ(x, ↓ a,−) = (u,−, ↑ %γ(a)) ∈ γδγ(ǎ).
Ad (b). Using Lemma 5.2.1 and 5.2.2.(c), we have

(u, ↓ γγ(a),−) ≤+ (u, ↓ s1,−) ≤+ (u, ↓ γ(x),−) ≤+ (u, ↓ γγ(a),−)

Thus γγ(x, ↓ a,−) = (u, ↓ s1,−) ∈ δδγ(ǎ).
Ad (c). Let s1 be as above in (c) and s0 maximal such as in (c), i.e.

s0 = max
∼
{s ∈ δγ(a) : γ(s) = u, s <∼ γ(x)}.

Suppose ↑ s0 6=↑ γ(x). Then there is l ∈ Eu such that s0 <∼ l <∼ γ(x). Then
by Lemma 5.2.2.(b) there is t ∈ δγ(a) such that l <+ t and s0 <

∼ t <∼ s1. We
shall show that the existence of such a t leads to a contradiction. Note that t is
a loop and that γ(t) = u. By the claim proven above it follows that t 6⊥+ γ(x).
So, by pencil linearity, we should have t ⊥∼ γ(x). But if γ(x) <∼ t then by
transitivity we get l <∼ t and we get a contradiction with disjointness. On the
other hand, it t <∼ γ(x) then, as other cases are easily excluded, we have that
s0 <

∼ t. But this contradicts the choice of s0. Thus ↑ s0 =↑ γ(x) holds and we have
γγ(x, ↓ a,−) = (u,−, ↑ s0) ∈ γδγ(ǎ). This ends (iv) and 1.

Ad 2. By 1. it is enough to show that if f : S → T is a monotone morphism
such that f(S) = X then there is a monotone isomorphism g : S → [X] making the
triangle

S [X]-g

T

f@
@R

νX�
�	

commutes. We put, for a ∈ S

g(a) =

{
(f(a),−, ↑ f(a)) if α ∈ S−λ − γ(S−λ) such that a = γ(α),
(f(a), ∅,−) such that a 6∈ γ(S−λ).

Note that if a ∈ γ(S−λ) then there is a unique α ∈ S−λ−γ(S−λ) such that a = γ(α).
This shows that g is a well defined function. As monotone morphisms preserves and
reflects <∼ (in particular f and νX does) it follows that g preserves <∼.

Before we verify the other properties of g let us make one observation. Fix x ∈ X
and let

ymin = min
<+
{y′ ∈ S : f(y) = x}, ymax = max

<+
{y′ ∈ S : f(y) = x}
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and ymin, l1, . . . , lk, ymax be a flat upper S − γ(S−λ)-path from ymin to ymax. Then
EXx = {f(li)}1≤i≤k.

With this description it is easy to see that g preserves both γ and δ. Fix a ∈ S≥1.
Then if b ∈ S−λ − γ(S−λ) and γ(b) = γ(a) we have

g(γ(a) = (f(γ(a)),−, ↑ f(b)) = (γ(f(a)),−, ↑ f(a)) = γ(f(a)).

If γ(a) 6∈ γ(S−λ) we can show that g(γ(a) = (γ(f(a)) in a similar way.
If a ∈ S−ε then we have

g(δ(a) = {(f(x),−, ↑ f(b)) : γ(b) = x ∈ δ(a), b ∈ S−λ − γ(S−λ)}∪

∪{(f(x), ∅,−) : x ∈ δ(a), x 6∈ γ(S−λ)} =

= {(f(x), ↓ f(a),−) : x ∈ δ(a)} = δ(g(a)).

If a ∈ Sε we clearly have g(δ(a) = δ(g(a)), as well.
It remains to show that g is a bijection. Suppose g is not one-to-one. Let a, b ∈ S

such that g(a) = g(b) and a 6= b. In particular f(a) = f(b). By Lemma 4.25 we can
assume that there is α ∈ Su − γ(S−λ) such that a = δ(α) and γ(α) = b. Then

g(a) = (f(a), La, Ua) = (f(b), Lb, Ub) = g(b).

But Ua 3 f(α) 6∈ Ub, and we get a contradiction, i.e. g is one-to-one.
To see that g is onto fix (a, L, U) ∈ [X]. First assume that L 6= ∅. Then

let α = max<∼(L) ∈ X and let α′ = min<+{α′′ ∈ S : f(α′′) = α}. Clearly
α′ ∈ S−λ − γ(S−λ). Then

g(γ(α′)) = (f(γ(α′)),−, ↑ α′) = (a, L, U).

If L = ∅ then with b = min<+{b′ : f(b′) = a} we have

g(b) = (f(b), ∅,−) = (a, L, U)

in this case (a, L, U) is in the image of g, as well. Thus g is onto and hence a
bijection.

Ad 3. If EX is empty there is exactly one cut (x, ∅, ∅) over any face x ∈ X. So
νX is an embedding in that case. If there is l ∈ EX then (γ(l), ↓ l,−) 6= (γ(l),−, ↑ l)
and νX(γ(l), ↓ l,−) = νX(γ(l),−, ↑ l), i.e. νX is not an embedding.

Ad 4. First note that for any k ∈ ω, [X]k − δ([X]−λk+1) = {(a,−, ∅) : a ∈
X − δ(X−λk+1)}. In particular, we have size([X])k = |X − δ(X−λk+1|. Now fix a and
k so that a ∈ Tk − Xk, a is a face of the maximal dimension not in X. Then
Tk+1 = Xk+1 and hence a 6∈ δ(T−λk+1) so we have

a ∈ Tk − δ(T−λk+1) = Tk − δ(X−λk+1) ⊃ Xk − δ(X−λk+1) 63 a

Thus
size(T )k = |Tk − δ(T−λk+1)| > |Xk − δ(X−λk+1)| = size([X]k.

As size(T )l = size([X]l, for l > k, we have size(T ) > size([X]). 2

Even if the equivalence classes of objects of the comma category oFs ↓ T corre-
sponds to the elements of the poset Convex((T ) of convex subsets of T we are not
saying that oFs ↓ T and Convex((T ) are equivalent as categories. In fact, if X ⊂ Y
are convex subsets of T , it does not mean that there is a morphism from [X] to [Y ]
over T as following example shows.

Example 1. Let X ⊂ Y be convex subsets of an ordered face structure T as
shown on the diagram below.
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X :

� ���6
x

s

� �AAK
z

Y :

� ��� CCO
y
� �

���
x

s

� �BB JJ]
z

T :

� ��� CCO⇓
y
� �

���⇓
x

s

� �BB JJ]⇓
z

Clearly X ⊆ Y . And the stretching of X and Y gives
[X] :

(s, ∅,−) (s, {x},−)-x (s, {x, z},−)-z

and
[Y ] :

(s, ∅,−) (s, {x},−)-x (s, {x, y},−)-y
(s, {x, y, z},−)-z

respectively. Clearly there is no map from [X] to [Y ] over T .
Moreover is such a comparison map exists it does not need to be unique, as the

following example shows.
Example 2.

X :

s

Y :

� ��� CCO
x

s

T :

� ��� CCO⇓
x

s

Clearly X ⊆ Y . The stretching of Y gives

[Y ] : (s, ∅,−) (s, {x},−)-x

Thus from [X] = X to [Y ] there are two monotone morphisms and both of them
commutes over T .

6 Quotients of positive face structures

Positive face structures can be thought of as ordered face structures without empty-
domain faces. If we collapse to ’identity’ some domains of some unary faces which
are not codomains of any other face in a positive face structure we obtain an ordered
face structures which is not necessarily positive. In this section we shall describe
this construction of a quotient of a positive face structure and prove its properties.
In the next section we shall show that, we can obtain any ordered face structure in
this way.

Let T , S be ordered (or positive) face structures. We say that f : T → S is a
collapsing morphism if f = {fk : Tk → Sk ∪ 1Sk−1

}k ∈ ω, f preserves <∼, γ and δ
i.e. for k > 0, a, b ∈ Sk, we have

1. if a <∼ b and f(a), f(b) ∈ Tk then f(a) <∼ f(b)

2. f(γ(a)) = γ(f(a)) and f(δ(a)) ≡1 δ(f(a)).

The kernel of the morphism f is the set of faces ker(f) = f−1(1S).
Example.
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X f−→

x1 -
b0

x0

c
�
�� b1@

@R -a1

y1 y0-
a0

⇓ β
⇓ α

Y

x y-b

��⇓ βC
C
C
CO

�
�
�
�

a

where f is given by: xi 7→ x, yi 7→ y, a0 7→ a, a1 7→ 1y, bi 7→ b, c 7→ 1x, α 7→ 1b,
β 7→ β. We have ker(f){c, α, a1}.

Remark. The collapsing morphisms do not compose. If a map f : X → Y sends
α to 1a and a map g : Y → Z sends a to 1x then g ◦ f should send α to 11x but we
don’t consider such faces in ordered face structures.

Let T be a positive face structure, T u unary faces in T . A set J ⊆ T u is an ideal
iff

1. J ∩ γ(T ) = ∅;

2. J ∩ δ(J ) = ∅.

∼Jk+1
is the least equivalence relation on Tk containing ∼′Jk+1

; for x, x′ ∈ Tk we
have x ∼′Jk+1

x′ iff there is a ∈ Jk+1 such that x = δ(a) and γ(a) = x′. The kernel
of any collapsing morphism is an ideal.

We define an ordered hypergraph T/J the quotient of T by the ideal J :

1. T/J ,k = (Tk − Jk)/∼Jk+1
,

2. γ/J : T/J ,k+1 −→ T/J ,k, δ/J : T/J ,k+1 −→ T/J ,k t· 1T/J ,k−1
,

γ/J ([a]) = [γT (a)], δ/J ([a]) =

{
1[γT γT (a)] if δ(a) ⊆ J ,
{[x] : x ∈ δT (a)− J } otherwise.

for [a] ∈ T/J ,k+1,

3. [x] <T/J ,k,∼ [x′] iff x <Tk,− x′, for [x], [x′] ∈ T/J ,k.

We define qJ : T −→ T/J by

qJ (a) =

{
1[γ(a)] if a ∈ J ,
[a] otherwise.

In the remaining part of the section we are going to prove

Theorem 6.1 Let T be a positive face structure, J ⊆ T u is an ideal. Then T/J is
an ordered face structure and qJ is a collapsing morphism with kernel J .

Before we prove this theorem we need some Lemmas.
The class LJ of J -loops in T , is defined as the least set X ⊆ T such that

if α ∈ T and δ(α) ⊆ J ∪X then γ(α) ∈ X.

Note that LJ ∩ J = ∅.
The following three lemmas concerns positive face structures and their quotients.

Lemma 6.2 Let T be a positive face structure, J ⊆ T u is an ideal. Then

1. If a ∈ T then the following are equivalent:

(a) γ(a) ∈ T u;
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(b) δ(a) ⊆ T u;

(c) there is v ∈ δγ(a) and a δu(a)-path from v to γγ(a).

2. LJ ⊆ T u.

3. If a <+ b and b ∈ T u then a ∈ T u.

Proof. 2. and 3. follows from 1. We shall prove 1.
Fix a ∈ T . Let x0 = max<∼(δ(a)). From globularity we have

δγ(a) = δδ(a)− (γδ(a)− γγ(a)) and (γδ(a)− γγ(a)) ⊆ δδ(a)

Recall that if x, y ∈ δ(a) then δ(x) ∩ δ(y) = ∅. Using these observations, we get

|δγ(a)| = |δδ(a)| − |γδ(a)− γγ(a)| =
⋃

x∈δ(a)

|δ(x)| − |γ(δ(a)− x0)| =

=
⋃

x∈δ(a)

|δ(x)| − (|δ(a)| − 1) = 1 +
⋃

x∈δ(a)

(|δ(x)| − 1)

This shows that the set δγ(a) is a singleton if and only if for x ∈ δ(a) the sets δ(x)
are singletons. This shows that (a) is equivalent to (b).

Clearly, (b) implies (c). We shall show the converse. Let v ∈ δγ(a) and
v, x1, . . . , xk, γγ(a) be an upper δu(a)-path from v to γγ(a). We shall show that
δ(a) = {x1, . . . , xk}. Suppose contrary, that there y ∈ δ(a) − {x1, . . . , xk}. Let
y = y0, y1, . . . , yr, γγ(a) be an upper δ(a)-path to γγ(a). Hence γ(yr) = γ(xk) and
then yr = xk. Let r′ = min{i : yi 6∈ {x1, . . . , xk}}. Then r′ < r and yr′+1 = xj
for some j. If j = 1 then γ(yr′) = v ∈ δ(x1) ⊆ δγ(a). But then v ∈ δγ(a) ∩ γδ(a),
which contradicts globularity. If j > 1 then, as xj ∈ T u, we have γ(yr′) = γ(xj−1).
But, as yr′ , xj−1 ∈ δ(a) we must have yr′ = xj−1 contrary to the choice of r′. Thus
δ(a) = {x1, . . . , xk} and (c) implies (b) as well. 2

The following lemma describes some basic properties T/J .

Lemma 6.3 Let T be a positive face structure, J ⊆ T u is an ideal, a, x, y ∈ T −J .
Then

1. [x]∼J = [y]∼J iff x = y or there is an upper J -path from x to y or from y to
x.

2. The functions γ/J and δ/J are well defined.

3. [a] ∈ T ε/J if and only if δ(a) ⊆ J .

4. [a] ∈ T λ/J if and only if a ∈ LJ .

Proof. Ad 1. It is enough to note that it a, b ∈ J then a, b ∈ T u − γ(T ) and
therefore if γ(a) = γ(b) or δ(a) ∩ δ(b) 6= ∅ then a = b.

Ad 2. Since for a ∈ T , the value γT/J [a] and δ/J [a] depend only on γ(a) and
δ(a) (and not on a itself) it is enough to show that if a ∼′J b then γ(a) = γ(b) and
δ(a) = δ(b).

So assume that there is α ∈ T such that a = δ(α) and γ(α) = b. Since T is
a positive face structures γ(a) ∩ δ(a) = ∅. Thus using globularity (in positive face
structures), we have

γ(b) = γγ(α) = γδ(α)− δδ(α) = γ(a)− δ(a) = γ(a)
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and
δ(b) = δγ(α) = δδ(α)− γδ(α) = δ(a)− γ(a) = δ(a)

as required.
Ad 3. This follows immediately from the definition of δ/J ([a]).
Ad 4. We argue by induction on the height ht(a). The inductive assumption is:

Indn: for a ∈ T − J such that ht(a) = n we have: a ∈ LJ iff [a] ∈ T λ/J .

We can assume that a ∈ T u, as each of the conditions a ∈ LJ and [a] ∈ T λ/J
implies it.

If ht(a) = 0 then neither a ∈ LJ nor [a] ∈ T λ/J . Hence Ind0 holds.
Assume that ht(a) = 1. Let α ∈ T − γ(T ) such that γ(α) = a.
Suppose that a ∈ LJ . Then δ(α) ⊆ J . Hence δ(a) ∼J γ(a) and [a] ∈ T λ/J .
On the other hand, if [a] ∈ T λ/J , then [γ(a)] = γ/J ([a]) = δ/J ([a]) = [δ(a)]. So

there is a J -path from δ(a) to γ(a). As ht(a) = 1 this must be a δ(α)-path. Since
it is a T u-path, we have δ(α) ⊆ J . Thus a = γ(α) ∈ LJ .

Finally, assume that ht(a) = n > 1. Let α ∈ T − γ(T ) such that γ(α) = a. As
a ∈ T u, so δ(α) ⊆ T u. Let a1, . . . , ak be the lower path containing all elements of
δ(α).

First suppose that a ∈ LJ . Then δ(α) ⊆ LJ ∪ J . If ai ∈ J then, by def
δ(ai) ∼J γ(ai). If ai ∈ LJ then, as ht(ai) < n, by induction hypothesis [ai] is
a loop. But this means that δ(ai) = [γ(ai)] and in this case again we have that
δ(ai) ∼J γ(ai). By transitivity of ∼J we have δ(a) = δ(a1) ∼J γ(ak) = γ(a), i.e.
[a] is a loop in T/J , as required.

Now suppose that [a] ∈ T λ/J . Thus there is an upper J -path
δ(a), b1, . . . , bm, γ(a). We claim that there are numbers 0 = m0 < m1 < m2 <
. . . < mk = m such that

(i) either mi = mi−1 + 1 and ai = bmi ∈ J

(ii) or bmi−1+1, . . . , bmi is a path from δ(ai) to γ(ai) (i.e. δ(ai) ∈ δ(bmi−1+1) and
γ(ai) = γ(bmi)).

Having the above claim it follows that either ai ∈ J or [ai] ∈ T λJ , for i = 1, . . . , k.
As ht(ai) < n, by inductive hypothesis this means that ai ∈ LJ ∪J , for i = 1, . . . , k,
i.e. δ(α) ⊆ LJ ∪ J . So by definition of LJ , a = γ(α) ∈ LJ , as required.

It remains to prove the claim. Suppose contrary, that the claim is not true.
Let 1 ≤ i0 ≤ k be the least number for which it does not hold, i.e. we have
m0,m1, . . . ,mi0−1 satisfying (i) or (ii). In particular, either i0 = 1 or γ(bmi0−1) =
γ(ai0−1) = δ(ai0). So δ(bmi0 ) = δ(ai0). As (i) does not hold ai0 6= bmi0 . Since
bmi0 ∈ T − γ(T ), bmi0 <

+ ai0 . As (ii) does not hold, by Path lemma (for positive
face structures), bi <+ ai0 , for i = mi0−1 + 1, . . . ,m and γ(ak) = γ(bm) 6= γ(ai0).
Again by Path lemma, the upper path δ(ai0), bmi0−1+1, . . . , bm, γ(ak) can be extended
to an upper path reaching γ(ai0):

δ(ai0), bmi0−1+1, . . . , bm, γ(ak), c1, . . . , cr, γ(ai0)

But this means that we have both ai0 ≤− ak and ai0 <
+ ak. This contradicts the

disjointness and ends the proof of the claim and the Lemma. 2

The following lemma describes some relations between pathes in T and T/J .

Lemma 6.4 Let T be a positive face structure, J ⊆ T u is an ideal. x, y, a ∈ T −J .
Then
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1. If a 6∈ γ(T ) then [x]∼J ∈ δ([a]∼J ) iff there are y ∈ δ(a) − J and a J -path
(possibly empty) from x to y.

2. If a1, . . . , ak is a flat path in T−γ(T ) then < [ai]∼J : 1 ≤ i ≤ k, ai 6∈ J ∪LJ >
is a flat path in T/J − γ/J (T−λ/J ).

3. Assume a1, . . . , ak ∈ T − (J ∪ LJ ). Then [a1]∼J , . . . , [ak]∼J is a flat path in
T/J − γ/J (T−λ/J ) iff for 1 ≤ j < k there there is a J -path bj,1, . . . , bj,lj so that

a1, b1,1, . . . , b1,l1 , a2, b2,1, . . . , b2,l2 , a3, . . . , ak−1, bk−1,1, . . . , bk−1,lk−1
ak

is a path in T .

4. [a]∼J ∈ T/J − γ(T−λ/J ) iff there is a′ ∈ T − γ(T ) such that a′ ∼J a.

5. [x]∼J <
T/J ,+ [y]∼J iff x <T,+ y and the upper (T − γ(T ))-path from x to y is

not a J -path.

Proof. 1. follows easily from pencil linearity of positive face structures, 2. is
easy and 3. is a consequence of 1.

Ad 4. ⇒: Let a′ = min<T,+([a]), i.e. a′ is the least element of [a]. Suppose
that a′ ∈ γ(T ), i.e. there is α ∈ T such that γ(α) = a′. Clearly, we can assume
that α 6∈ γ(T ). If α ∈ J ⊆ T u then δ(α) ∼J a′ and δ(α) <+ a′, contrary to the
choice of a′. If α 6∈ J then γ/J ([α]) = [a] and by assumption [α] ∈ T λ/J . But
then by description of the loops is T/J , α ∈ γ(T ), contrary to the choice of α. The
contradiction shows that a′ 6∈ γ(T ), as required.
⇐: Suppose a ∈ T − γ(T ). We need to show that [a] ∈ T/J − γ(T−λ/J ).
Suppose contrary, that there is α ∈ T − (J ∪LJ ) such that γ/J ([α]) = a. Since

a 6∈ γ(T ) there is an upper J -path a, α1, . . . , αk, γ(α). Since αk ∈ J ⊆ T −γ(T ) and
α 6∈ J , by pencil linearity in positive face structures, we have that αk <k α. By Path
Lemma, (since a 6∈ γ(T )) either a ∈ δ(α) or there is i < k such that γ(αi) ∈ δ(α).
Using the characterization of loops in T/J we get in either case that [α] is a loop in
T/J , i.e. α ∈ LJ contrary to the assumption.

Ad 5. The ’if’ part is obvious. We shall show the ’only if’ part. The essential
argument consists of showing that in case the path from [x] to [y] has length 1 the
conclusion hold. Then use induction.

So assume that [x], [a], [y] is an upper path in T/J with [a] ∈ T−λ/J . Thus we have
x′ ∈ δ(a)− J so that one of the following four cases holds. There are J -pathes

1. from x to x′ and from γ(a) to y;

2. from x to x′ and from y to γ(a);

3. from x′ to x and from γ(a) to y;

4. from x′ to x and from y to γ(a).

In case 1. the conclusion follows immediately. The case 4. is most involved of 2., 3.,
and 4. and we will deal with this case only.

Let x′, b1, . . . , bk, x and y, c1, . . . , cr, γ(a) be (non-empty) J -pathes. We have
x′ ∈ δ(b1) ∩ δ(a). As b1 ∈ J and a 6∈ J we have b1 <+ a. As [a] ∈ T−λ/J , and
b1, . . . , bk is a J -path we have γ(bi) 6= γ(a), for i = 1, . . . , k. By Path Lemma,
we have a (non-empty) upper T − γ(T )-path x, b′1, . . . , b

′
l, γ(a). As [a] is not a loop

b′1, . . . , b
′
l is not a J -path. Since γ(cr) = γ(b′l) and both c1, . . . , cr and b′1, . . . , b

′
l are

T − γ(T )-pathes, it follows that one is the end-part of the other. As the former is a
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J -path and the latter is not, c1, . . . , cr is the end b′1, . . . , b
′
l. Thus we have an upper

path x, b′1, . . . , b
′
l−r, y which is not a J -path, as required. 2

Proof of Theorem 6.1. We shall check that T/J satisfies all the conditions of the
definition of an ordered face structure.

Local discreteness, Strictness, and Loop-filling are obvious from the Lemmas
above.

Globularity. First we shall spell the definitions of the sets involved. For a ∈
T≥2 − J , we have

γ/J γ/J ([a]) = [γγ(a)]

δ/J γ/J ([a]) =


[γγ(a)] if δ(a) ⊆ J ,
1[γγγ(a)] if δγ(a) ⊆ J ,
{[x] : x ∈ δγ(a)− J } otherwise.

γ/J δ/J ([a]) =

{
[γγ(a)] if δ(a) ⊆ J ,
{[γ(x)] : x ∈ δ(a)− J } otherwise.

δ/J δ/J ([a]) =


[γγ(a)] if δ(a) ⊆ J ,
{[u] : ∃xu ∈ δ(x)− J , x ∈ δ(a)− J }∪
{1[γγ(x)] : δ(x) ⊆ J , x ∈ δ(a)− J } otherwise.

δ̇−λ/J ([a]) =

{
∅ if δ(a) ⊆ J ,
{[x] : x ∈ δ(a)− (LJ ∪ J )} otherwise.

γ/J δ̇
−λ
/J ([a]) =

{
∅ if δ(a) ⊆ J ,
{[γ(x)] : x ∈ δ(a)− (LJ ∪ J )} otherwise.

δ/J δ̇
−λ
/J ([a]) =


∅ if δ(a) ⊆ J ,
{[u] : ∃xu ∈ δ(x)− J , x ∈ δ(a)− (LJ ∪ J )}∪
{1[γγ(x)] : δ(x) ⊆ J , x ∈ δ(a)− J } otherwise.

Thus if δ(a) ⊆ J it is easy to see that globularity holds. So we assume that
δ(a) 6⊆ J .

γ-globularity. We shall show:

1. [γγ(a)] ∈ γ/J δ/J ([a])

2. [γγ(a)] 6∈ δ/J δ̇−λ/J ([a])

3. γ/J δ/J ([a])− [γγ(a)] ⊆ δ/J δ̇−λ/J ([a])

Ad 1. Let x0, x1, . . . , xk be a lower δ(a)-path such that γ(xk) = γγ(a), x0 6∈ J
and xi ∈ J , for i > 0 (k is possibly equal 0). Such a sequence exists since δ(a) 6⊆ J
and is unique since xi ∈ T u, for i > 0. Then

[γγ(a)] = [γ(x0)] ∈ γ/J δ/J ([a]),

as required.
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Ad 2. Suppose contrary, that there is x ∈ δ(a) − (LJ ∪ J ) (i.e. [x] is not a
loop) and u ∈ δ(x) − J such that [u] = [γγ(a)]. Let u, x = x0, x1, . . . , xk, γγ(a)
be the upper δ(a)-path from u to γγ(a). Since u ∼J γγ(a) and u <+ γγ(a) there
is an upper J -path u, y0, . . . , yl, γγ(a). As x0 6∈ J and u ∈ δ(x0) ∩ δ(y0), by
pencil linearity, we have y0 <+ x0. By Path Lemma, there is 0 ≤ i ≤ l such,
that γ(yi) = γ(x0). Hence using the characterization of the loops in T/J , [x] is
a loop contrary to our assumption. From this contradiction if follows that indeed
[γγ(a)] 6∈ δ/J δ̇−λ/J ([a]).

Ad 3. Fix x ∈ δ(a) − J . Then [γ(x)] ∈ γ/J δ/J ([a]). Let x0, . . . , xk be the
δ(a)-path such that x0 6∈ LJ ∪ J and xi ∈ LJ ∪ J for i > 0. Clearly xi ∈ T u if
i > 0 and possibly k = 0. Then γ/J ([x0]) = γ/J γ/J ([a]). So an arbitrary element
of γ/J δ/J ([a])− [γγ(a)] is of form [γ(x)] for x ∈ δ(a)− (J ∪ {x0}). Then we have a
lower δ(a)-path x = y1, . . . , yl = x0 with l > 1. Put

l′ = max({l′′ : {y2, . . . , yl′′} ⊆ (LJ ∪ J )} ∪ {1})

As x0 6∈ LJ ∪ J , we have 1 ≤ l′ < l, and yl′+1 6∈ LJ ∪ J , i.e. [yl′+1] ∈ δ̇−λ/J ([a]).
Clearly, γ(yl′) ∈ δ(yl′+1)− J and hence

[γ(x)] = [γ(yl′)] ∈ δ/J δ̇−λ/J ([a]),

which ends the proof of γ-globularity.
δ-globularity. We have there different cases:

I δ(a) ⊆ J ,

II δ(a) 6⊆ J and δγ(a) ⊆ J ,

III δ(a) 6⊆ J and δγ(a) 6⊆ J .

Case I, as we already mentioned, is obvious.
Case II: δ(a) 6⊆ J and δγ(a) ⊆ J .
In this case we have:

δ/J γ/J ([a]) = 1[γγγ(a)].

δ/J δ/J ([a]) = {[u] : ∃x∈δ(a)−J u ∈ δ(x)− J } ∪ {1[γγ(x)] : δ(x) ⊆ J , x ∈ δ(a)− J }

and
γ/J δ̇

−λ
/J ([a]) = {[γ(x)] : x ∈ δ(a)− (LJ ∪ J )}.

Let u ∈ δ(x) − J and x ∈ δ(a) − J . As δγ(a) ⊆ J and u 6∈ J , by globularity
(of positive face structures), u ∈ γδ(a). Thus there is y0 ∈ δ(a) such, that γ(y0) =
u. Since δ(J ) ∩ J = ∅ and δγ(a) ⊆ J there is a δ(a)-path yk, . . . , y0 such that
yk 6∈ (J ∪ LJ ) and yk−1, . . . , y0 ⊆ (J ∪ LJ ), k ≥ 0. Then [yk] ∈ δ̇−λ([a]) and
γ/J ([yk]) = [u]. Thus {[u] : ∃x∈δ(a)−J u ∈ δ(x)− J } ⊆ γ/J δ̇−λ/J ([a]).

It remains to show that

1. there is x ∈ δ(a)− J , δ(x) ⊆ J ,

2. for any such x, we have 1[γγ(x)] = 1[γγγ(a)].

Ad 1. The existence of such x follows easily from Path Lemma.
Ad 2. Suppose x ∈ δ(a) − J , δ(x) ⊆ J . As J ∩ γ(T ) = ∅, by globularity, we

have that δ(x) ⊆ δγ(a). Hence γγ(x) ∈ γδ(x) ⊆ γδγ(a), and then there is an upper
δγ(a)-path (possibly empty) from γγ(x) to γγγ(a). But δγ(a) ⊆ J , so this is a
J -path and this means that γγ(x) ∼J γγγ(a), i.e. [γγ(x)] = [γγγ(a)], as required.

Case III: δ(a) 6⊆ J and δγ(a) 6⊆ J . This is the only case, where we do not have
equality but ≡1 only. We need to verify:
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1. δ/J γ/J ([a]) ⊆ δ/J δ/J ([a]);

2. δ/J γ/J ([a]) ∩ γ/J δ̇−λ/J ([a]) = ∅;

3. δ/J δ/J ([a])− δ/J γ/J ([a]) ⊆ γ/J δ̇−λ/J ([a]);

4. γ/J δ/J δε/J ([a]) ⊆ θ/J δ/J γ/J ([a]).

Ad 1. We have δ/J γ/J ([a]) = {[u] : u ∈ δγ(a)− J }.
So, let u ∈ δγ(a) − J and u, x1, . . . , xk, γγ(a) be a δ(a)-path, k ≥ 1. There is

1 ≤ l ≤ k such that xi ∈ J , for i < l, and xl 6∈ J . Such l exists, since δ(a) 6⊆ J .
Let

v =

{
u if l = 1,
γ(xl−1) otherwise.

Then [u] = [v]. Moreover, v ∈ δ(xl+1) − J , xl+1 ∈ δ(a) − J , i.e. [v] ∈ δ/J δ/J ([a]),
as required.

Ad 2. Suppose contrary that there is u ∈ δγ(a)−J and x ∈ δ(a)− (LJ ∪J ) so
that [u] = [γ(x)] ∈ γ/J δ/J ([a]).

Thus we have a J -path u, x1, . . . , xk, γ(x). As δγ(a) ∩ γδ(a) = ∅, u 6= γ(x) and
k ≥ 1. Since γ(x) = γ(xk), xk ∈ J and x 6∈ J , by pencil linearity xk <

+ x. We
have that δ(xl) ∩ δ(x) = ∅ for 1 ≤ l ≤ k, since otherwise [x] would be a loop. Let
y1, . . . , yr, x1, . . . , xk be a continuation of the path y1, . . . , yr, x1, . . . , xk through u
(i.e. γ(yr) = u) such that there is v ∈ δ(y1) ∩ δ(x). Since x ∈ δ(a), v ∈ δδ(a). So
there is v′ ∈ δγ(a) such that v′ ≤+ v. But then v′ <+ u and v′, u ∈ δγ(a), which is
impossible. Thus 2. holds, as well.

Ad 3. Let u ∈ δ(x) − J and x ∈ δ(a) − J , i.e. [u] ∈ δ/J δ/J ([a]) and suppose
that [u] 6∈ δ/J γ/J ([a]). Let x0, . . . , xl, u be a δ(a)-path, l ≥ 0, such that x1, . . . , xl ⊆
(LJ ∪ J ), and x0 6∈ (LJ ∪ J ). Such a path exists since [u] 6∈ δ/J γ/J ([a]). Then
[x0] ∈ δ̇−λ/J ([a]) and hence [u] = [γ(x0)] ∈ γ/J δ̇−λ/J ([a]), as required.

Ad 4. We have

δ/J δ
ε
/J ([a]) = {1[γγ(x)] : x ∈ δ(a)− J , δ(x) ⊆ J}

Fix x ∈ δ(a) − J such that δ(x) ⊆ J . We need to show that γ/J γ/J ([x]) =
[γγ(x)] ∈ θ/J δ/J γ/J ([a]).

We have γγ(x) ∈ γγδ(a) ⊆ γγγ(a) ∪ δδγ(a). If γγ(x) = γγγ(a) then, using
γ-globularity of positive face structures, we have

[γγ(x)] = [γγγ(a)] = γ/J γ/J γ/J ([a]) ⊆ γ/J δ/J γ/J ([a]) ⊆ θ/J δ/J γ/J ([a])

and 4. holds.
So now assume that γγ(x) ∈ δδγ(a). Thus there is an upper δγ(a)-

path γγ(x), u1, . . . , uk, γγγ(a). If it is a J -path then [γγ(x)] = [γγγ(a)] ∈
θ/J δ/J γ/J ([a]). If it is not a J -path, then let i0 = min{i′ : ui′ 6∈ J } and

t =

{
γγ(x) if i0 = 1,
γ(ui0−1) otherwise.

Then u1, . . . , ui0−1 is a J -path and γγ(x) ∼J t ∈ δ(ui) − J . Thus [γγ(x)] ∈
δ/J ([ui0 ]). But ui0 ∈ δγ(a)− J , so [ui0 ] ∈ δ/J γ/J ([a]) and then

γγ(x)] ∈ δ/J δ/J γ/J ([a]) ⊆ θ/J δ/J γ/J ([a]),

as required. This ends the proof of globularity of T/J .
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Disjointness. From the description of the orders we get immediately ⊥T/J ,+
∩ ⊥T/J ,∼= ∅. If a, b ∈ T −J and [a] <∼ [b] the by definition a <T,− b. So we have a
lower T − γ(T )-path a = a0, . . . , ak = b. Let b1, . . . , bl be the path (possibly empty)
obtained from a1, . . . , ak−1 by dropping elements that belong to LJ ∪ J . Then
[a], [b1], . . . , [bl], [b] is a lower flat path in T/J . Hence [a] <∼ [b] implies [a] <− [b].

Now assume that θ/J ([a]) ∩ θ/J ([b]) = ∅ and [a] <− [b]. We need to show that
[a] <∼ [b].

So we have a lower flat path [a] = [a0], . . . , [ak] = [b] in T/J , with k > 1.
There are some cases to be considered. We will deal with the one which is most
involved: k = 2, there are x ∈ δ(a1) − J , y ∈ δ(a2) − J there are upper J -pathes
x, b1, . . . , bl, γ(a0), and y, c1, . . . , cr, γ(a1).

As [a1] is not a loop bi <
+ a1, for i ≤ l and ci <

+ a1, for i ≤ r. Moreover
they are T − γ(T )-pathes. It is easy to see that if we continue the path b1, . . . , bl as
T − γ(T )-path we shall get to c1, . . . , cr (note that J -faces are unary). Thus there
is a path b1, . . . , bl, d1, . . . , ds, c1, . . . , cr, with s ≥ 0. Then a0, d1, . . . , ds, a2 is a lower
path showing that a = a0 <

− a2 =, i.e. [a] <∼ [b], as required. This ends the proof
of disjointness.

Pencil linearity. Let [a], [b] ∈ T/J , and [a] 6= [b]. First assume that θ/J ([a]) ∩
θ/J ([b]) 6= ∅. Thus we have three cases to consider:

I γ/J ([a]) = γ/J ([b]),

II γ/J ([a]) ∈ δ/J ([b]),

III δ/J ([a]) ∩ δ/J ([b]) 6= ∅.

Case I. Possibly changing the roles of a and b there is a J -path
γ(a), a1, . . . , ak, γ(b). If γ(a) ∈ δ(b) or there is i < k such that γ(ai) ∈ δ(b) then
a <T,− b and hence [a] <T/J ,− [b]. If it is not the case, that is γ(a) 6∈ δ(b) and for
all i < k γ(ai) 6∈ δ(b) then by Path Lemma there is y ∈ δ(b) and an upper path
y, b1, . . . , bl, a, a1, . . . , ak, γ(b) and a <+ b. Therefore [a] <+ [b].

Case II. In this case we have x ∈ δ(b) − J and a J -path γ(a), a1, . . . , ak, x or
x, a1, . . . , ak, γ(a). In the former case we have a <T,− b and hence [a] <T/J ,− [b]. In
the later case either there is 1 ≤ i ≤ k such that γ(b) = γ(ai) and then γ/J ([b]) =
γ/J ([a]), i.e. this case is reduced to I or, by Path Lemma, we have that ai <+ b,
for 1 ≤ i ≤ k. Let ak, α1, . . . , αl, b be an upper path in T . As γ(ak) 6= γ(b) there is
1 ≤ j ≤ l such that γ(ak) ∈ ι(αj). Since γ(ak) = γ(a) we have that γ(a) ∈ ι(αj)
and then a <+ γ(αj) ≤+ γ(αl) = b, i.e. [a] <+ [b].

Case III. Possibly changing the roles of a and b there are x ∈ δ(a) − J and
y ∈ δ(b)−J and J -path x, a1, . . . , ak, y. If there is 1 ≤ i ≤ k such that γ(ai) = γ(a)
then a <− b and hence [a] <∼ [b]. If for all i ≤ n we have γ(ai) 6= γ(a) then, by
Path Lemma, b <+ a and hence [b] <+ [a].

Next let assume that [a] ∈ T ε/J , [b] ∈ T/J and γ/J γ/J ([a]) ∈ ι/J ([b]). Thus there
are x, y ∈ δ(b)− (J ∪LJ ) such that γ/J γ/J ([a]) = γ/J ([x]) ∈ δ/J ([y]). Hence there
is u ∈ δ(y)−J such that γ(x) ∼J u. If we were to have a J -path u, x1 . . . , xk, γ(x)
then, as u ∈ δ(b) by Path Lemma, either there is 1 ≤ i ≤ k such that γ(xi) = γ(y)
or γ(xk) 6= γ(y) and xk <+ y. In the former case [y] would be a loop in the later, we
would have x <+ y and x, y ∈ δ(b). As none of the above is possible, it follows that
we cannot have a J -path from u to γ(x). Hence we have a J -path γ(x), x1 . . . , xk, u.

Claim. Exactly one of the following conditions holds:

(i) there is a J -path (possibly empty) from γγ(a) to γ(x);

(ii) there is a J -path (possibly empty) from u to δγ(a);
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(iii) δ(a) ⊆ {x1, . . . , xk}.
Clearly no two of the above three conditions can hold simultaneously. We assume

that (i) and (ii) does not hold and we shall prove (iii). We can assume that k ≥ 1.
As δ(a) ⊆ J and {x1, . . . , xk} ⊆ J , it is enough to show:

(a) there is 1 ≤ i ≤ k such that γ(xi) = γγ(a);

(b) either γ(x) ∈ δγ(a) or there is 1 ≤ j < i such that γ(xj) = δγ(a);

Ad (a). Suppose that (a) does not hold. Then, as (i) does not hold, we have
an upper J -path u, x1, . . . , xl, γγ(a), with l > k. As xl ∈ J and γ(a) 6∈ J , we have
xl <

+ γ(a). So by Path Lemma, either γ(xi0) ∈ δγ(a), for some k ≤ i0 < l or
u ∈ ι(a). In the former case we get (ii) contrary to the supposition. In the later
case, on one hand, as u ∈ δ(y)∩ ι(a), we have that y <+ γ(a). Thus γ(y) ≤+ γγ(a).
On the other hand, if we were to have k < i1 ≤ l such that γ(xi1) = γ(y) then,
as xi ∈ J , we would have that [y] is a loop. Hence, by Path Lemma xi <

+ y,
for i = k + 1, . . . , l, and γγ(a) = γ(xl) 6= γ(y). But then, again by Path Lemma,
γγ(a) <+ γ(y). Therefore we get a contradiction once more. This ends the proof of
(a).

Ad (b). As we have established (a), let us fix 1 ≤ i1 ≤ k such that γ(xi1) =
γγ(a). Suppose that (b) does not hold. Then {x1, . . . , xi1} ⊆ δ(a) and γ(x) ∈ ι(a).
Thus x <+ γ(a). Let y1, . . . , yr, x1, . . . , xi1 be the lower J -path consisting of all the
faces in δ(a). Clearly, δ(y1) = δγ(a), γ(yr) = γ(x) and yr <

+ x. If we were to have
1 ≤ i ≤ r such that δ(yi)∩δ(x) 6= ∅ then the face [x] would be a loop contrary to the
supposition. Thus, by Path Lemma, yi <+ x, for i = 1, . . . , r and there is v ∈ δ(x)
such that v <+ δ(y1) = δγ(a) (both δ(y1) and δγ(a) are singletons). On the other
hand, as x <+ γ(a), we have, by Path Lemma, a lower path z1, . . . , zs = x, with
s ≥ 1, and w ∈ δ(z1)∩ δγ(a). Then, for w′ = γ(zs−1) ∈ δ(x) (or w′ = w if s = 1) we
have δγ(a) ≤+ w′. Thus v, w′ ∈ δ(x) and v <+ δγ(a) ≤+ w′. But this is impossible
by Proposition 5.1 of [Z]. This ends the proof of (b) and of the Claim.

Having the Claim, it is easy to see, that in case (i) γ(a) ≤ x and in case (ii)
γ(a) ≤ y. Thus in both cases we have [a] <+ [b].

Finally assume that (iii) holds. Thus x <− γ(a) and γγ(a) <+ γγ(b). From the
later and [Z], we have that either γ(a) <− γ(b) or γ(a) <+ γ(b). If γ(a) <− γ(b) then
using the former and transitivity of <− we would have x <− γ(b). But x <+ γ(b)
and this contradicts disjointness. Thus γ(a) <+ γ(b). Then, again by [Z], we have
that either a <− b or a <+ b, as required.

The fact that qJ is a collapsing morphism with the kernel J is left for the reader.
This ends the proof of the theorem. 2

Proposition 6.5 Let T be a positive face structure, and I be an ideal in T . Then
size(T/I) = size(T ).

Proof. We have a quotient morphism q : T → T/J such that, for a ∈ T −J , we have
q(a) = [a]J . We shall show that, for any k ∈ ω, the restriction of this function

q̃k : Tk − δ(Tk+1) −→ (T/J )k − δ/J ((T−λ/J )k+1)

is a bijection. This is clearly sufficient to establish 2. To see that q̃k is one-to-one,
note that for a, a′ ∈ Tk − δ(Tk+1), by Lemma 6.3.1, we have a 6∼J a′.

We shall verify that q̃k is onto. Fix [a]J ∈ (T/J )k − δ/J ((T−λ/J )k+1) such that
a ∈ T − J is <+-maximal in its class [a]J . Suppose that a ∈ δ(Tk+1), and fix
α ∈ Tk+1 − γ(Tk+2) such that a ∈ δ(α). Then if α ∈ J , a is not <+-maximal in
its class. If α 6∈ J , then [α]J ∈ T−λ/J and [a]J ∈ δ/J ([α]J ). In either case we get a
contradiction. Thus there is no α ∈ Tk+1 such that a ∈ δ(α), and q̃k is onto indeed.
2
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Positive covers

Recall that the kernel of a collapsing morphism q : Y → X is the set ker(q) =
q−1(1X) ⊆ Y . In more concrete terms, as q preserves codomains, we have ker(q) =
{a ∈ Y : q(a) = 1q(a)}.

We say that a collapsing morphism q : Y → X is a (positive) cover iff there is an
ideal J in Y , and a monotone isomorphism h : Y/J −→ X such that the triangle

Y/J X-
h

Y

pJ �
�	

q@
@R

commutes.

Proposition 6.6 Let q : Y → X be a collapsing morphism and J an ideal in Y ,
and pJ : Y → Y/J a positive cover.

1. ker(q) is an ideal iff ker(q) ⊆ Y u.

2. q : Y → X is a positive cover iff q is onto and ker(q) is an ideal.

3. If ker(pJ ) ⊆ ker(q) then there is a unique collapsing morphism r : Y/J → X
making the triangle

Y/J X-r

Y

pJ �
�	

q@
@R

commutes.

Proof. Ad 1. Any ideal in Y is contained in Y u. Thus we need to show that if
ker(q) ⊆ Y u then ker(q) ∩ γ(Y ) = ∅ = ker(q) ∩ δ(ker(q)).

Suppose there is a ∈ ker(q) ∩ γ(Y ). Let α ∈ Y such that γ(α) = a. Then

1γ(q(a)) = q(a) = q(γ(α)) = γ(q(α)) ∈ X

and we get a contradiction. Thus ker(q) ∩ γ(Y ) = ∅.
Now suppose that a ∈ ker(q)∩ δ(ker(q)). Fix α ∈ ker(q) such that a ∈ δ(a). As

ker(q) ⊆ Y u we have a = δ(α). So we have

1γ(q(a)) = q(a) = q(δ(α)) = δ(q(a)) = δ(1γ(q(α))) = γ(q(α)) ∈ X

and we get a contradiction again.
Ad 2. Clearly the conditions are necessary. To see that they are sufficient

it is enough to note that they imply that the map h : Y/ker(q) → X such that
h([a]) = q(a), for a ∈ Y − J is an isomorphism in oFs.

Ad 3. We put r([y]) = q(y), for y ∈ Y − J . Since ker(pJ ) ⊆ ker(q), r is well
defined. As

pJ (y) =

{
[y] if y ∈ Y − J ,
1[γ(y)] if y ∈ J .

we have q = r ◦ pJ . It remains to verify that r preserves γ, δ, and <∼.
Fix y, y′ ∈ Y − J . We have

[y] <Y/J ,∼ [y′] iff y <Y,∼ y′ iff q(y) <X,∼ q(y′) iff r([y]) <X,∼ r([y′])

i.e. r preserves <∼.
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Now fix y ∈ Y≥1 − J . We have

r(γ([y])) = r([γ(y)]) = q(γ(y)) = γ(q(y)) = γ(r([y]))

i.e. r preserves γ.
To see that r preserves δ we consider two cases: δ(y) ⊆ J and δ(y) 6⊆ J . If

δ(y) ⊆ J then we have

r(δ([y])) = r(1[γγ(y)]) = 1r([γγ(y)]) = 1q(γγ(y)) = q(δ(y)) ≡1 δ(q(y)) = δ(r([y]))

and if δ(y) 6⊆ J we have

r(δ([y])) = r({[u] : u ∈ δ(y)− J }) = {q(u) : u ∈ δ(y)− J } ≡1

≡1 {q(u) : u ∈ δ(y)} = q(δ(y)) ≡1 δ(q(y)) = δ(r([y]).

Thus in both cases δ is preserved. 2

7 Positive covers of ordered face structures

In this section we describe a kind of inverse construction to the quotient construction
from previous section. We shall show that any ordered face structure S can be
covered by a positive one S†. We begin with some notation and the construction.
Then we shall prove few technical lemmas. Using these lemmas we shall describe
the properties of the construction, in particular that S† is a positive face structure
and that qS : S† → S is a quotient morphism. Finally, we will make some farther
comments about this construction.

The construction of S†

S an ordered face structure fixed for the whole section. The construction of S† is
based on cuts, but this time we consider the cuts of initial faces in S not, as in
section 5, of empty loops. We use essentially the same notation for both cuts of
empty loops and cuts of initial faces. But, as we never use these different cuts in
the same context so there is no risk to mix them.

Recall from section 3, that I = IS = Sε − γ(S−λ) is the set of initial faces in
S, and Ix = ISx = {a ∈ I : δ(a) = 1x} is the set of initial faces based on x. Ix is a
linearly ordered by < (we have, for a, b ∈ Ix, that a < b iff γ(a) <∼ γ(b)). An x-cut
is a triple (x, L, U) such that L ∪ U = Ix and for α ∈ L and β ∈ U , α < β. C(Ix) is
the set of all x-cuts. C(IX) = C(ITX) =

⋃
{C(Ix) : x ∈ X}, where X ⊆ S, is the set

of all X-cuts, i.e. all x-cuts with x ∈ X.
If (x, L, U) is a x-cut then L determines U and vice versa (L = IXx − U and

U = IXx − L). Therefore we sometimes denote this cut by describing only the
lower cut (x, L,−) lower description of the cut or only the upper cut (x,−, U) upper
description of the cut, whichever is easier to define.

For a ∈ S and x ∈ δ̇(a). We define the following sets:

↑ a = {α ∈ Iγ(a) : a <∼ γ(α)}, ↓x a = {α ∈ Ix : γ(α) <∼ a}

and cuts (γ(a),−, ↑ a) and (x, ↓x a,−). In order to save the space we drop subscript
x in the notation ↓x a inside x-cuts, i.e. we often write (x, ↓ a,−) instead of (x, ↓x
a,−). Clearly, (x,−, ↑ b) = (x, ↓x a,−) iff ↓x a∪ ↑ b = Ix and ↓x a∩ ↑ b = ∅.

We describe below the positive hypergraph S†. The set of faces of dimension k
is

S†k = C(ISk) ∪ Ik+1,
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where Ik+1 is another copy of the set Ik+1 whose elements have bars on it, i.e.
Ik+1 = {α : α ∈ Ik+1}. Thus the faces of each dimension are of two disjoint kinds:
cuts and bars. The domains and codomains in S† we define separately for bars and
cuts. Fix k > 0. For α ∈ Ik+1 we have

γ†(α) = (γγ(α),−, ↑ γ(α)), δ†(α) = (γγ(α), ↓ γ(α),−),

for (a, L, U) ∈ C(Ia), with a ∈ Sk we have

γ†(a, L, U) = (γ(a),−, ↑ a), δ†(a, L, U) = I≤+a ∪ {(x, ↓ a,−) : x ∈ δ̇(a)}.

We have a map qS : S† −→ S such that

qS(z) =

{
a if z = (a, L, U) ∈ C(Ia),
1γγ(α) if z = α ∈ I.

i.e. it sends a-cuts to a, and any bar α to an empty-face 1γγ(α).
Example. The positive cover of the ordered face structure T as below

u2 u1-
x5

u0-
x0T

��⇓a2

�
�
� 6

x3

� ���6⇓a3
x4
� �AAK⇓a1
x2
� �AA @@I⇓a0
x1

is the following positive face structure T †

T †

u2 •-x5

-a3

•-
-

x3

⇓a3

⇓a2
x4

•
-a1

-
x2

⇓a1 •
-a0

-
x1

⇓a0 u0-
x0

(u1, ∅, {a3, a1, a0})

(u1, {a3}, {a1, a0})

(u1, {a3, a1}, {a0})

(u1, {a3, a1, a0}, ∅)

As before we use the convention that the empty cut in T †, say (x5, ∅, ∅), is identified
with the corresponding face in T , x5 in this case. All bullets • denote cuts and they
are linked by a line to the descriptions of the cuts they denote.

An ideal I in an ordered face structure S is an unary ideal iff I ⊆ δ(Su). The
following is a kind of inverse of the Theorem 6.1.

Theorem 7.1 Let S be an ordered face structure. Then S† is a positive face struc-
ture, I is an unary ideal in S†, qS : S† −→ S is a positive cover with the kernel
I.

Some technical lemmas

Since the Lemmas stated below are very technical we will comments on them. Lem-
mas 7.2, 7.3, 7.4 are there to be used in the proofs of Lemmas 7.6, 7.7, 7.8. Lemma
7.4 is a suplement to the pencil linearity axiom and it says intuitively that if some
faces are incident then some (other) faces are comparable. Lemmas 7.6, 7.7, 7.8
concern θδ(x)-cuts. They express cuts determined by some faces in terms of cuts
determined by some other faces. Lemma 7.6, is about the cuts determined by γ(x),
Lemma 7.7, is about the cuts determined by a faces t ∈ δ(x), and Lemma 7.8, is
about the cuts determined by a faces in γ(I≤+x).
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Lemma 7.2 Let S be an ordered face structure x, a ∈ S. If a ∈ I and x ≤+ γ(a)
then x = γ(a)

Proof. Suppose x <+ γ(a). Let x, a1, . . . , ak, γ(a) be an upper (S − γ(S−λ))-path,
k ≥ 1. As γ(a) = γ(ak) and a, ak ∈ S − S−λ), we have a = ak. But this is a
contradiction, as a ∈ Sε and ak ∈ S−ε. 2

Lemma 7.3 Let S be an ordered face structure t, t′ ∈ S, z ∈ Iγ(t), t <∼ t′, γ(t) ∈
δ(t′). Then either t <∼ γ(z) or γ(z) <∼ t′.

Proof. Suppose contrary that t 6<∼ γ(z) 6<∼ t′. Then, as t <∼ t′, we also have
t′ 6<∼ γ(z) 6<∼ t. So t ⊥+ γ(z) ⊥+ t′. Thus, by Lemma 7.2, we have γ(z) ≤+ t, t′.
Hence, by Lemma 4.17, t ⊥+ t′ and we get a contradiction. 2

Lemma 7.4 Let S be an ordered face structure u, x, y, z ∈ S, z ∈ Iu, y ∈ I≤+x
u .

1. Let x ∈ S−ε, γγ(x) = u. If %(x) <∼ γ(z) then either z <+ x or γ(x) <∼ γ(z).

2. Let x ∈ Sε, γγ(x) = u. If γ(y) <∼ γ(z) then either z <+ x or γ(x) <∼ γ(z).

3. Let x ∈ S−ε, u ∈ δ̇γ(x), t = inf∼{t′ ∈ δ̇(x) : u ∈ δ(t′)}. If γ(z) <∼ t then
either z <+ x or γ(z) <∼ γ(x).

4. Let x ∈ Sε, u ∈ δ̇γ(x). If γ(z) <∼ γ(y) then either z <+ x or γ(z) <∼ γ(x).

Proof. We use notation as above in the statement of Lemma. Recall that if z ∈ I
then for no face z′ we have either z′ <∼ z or z′ <+ z.

Ad 1. As γγ(x) = γγ(z) we have either γ(x) ⊥+ γ(z) or γ(x) ⊥∼ γ(z). In the
later case, as assumption γ(z) <∼ γ(x) immediately leads to contradiction, we get
γ(x) <∼ γ(z). In the former case we have either z <+ x or z <∼ x. The later of
these to is impossible, as we would have γ(z) ≤+ t ≤∼ %(x) and hence γ(z) ≤ %(x)
contrary to the supposition. Thus we get either z <+ x or γ(x) <∼ γ(z).

Ad 2. In this case again we have γγ(x) = γγ(z) and hence either γ(x) ⊥+ γ(z)
or γ(x) ⊥∼ γ(z). In the later case we again easily get that γ(x) <∼ γ(z). In the
former case, as z <∼ x ∈ E is impossible, we get z <+ x. Thus again, we get that
either z <+ x or γ(x) <∼ γ(z).

Ad 3. As γγ(z) = δ̇γ(x) we have either γ(x) ⊥+ γ(z) or γ(x) ⊥∼ γ(z). In the
later case we easily get (otherwise γ(x) <∼ t) that γ(z) <∼ γ(x). In the former
case, as z ∈ I, we get that either z <+ x or z <∼ x. We shall show that z <∼ x
is impossible. Suppose contrary, then there is t′ ∈ δ(x) such that γ(z) ≤+ t′. If
we were to have γ(z) = t′ then, by definition of t, we would have t ≤∼ t′ = γ(z).
Thus γ(z) <+ t′ and there is a flat upper path γ(z), z1, . . . , zk, t

′, with k ≥ 1. If
u 6∈ θ(t′) then, as u = γγ(z), there is 1 ≤ i ≤ k such that u ∈ ι(zi). Hence
t <+ γ(zi) ≤+ γ(zk) = t′ and we get a contradiction with local discreteness. If
u ∈ θ(t′) then, using the definition of t, we easily get that t <∼ t′. As γ(z) <∼ t we
get γ(z) <∼ t′ contrary to the definition of t′. Thus the assumption z <∼ x leads to
a contradiction.

Ad 4. As γγ(z) = δ̇γ(x) we have either γ(x) ⊥+ γ(z) or γ(x) ⊥∼ γ(z). In the
later case we easily get that γ(z) <∼ γ(x). In the former case, as z, x ∈ E we cannot
have z ⊥∼ x. As, x <+ z ∈ I is also impossible, we have z <+ x in that case. Thus
we get either z <+ x or γ(z) <∼ γ(x). 2

The above Lemma had four parts with first two and second two having the same
conclusions. The following Lemma contains in fact four statement with essentially
the same conclusion. This is why we state it in a bit unusual form to emphasize it.
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Lemma 7.5 Let S be an ordered face structure u, x, z ∈ S, z ∈ Iu, u ∈ θδ(x).
Moreover, assume that one the following four conditions

1. t, t′′ ∈ δ̇(x), γ(t) = u ∈ δ(t′′),

2. y ∈ I≤+x
u , t′′ ∈ δ̇(x), γ(y) = t, u ∈ δ(t′′),

3. t ∈ δ̇(x), y′′ ∈ I≤+x
u , γ(t) = u, γ(y′′) = t′′,

4. y, y′′ ∈ I≤+x
u , γ(y) = t, γ(y′′) = t′′,

holds. If t <∼ γ(z) <∼ t′′ then either z <+ x or there is t′ ∈ δλ(x) such that
t <∼ t′ <∼ t′′, γ(z) ≤+ t′ and γ(t′) = u.

Proof. We use notation as above in the statement of Lemma. Note that if
γ(z) ≤+ t′ and t′ ∈ Sλ then γ(t′) = u.

First we shall show that any of the above four assumptions imply the claim:
either z <+ x or z <∼ x. Note that γγ(z) ∈ θδ(x). If γγ(z) ∈ ι(x) then the claim
follows immediately from pencil linearity. If γγ(z) ∈ θγ(x) then by pencil linearity
we get that either γ(z) ⊥+ γ(x) or γ(z) ⊥∼ γ(x). In the former case we get, again
by pencil linearity, the claim. In the later case, as t <∼ γ(z) <∼ t′′, we get either
t ⊥∼ γ(x) or t′′ ⊥∼ γ(x), i.e. a contradiction, as t, t′′ ≤+ γ(x) under each of the
four assumptions above. Thus we have the claim.

Now it remains to show that each of the following four assumptions imply that
if z <∼ x then there is t′ ∈ δλ(x) such that t <∼ t′ <∼ t′′, γ(z) ≤+ t′. As all the
arguments are very similar we shall show this for the assumption 1.

Assume z <∼ x. Then there is t′ ∈ δ(x) such that γ(z) ≤+ t′. We need to show
that t <∼ t′ <∼ t′′, and t′ ∈ Sλ.

If γ(z) = t′ we are done. So assume that γ(z) <+ t′ and then we have a flat upper
path γ(z), z1, . . . , zk, t

′, with k ≥ 1. If γγ(z) = u 6∈ θ(t′) then there is 1 ≤ i ≤ k
that u ∈ ι(zi). So t, t′′ <+ γ(zi) ≤+ γ(zk) = t′ and we get a contradiction with local
discreetness. Thus u ∈ θ(t′) and we have t ⊥∼ t′ ⊥∼ t′′. If we were to have t′ ≤∼ t
then we would have t′ ≤∼ γ(z) and if we were to have t′′ ≤∼ t′ then we would have
γ(z) <∼ t′. Thus we must have t <∼ t′ <∼ t′′. Therefore there are u′ ∈ δ(t′) and
u′′ ∈ δ(t′′) such that u = γ(t) ≤+ u′ ≤+ γ(t′) ≤+ u′′. As u, u′′ ∈ δ(t′′) and u ≤+ u′′

we have u = u′′. Hence γ(t′) ∈ δ(t′), i.e. t′ ∈ Sλ. 2

Lemma 7.6 Let S be an ordered face structure u, x ∈ S, u ∈ δ̇γ(x). We put

tsup = sup
∼

({%(x)} ∪ γ(I≤
+x

γγ(x))), tinf = inf
∼

({t ∈ δ̇(x) : u ∈ δ(t)} ∪ γ(I≤+x
u )).

The elements tsup, tinf are well defined and

1. (γγ(x),−, ↑ γ(x)) = (γγ(x),−, ↑ tsup),

2. (u, ↓ γ(x),−) = (u, ↓ tinf ,−).

Proof. Ad 1. We consider two cases depending on whether tsup = %(x) or tsup =
sup∼(γ(I≤

+x
γγ(x))). Fix z ∈ Iγγ(x).

Case tsup = %(x). Assume γ(x) <∼ γ(z). As %(x) <+ γ(x), we have %(x) < γ(z).
But if we were to have %(x) <+ γ(z) we would have γ(x) ⊥+ γ(z). Thus, as γ%(x) =
γγ(z), we have %(x) <∼ γ(z). To see the converse, assume that %(x) <∼ γ(z). So
by Lemma 7.4.1 we have that either γ(x) <∼ γ(z) or z <+ x. But z <+ x would
contradict the choice of tsup. Thus γ(x) <∼ γ(z), and hence the equation 1. holds
in this case.
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Case tsup = sup∼(γ(I≤
+x

γγ(x))). Fix ysup ∈ I≤
+x

γγ(x) such that tsup = γ(ysup). Assume
that γ(x) <∼ γ(z). As γ(ysup) ≤+ γ(x) we have γ(ysup) < γ(z). But γ(ysup) 6⊥+

γ(z), so γ(ysup) <∼ γ(z). For converse, assume that γ(ysup) <∼ γ(z). If x ∈ S−ε
then %(x) <∼ γ(ysup) and again by Lemma 7.4.1 we have that either γ(x) <∼ γ(z) or
z <+ x. If x ∈ Sε then by Lemma 7.4.2 we get once more that either γ(x) <∼ γ(z)
or z <+ x. But z <+ x would contradict the choice of tsup. Thus γ(x) <∼ γ(z), and
hence the equation 1. holds in this case as well.

Ad 2. We consider again two cases depending on the set tinf is in. Fix z ∈ Iu.
Case tinf = inf∼({t ∈ δ̇(x) : u ∈ δ(t)}). Assume γ(z) <∼ tinf . Then by Lemma

7.4.3 we have that either γ(z) <∼ γ(x) or z <+ x. But z <+ x would contradict the
choice of tinf . Thus γ(z) <∼ γ(x). To see the converse, assume that γ(z) <∼ γ(x).
But then as other cases are easily excluded we must have γ(z) <∼ tinf , and hence
the equation 2. holds in this case.

Case tinf = inf∼(γ(I≤+x
u )). Fix yinf ∈ I≤

+x
u such that tinf = γ(yinf). Assume

that γ(z) <∼ γ(x). As γ(yinf), γ(z) ∈ I≤+x
u we have γ(yinf) ⊥∼ γ(z). As γ(yinf) <∼

γ(z) leads immediately to a contradiction we have γ(z) <∼ γ(yinf). To see the
converse assume that γ(z) <∼ γ(yinf). If x ∈ S−ε then by definition of ysup we have
γ(ysup) <∼ inf∼{t′ ∈ δ̇(x) : u ∈ δ(t′)} and again by Lemma 7.4.3 we have that either
γ(z) <∼ γ(x) or z <+ x. If x ∈ Sε then by Lemma 7.4.4 we get once more that
either γ(z) <∼ γ(x) or z <+ x. But z <+ x would contradict the choice of tinf .
Thus γ(z) <∼ γ(x), and hence the equation 2. holds in this case as well. 2

Lemma 7.7 Let S be an ordered face structure u, t, x ∈ S, u ∈ δ̇(t) and t ∈ δ̇(x).
We put

tsup = sup
∼

({t′ ∈ δ̇(x) : t′ <∼ t, γ(t′) = u} ∪ γ({y ∈ I≤+x
u : γ(y) <∼ t})),

tinf = inf
∼

({t′ ∈ δ̇(x) : t <∼ t′} ∪ γ({y ∈ I≤
+x

γ(t) : t <∼ γ(y)})).

The elements tsup, tinf are not necessarily well defined, due to the fact that these set
might be empty, but we have

3. (u, ↓ t,−) =

{
(u, ↓ γ(x),−) if tsup is undefined,
(u,−, ↑ tsup) otherwise.

4. (γ(t),−, ↑ t) =

{
(γγ(x),−, ↑ γ(x)) if tinf is undefined,
(γ(t), ↓ tinf ,−) otherwise.

Proof. Ad 3. First note that if tsup is undefined then t is tinf from Lemma 7.6. Thus
the equation 3. holds in this case by Lemma 7.6.2. If tsup is defined then we consider
two cases depending on the set tsup is in. However in either case, by Lemma 7.3, we
have that ↓u t∪ ↑ tsup = Iu.

Case tsup = sup∼({t′ ∈ δ̇(x) : t′ <∼ t, γ(t′) = u}). Suppose there is z ∈ Iu such
that tsup <

∼ γ(z) <∼ t. Then, as the assumption 1. of Lemma 7.5 holds, we have
that either z <+ x or there is t′ ∈ δλ(x) such that tsup <

∼ t′ <∼ t, γ(z) ≤+ t′ and
γ(t′) = u. Both cases contradict the choice tsup. Thus ↓u t∩ ↑ tsup = ∅, and hence
(u, ↓ t,−) = (u,−, ↑ tsup) i.e. the equation 3. holds in this case.

Case tsup = sup∼(γ({y ∈ I≤+x
u : γ(y) <∼ t})). Fix ysup ∈ I≤

+x
u such that

γ(ysup) = tsup. Suppose there is z ∈ Iu such that γ(ysup) <∼ γ(z) <∼ t. Then,
as the assumption 2. of Lemma 7.5 holds, we have that either z <+ x or there is
t′ ∈ δλ(x) such that γ(ysup) <∼ t′ <∼ t, γ(z) ≤+ t′ and γ(t′) = u. Both cases
contradict the choice ysup. Thus ↓u t∩ ↑ γ(ysup) = ∅, i.e. the equation 3. holds in
this case, as well.
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Ad 4. First note that if tinf is undefined then t is tsup from Lemma 7.6. Thus
the equation 4. holds in this case by Lemma 7.6.1. If tinf is defined then we consider
two cases depending on the set tinf is in. However in either case, by Lemma 7.3, we
have that ↓γ(t) tinf∪ ↑ t = Iγ(t).

Case tinf = inf∼({t′ ∈ δ̇(x) : t <∼ t′}). Suppose there is z ∈ Iγ(t) such that
t <∼ γ(z) <∼ tinf . Then, as the assumption 1. of Lemma 7.5 holds, we have that
either z <+ x or there is t′ ∈ δλ(x) such that t <∼ t′ <∼ tinf , γ(z) ≤+ t′ and
γ(t′) = γ(t). Both cases contradict the choice tinf . Thus ↓γ(t) tinf∩ ↑ t = ∅, and
hence (γ(t),−, ↑ t) = (γ(t), ↓ tinf ,−), i.e. the equation 4. holds in this case.

Case tinf = inf∼(γ({y ∈ I≤
+x

γ(t) : t <∼ γ(y)})). Fix yinf ∈ I≤
+x

γ(t) such that
γ(yinf) = tinf . Suppose there is z ∈ Iu such that t <∼ γ(z) <∼ γ(yinf). Then, as the
assumption 3. of Lemma 7.5 holds, we have that either z <+ x or there is t′ ∈ δλ(x)
such that γ(ysup) <∼ t′ <∼ t, γ(z) ≤+ t′ and γ(t′) = γ(t). Both cases contradict the
choice yinf . Thus ↓γ(t) t∩ ↓ γ(yinf) = ∅, i.e. the equation 4. holds in this case, as
well. 2

Lemma 7.8 Let S be an ordered face structure y, x ∈ S, y ∈ I≤
+x

γγ(y). Then γγ(y) ∈
θδ(x). We put

tsup = sup
∼

({t ∈ δ̇(x) : t <∼ γ(y)} ∪ γ({y′ ∈ I≤
+x

γγ(y) : γ(y′) <∼ γ(y)})),

tinf = inf
∼

({t ∈ δ̇(x) : γ(y) <∼ t} ∪ γ({y′ ∈ I≤
+x

γγ(y) : γ(y) <∼ γ(y′)})).

The elements tsup,tinf are not necessarily well defined, due to the fact that these set
might be empty, but we have

5. (γγ(y), ↓ γ(y),−) =

{
(γγ(y), ↓ γ(x),−) if tsup is undefined,
(γγ(y),−, ↑ tsup) otherwise.

6. (γγ(y),−, ↑ γ(y)) =

{
(γγ(x),−, ↑ γ(x)) if tinf is undefined,
(γγ(y), ↓ tinf ,−) otherwise.

Proof. Ad 5. First note that if tsup is undefined then, with u = γγ(y), y is yinf from
(the proof of) Lemma 7.6. Thus the equation 5. holds in this case by Lemma 7.6.2.
If tsup is defined then we consider two cases depending on the set tsup is in. However
in either case, by Lemma 7.3, we have that ↓γγ(y) γ(y)∪ ↑ tsup = Iγγ(y).

Case tsup = sup∼({t ∈ δ̇(x) : t <∼ γ(y)}). Suppose there is z ∈ Iγγ(y) such that
tsup <

∼ γ(z) <∼ γ(y). Then, as the assumption 3. of Lemma 7.5 holds, we have
that either z <+ x or there is t′ ∈ δλ(x) such that tsup <

∼ t′ <∼ t, γ(z) ≤+ t′ and
γ(t′) = γγ(y). Both cases contradict the choice tsup. Thus ↓γγ(y) γ(y)∩ ↑ tsup = ∅,
i.e. the equation 5. holds in this case.

Case tsup = sup∼(γ({y′ ∈ I≤
+x

γγ(y) : γ(y′) <∼ γ(y)})). Fix ysup ∈ I≤
+x

γγ(y) such that
γ(ysup) = tsup. Suppose there is z ∈ Iγγ(y) such that γ(ysup) <∼ γ(z) <∼ γ(y).
Then, as the assumption 4. of Lemma 7.5 holds, we have that either z <+ x or
there is t′ ∈ δλ(x) such that γ(ysup) <∼ t′ <∼ t, γ(z) ≤+ t′ and γ(t′) = γγ(y). Both
cases contradict the choice ysup. Thus ↓γγ(y) γ(y)∩ ↑ γ(ysup) = ∅, i.e. the equation
5. holds in this case, as well.

Ad 6. First note that if tinf is undefined then, γγ(y) = γγ(x) and y is ysup from
(the proof of) Lemma 7.6. Thus the equation 6. holds in this case by Lemma 7.6.1.
If tinf is defined then consider two cases depending on the set tinf is in. However in
either case, by Lemma 7.3, we have that ↓γγ(y) tinf∪ ↑ γ(y) = Iγγ(y).
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Case tinf = inf∼({t ∈ δ̇(x) : γ(y) <∼ t}). Suppose there is z ∈ Iγγ(y) such that
γ(y) <∼ γ(z) <∼ tinf . Then, as the assumption 2. of Lemma 7.5 holds, we have
that either z <+ x or there is t′ ∈ δλ(x) such that t <∼ t′ <∼ tinf , γ(z) ≤+ t′ and
γ(t′) = γγ(y). Both cases contradict the choice tinf . Thus ↓γγ(y) tinf∩ ↑ γ(y) = ∅,
hence (γγ(y),−, ↑ γ(y)) = (γγ(y), ↓ tinf ,−), i.e. the equation 6. holds in this case.

Case tinf = inf∼(γ({y′ ∈ I≤
+x

γγ(y) : γ(y) <∼ γ(y′)})). Fix yinf ∈ I≤
+x

γγ(y) such that
γ(yinf) = tinf . Suppose there is z ∈ Iγγ(y) such that γ(y) <∼ γ(z) <∼ γ(yinf). Then,
as the assumption 4. of Lemma 7.5 holds, we have that either z <+ x or there is
t′ ∈ δλ(x) such that γ(y) <∼ t′ <∼ γ(yinf), γ(z) ≤+ t′ and γ(t′) = γγ(y). Both cases
contradict the choice yinf . Thus ↑γγ(y) t∩ ↓ γ(yinf) = ∅, i.e. the equation 6. holds in
this case, as well. 2

The Proof

Proof of Theorem 7.1. Fix an ordered face structure S. Clearly for a ∈ I, δ†(a) 6= ∅.
Suppose that (x, L, U) is a cut in S†k, with k > 0. Then either δ̇(x) 6= ∅ or δ̇(x) = ∅
and then by Lemma 4.3 we have that there is y ∈ I≤+x. In either case δ†(x, L, U) 6=
∅. Thus S† is a positive hypergraph. We shall check that S† satisfies all four positive
face structure axioms.

Globularity. We need to verify globularity for both kinds of faces in S†: bars
and cuts. First we shall check globularity for bars. Fix α ∈ I. We have

γ†γ†(α) = (γγγ(α),−, ↑ γγ(α)) = γ†δ†(α),

δ†γ†(α) = I≤+γ(α) ∪ {(t, ↓ γγ(α),−) : t ∈ δ̇γγ(α)} = δ†δ†(α).

We need to show that
γ†γ†(α) 6∈ δ†γ†(α).

Suppose contrary that γ†γ†(α) ∈ δ†γ†(α). Then, as γ†γ†(α) is a cut, we would
have γγγ(α) ∈ δγγ(α), i.e. γγ(α) is a loop. Thus by Lemma 4.3 there is a ∈ Iγγγ(α)

such that γ(a) ≤ γγ(α). But then ↑ γγ(α) 63 a 6∈↓ γγ(α) and hence

(γγγ(α),−, ↑ γγ(α)) 6= (γγγ(α), ↓ γγ(α),−),

which means that γ†γ†(α) 6∈ δ†γ†(α) after all. From this the globularity for bars
follow easily.

Now we shall check globularity for cuts. Fix a cut (x, L, U) in S†k, with k > 1.
The sets involved in the globularity equations are sums of some sets. We shall spell
these sets below giving names to their summands. We have

γ†γ†(x, L, U) = (γγ(x),−, ↑ γ(x)) = ψ,

δ†γ†(x, L, U) = I≤+γ(x) ∪ {(u, ↓ γ(x),−) : u ∈ δ̇γ(x)} = Z1 ∪ Z2,

γ†δ†(x, L, U) = {(γγ(y),−, ↑ γ(y)) : y ∈ I≤+x}∪ {(γ(t),−, ↑ t) : t ∈ δ̇(x)} = Z3 ∪Z4

δ†δ†(x, L, U) = {(γγ(y), ↓ γ(y),−) : y ∈ I≤+x} ∪ {s : s ∈ I≤+t, t ∈ δ̇(x)}∪

∪{(u, ↓ t,−) : t ∈ δ̇(x), u ∈ δ̇(t)} = Z5 ∪ Z6 ∪ Z7

In order to verify γ-globularity, i.e.

γ†γ†(x, L, U) = γ†δ†(x, L, U)− δ†δ†(x, L, U),

we shall show:
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(A) ψ ∈ γ†δ†(x, L, U),

(B) ψ 6∈ δ†δ†(x, L, U),

(C) γ†δ†(x, L, U)− ψ ⊆ δ†δ†(x, L, U).

Ad A. By Lemma 7.6 (γ(x)-cuts) either x ∈ S−ε and ψ = (γ%(x),−, ↑ %(x)) ∈ Z4

or there is y ∈∈ I≤
+x

γγ(x) such that ψ = (γγ(y),−, ↑ γ(y)) ∈ Z3. In either case
ψ ∈ γ†δ†(x, L, U).

Ad B. As ψ is not a bar, we have ψ 6∈ Z6.
Suppose ψ ∈ Z5. Then there is y ∈ I≤

+x
γγ(x) such that (γγ(y), ↓ γ(y),−) = ψ.

So y ∈↑ γ(x), i.e. γ(x) <∼ γ(y). But y ≤+ x, so γ(y) ≤+ γ(x) and we have a
contradiction with the disjointness. Thus ψ 6∈ Z5.

Suppose now that ψ ∈ Z7. So there is t ∈ δ̇(x) such that γγ(x) ∈ δ̇(t) and
(γγ(x), ↓ t,−) = ψ. As t ∈ δ̇(x) we have γ(t) ≤+ γγ(x). So t is a loop. Then, by
Lemma 4.3, there is y ∈ Iγγ(x) such that γ(y) ≤+ t. As y ∈ S−λ, we have y <∼ x,
and hence γ(y) ≤+ γ(x). Thus y 6∈↓γγ(x) t and y 6∈↑ γ(x), i.e. (γγ(x), ↓ t,−) 6= ψ

after all. Thus ψ 6∈ Z5 and hence ψ 6∈ δ†δ†(x, L, U).
Ad C. Fix ξ ∈ γ†δ†(x, L, U), such that ξ 6= ψ. If ξ ∈ Z4 then there is t ∈ δ̇(x)

such that ξ = (γ(t),−, ↑ t). We shall use Lemma 7.7 (t-cuts). As ξ 6= ψ

tinf = inf
∼

({t′ ∈ δ(x) : t <∼ t′} ∪ γ({y ∈ I≤
+x

γ(t) : t <∼ γ(y)})).

is well defined and then ξ = (γ(t), ↓ tinf ,−). Now, if tinf = inf∼({t′ ∈ δ(x) : t <∼ t′})
then ξ ∈ Z7 and if tinf = inf∼(γ({y ∈ I≤

+x
γ(t) : t <∼ γ(y)})) then ξ ∈ Z5.

If ξ ∈ Z3 then there is y ∈ I≤+x, so that ξ = (γγ(y),−, ↑ γ(y)). We shall use
Lemma 7.8 (γ(y)-cuts). As ξ 6= ψ then

tinf = inf
∼

({t ∈ δ(x) : γ(y) <∼ t} ∪ γ({y′ ∈ I≤
+x

γγ(y) : γ(y) <∼ γ(y′)}))

is well defined and ξ = (γγ(y), ↓ tinf ,−). Again, if tinf = inf∼({t ∈ δ(x) : γ(y) <∼ t})
then ξ ∈ Z7 and if tinf = inf∼(γ({y′ ∈ I≤

+x
γγ(y) : γ(y) <∼ γ(y′)})) then ξ ∈ Z5. Thus

C. holds. This ends verification of γ-globularity for S†.
Now we shall check δ-globularity for S†, i.e.

δ†γ†(x, L, U) = δ†δ†(x, L, U)− γ†δ†(x, L, U).

Both sides of this equation contains both bars and cuts. We show equalities for
them separately.

First we shall show the equality for bars. We need to show that Z6 = Z1. Clearly,
Z6 ⊆ Z1. We shall verify that Z1 ⊆ Z6. Let t ∈ Z1, i.e. t ∈ I and t ≤+ γ(x). As
t ∈ I and I ∩ γ(S−λ) = ∅ we have that either t = γ(x) = δ(x) or t 6= γ(x). In the
former case clearly t ∈ Z6. In the later case there is an upper (S − γ(S−λ))-path
t, x1, . . . , xk, γ(x) with k ≥ 1. By pencil linearity xk ≤+ x. As t ∈ I ⊆ S − γ(S−λ)
by Second Path Lemma, either t ∈ δ(x) or there is 1 ≤ i < k such that γ(xi) ∈ δ(x).
In either case there is s ∈ δ(x) (s = t or s = γ(xi)) such that t ≤+ s, i.e. t ∈ Z6.
Thus the δ-globularity for bars holds.

Now we will show the δ-globularity for cuts. Clearly, it is enough to restrict
ourself to cuts over θ̇δ(x) as other cuts cannot appear in the equation. Moreover,
by Lemma 4.7 (atlas), we have θ̇δ(x) = δ̇γ(x) ∪ γδ̇−λ(x). As in δ†γ†(x, L, U) can
appear only cuts over δ̇γ(x) we will split our proof farther by considering these two
case separately. Let u ∈ θ̇δ(x). By Xu−cuts we mean u-cuts in the set X. To end
the proof of δ-globularity we need to show:
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(I) if u ∈ γδ̇−λ(x) then δ†δ†(x, L, U)u−cuts ⊆ γ†δ†(x, L, U),

(II) if u ∈ δ̇γ(x) then the cut ψu = (u, ↓ γ(x),−) is the only u-cut in δ†γ†(x, L, U).
Moreover we have:

(Au) ψu ∈ δ†δ†(x, L, U),

(Bu) ψu 6∈ γ†δ†(x, L, U),

(Cu) δ†δ†(x, L, U)u−cuts − ψu ⊆ γ†δ†(x, L, U).

Note the similarity of the conditions (A), (B), (C) with (Au), (Bu), (Cu).
Ad I. Fix u ∈ γδ̇−λ(x) and tu ∈ δ̇−λ(x) such that γ(tu) = u. Let ϕ = (u, L′, U ′) ∈

δ†δ†(x, L, U). We put

tϕ =

{
t if ϕ ∈ Z7 and t ∈ δ̇(x) such that L′ =↓u t,
γ(y) if ϕ ∈ Z5, and y ∈ I≤+x

u such that L′ =↓u γ(y).

Thus ϕ = (u, ↓ tϕ,−). Put

tsup = sup
∼

({t′ ∈ δ̇(x) : t′ <∼ tϕ, γ(t′) = u} ∪ γ({y′ ∈ I≤+x
u : γ(y′) <∼ tϕ})).

As tu ∈ {t′ ∈ δ(x) : t′ <∼ tϕ, γ(t′) = u} 6= ∅ the face tsup is well defined. Then,
by Lemmas 7.7 and 7.8 we have that ϕ = (u,−, ↑ tsup) ∈ γ†γ†(x, L, U).

Ad II. The fact that ψu is the only u-cut in δ†γ†(x, L, U) is obvious from our
description of this set as sum Z1 ∪ Z2.

Ad Au. Let tinf = inf∼({t ∈ δ̇(x) : u ∈ δ(t)}∪γ(I≤+

u )). If {t ∈ δ̇(x) : u ∈ δ(t)} =
∅ then x ∈ Sε and hence, by Lemma 4.3, I≤+

u 6= ∅. Thus tinf is well defined. By
Lemma 7.6, we have ψu = (u, ↓ tinf ,−) ∈ δ†δ†(x, L, U), as required.

Ad Bu. Suppose ψu ∈ Z3. Then there is y ∈ I≤+x
u such that ψu = (u,−, ↑ γ(y)).

As y ≤+ x we have γ(y) ≤+ γ(x). Thus γ(y) 6≤∼ γ(x). This means that y 6∈↓u γ(x).
Clearly y 6∈↑ γ(y). Thus ψu = (u, ↓ γ(x),−) 6= (u,−, ↑ γ(y)), after all. This shows
that ψu 6∈ Z3.

Suppose now that ψu ∈ Z4. So there is t ∈ δ̇(x) such that ψu = (u,−, ↑ t).
As γ(t) = u ∈ δγ(x), t is a loop. Then, by Lemma 4.3, there is y ∈ Iu such that
γ(y) ≤+ t and, by transitivity of <+, γ(y) ≤+ γ(x). Thus y 6∈↑ t and y 6∈↓u γ(x).
Then ψu = (u, ↓ γ(x),−) 6= (u,−, ↑ t). So ψ 6∈ Z4, and hence ψ 6∈ γ†δ†(x, L, U).

Ad Cu. Fix ξ = (u, L′, U ′) ∈ δ†δ†(x, L, U), such that ξ 6= ψu. If ξ ∈ Z7 then
there is t ∈ δ̇(x) such that u ∈ δ̇(t) and ξ = (u, ↓ t,−). We shall use Lemma 7.7
(t-cuts). As ξ 6= ψu the face

tsup = sup
∼

({t′ ∈ δ̇(x) : t′ <∼ t, γ(t′) = u} ∪ γ({y ∈ I≤+x
u : γ(y) <∼ t})),

is well defined and then ξ = (u,−, ↑ tsup). Now, if tsup = sup∼({t′ ∈ δ(x) : t′ <∼

t, γ(t′) = u}) then ξ ∈ Z4 and if tsup = sup∼(γ({y ∈ I≤+x
u : γ(y) <∼ t})) then

ξ ∈ Z3.
If ξ ∈ Z5 then there is y ∈ I≤+x, so that ξ = (u, ↓ γ(y),−). We shall use Lemma

7.8 (γ(y)-cuts).
As ξ 6= ψu the face

tsup = sup
∼

({t ∈ δ̇(x) : t <∼ γ(y)} ∪ γ({y′ ∈ I≤
+x

γγ(y) : γ(y′) <∼ γ(y)})),

is well defined and ξ = (u,−, ↑ tsup). Again, if tsup = sup∼({t ∈ δ̇(x) : t <∼ γ(y)})
then ξ ∈ Z4 and if tsup = sup∼(γ({y′ ∈ I≤

+x
γγ(y) : γ(y′) <∼ γ(y)})) then ξ ∈ Z3. Thus

Cu. holds. This ends verification of δ-globularity for S†.
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Orders in S†. Before we verify the remaining axioms of positive face structures
we shall describe the order in S†. Let (x, L, U), (y, L′, U ′) ∈ C(ISk) be two cuts in
S†k and a, b ∈ Ik+1 so that a, b are two bars in S†k.

For k ≥ 0, the upper order <†,+ in S†k can be characterized as follows (<+ is the
upper order in S):

1. (cut,cut): (x, L, U) <†,+ (y, L′, U ′) iff either x <+ y or x = y and L ⊆6 L′;

2. (bar,cut): a <†,+ (y, L′, U ′) iff γ(a) ≤+ y;

3. (cut,bar): (x, L, U) <†,+ b never holds true;

4. (bar,bar): a <†,+ b never holds true.

For k ≥ 1, the lower order <†,− in S†k can be characterized as follows (<∼ is the
lower order in S):

1. (cut,cut): (x, L, U) <†,− (y, L′, U ′) iff x <∼ y;

2. (bar,cut): a <†,− (y, L′, U ′) iff γ(a) <∼ y;

3. (cut,bar): (x, L, U) <†,− b iff x <∼ γ(b);

4. (bar,bar): a <†,− b iff γ(a) <∼ γ(b).

Strictness. The strictness is obvious from the above description of <†,+. Note
that all faces in S†0 are cuts. So <†,+ on S†0 is a linear order since <+ is.

Disjointness. With the description of <†,+ and <†,− above the disjointness is a
matter of a simple check using disjointness of <+ and <∼.

Pencil linearity. Let a, b be two different bars in S† and (x, L, U), (y, L, U) be
two different cuts in S†. To show γ-linearity we need to consider three cases:

1. γ(x, L, U) = γ(y, L′, U ′),

2. γ(a) = γ(x, L, U),

3. γ(a) = γ(b).

Ad 1. We have (γ(x),−, ↑ x) = (γ(y),−, ↑ y). If x = y then either L ⊆6 L′ or
L′ ⊆6 L. Thus x ⊥+ y. If x 6= y and γ(x) = γ(y) then either x ⊥+ y or x ⊥∼ y. In
case x ⊥+ y we have (x, L, U) ⊥+ (y, L, U). We shall show that x ⊥∼ y is impossible.
Suppose x <∼ y. As γ(x) = γ(y), it follows that y is a loop. Let c ∈ Iγ(y) be an
initial face such that γ(c) ≤+ y. Then x <∼ γ(c) and y 6<∼ γ(a), i.e. ↑ x 6=↑ y,
contrary to the supposition. Thus x ⊥∼ y cannot hold true.

Ad 2. We have (γγ(a),−, ↑ γ(a)) = (γ(x),−, ↑ x). As γγ(a) = γ(x),
we have either γ(a) = x or γ(a) ⊥+ x or γ(a) ⊥∼ x. If γ(a) ≤+ x then
a <+ (γ(a), ∅,−) ≤+ (x, L, U). The other conditions are impossible. The condition
x <+ γ(a) is impossible by Lemma 7.2, and the condition γ(a) ⊥∼ x is impossible
as it is easily seen that we were to have ↑ x 6=↑ γ(a).

Ad 3. We shall show that this case, i.e. (γγ(a),−, ↑ γ(a)) = (γγ(b),−, ↑ γ(b))
is impossible. As a, b ∈ Iγγ(a) then γ(a) ⊥∼ γ(b). Suppose γ(a) <∼ γ(b). Then
b ∈ γ(a) and b 6∈ γ(b). So we cannot have ↑ γ(a)) =↑ γ(b). This ends the proof of
γ-linearity.

Finally, to verify δ-linearity we need to consider the following four cases:

1. z ∈ δ(x, L, U) ∩ δ(y, L′, U ′),

2. (t, L′′, U ′′) ∈ δ(x, L, U) ∩ δ(y, L′, U ′),
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3. δ(a) ∈ δ(x, L, U),

4. δ(a) = δ(b).

Ad 1. In this case we have z ≤+ x and z ≤+ y. Thus by Lemma 4.17, x ⊥+ y
or x = y. In both cases (x, L, U) ⊥+ (y, L′, U ′).

Ad 2. In this case t ∈ δ(x)∩ δ(y) and (t, L′′, U ′′) = (t, ↓ x,−) = (t, ↓ y,−). Thus
either x ⊥+ y or x ⊥∼ y. In the former case we have (x, L, U) ⊥+ (y, L′, U ′). We
shall show that the later case is impossible. Suppose x <∼ y. Then x ∈ Sλ and hence
there is a ∈ I such that γ(a) ≤+ x. So a ∈ (↓t y− ↓t x) and (t, ↓ x,−) 6= (t, ↓ y,−)
contrary to the supposition.

Ad 3. In this case γγ(a) ∈ δ(x) and (γγ(a), ↓ γ(a),−) = (γγ(a), ↓ x,−). Thus
either γ(a) ⊥+ x or γ(a) ⊥∼ x. If γ(a) ≤+ x then a <+ (x, L, U). The remaining
cases are impossible. x <+ γ(a) is impossible by Lemma 7.2, and if we were to have
γ(a) ⊥∼ x we would have ↓γγ(a) γ(a) 6=↓γγ(a) x.

Ad 4. We shall show that this case (γγ(a), ↓ γ(a),−) = (γγ(b), ↓ γ(b),−) is
impossible. As a, b ∈ Iγγ(a) we have γ(a) ⊥∼ γ(b). Say γ(a) <∼ γ(b). Then
a ∈↓ γ(b)− ↓ γ(a) and δ(a) 6= δ(b) after all. This ends the proof of δ-linearity.

The fact that qS : S† −→ S is a positive cover with the kernel I. 2

The theorem below show that if we take a positive cover of a quotient by an unary
ideal then we get the ordered face structure back. Thus it shows that if we deal with
unary ideals only the construction of taking quotient of a positive face structure and
taking a positive cover of an ordered face structure are mutually inverse.

8 k-domains and k-codomains of ordered face structures

For any k ∈ ω, we introduce two operations

d(k), c(k) : Ob(oFs) −→ Ob(oFsk)

of the k-th domain and the k-th codomain.
For a given ordered face structure T the we shall define d(k)T and c(k)T via

convex subhypergraphs d(k)T and c(k)T of T . Then we shall put

d(k)T = [d(k)T ], c(k)T = [c(k)T ].

The operations d(k)X and c(k)X are defined for any convex subset of any ordered
face structure T . We put, for l ∈ ω,

(d(k)X)l =


∅ if l > k,
Xk − γ(X−λk+1) if l = k,
Xl if l < k,

and

(c(k)X)l =


∅ if l > k,
Xk − δ(X−λk+1) if l = k,
Xk−1 − ι(Xk+1) if l = k − 1,
Xl if l < k − 1.

Example. Here is an example of an ordered face structure T and its 1-domain and
1-codomain:

T

� ��� CCO⇓a
x

s

d(1)T

s

c(1)T

� ��� CCO
x

s

c(1)T

(s, ∅, {x}) (s, {x}, ∅)-
x
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The following is a more involved example. With ordered face structure S as below
S

s3 s1-

s2

x8

�
��� x7

@
@@R

x6

⇓a7

s0-x2

� �
	∧⇓αa6 � �
	∧⇓α′ a5

� ��
�
�

�
�
���

⇓a1�
�6⇓

� ��
��

A
AAK

⇓a2

� ���6⇓a4
x5
� �AAK⇓a3
x4

� ��� CCO⇓a0
x0

x1
x3

its 1-domain is

d(1)S

s3 s1

s2

x8

�
��� x7

@
@@R

s0-x2

the convex subset of S defining 1-codomain is

c(1)S
s3 s1-x6

s0

� ��
�
��

�
�
���� ��� CCO x0

x1

and finally the 1-codomain of S is

c(1)S

s3 s1-x6
(s0,∅,{x0})-x1

(s0,{x0},∅)-x0

We have

Lemma 8.1 Let T be an ordered face structure, X a convex subset in T . The
subhypergraphs d(k)X and c(k)X of T are convex. Moreover, for X = T , Ed(k)T is
empty, i.e. there are no empty loops in d(k)T (hence d(k)T = d(k)T ) and all empty
loops in Ec(k)T have dimension k.

Proof. The fact that d(k)X and c(k)X are convex sets is an easy consequence
Lemmas 4.11 and 4.16. Ed(k)T is empty by loop-filling. The empty loops in Ec(k)T

have dimension k by globularity. 2

Thus the ordered face structures d(k)T and c(k)T are well defined. We denote
νd(k)T by d(k)

T and νc(k)T by c(k)
T . Thus we have defined a diagram in oFs:

d(k)T c(k)T

T

d(k)
T
�
�
��

c(k)
T
@

@
@I

Example. Let X ⊂ Y be convex subsets of an ordered face structure T as shown
on the diagram below.
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X :

� ���6
x

s

� �AAK
z

Y :

� ��� CCO
y
� �

���
x

s

� �BB JJ]
z

T :

� ��� CCO⇓
y
� �

���⇓
x

s

� �BB JJ]⇓
z

Clearly X ⊆ Y . And the stretching of X and Y gives
[X] :

(s, ∅,−) (s, {x},−)-x (s, {x, z},−)-z

and
[Y ] :

(s, ∅,−) (s, {x},−)-x (s, {x, y},−)-y
(s, {x, y, z},−)-z

respectively. Clearly there is no natural map from [X] to [Y ].
This shows that there might be no natural comparison map between stretchings

even if one of the convex subset is contained in the other. The Lemma below says
that however in some important cases we do have such comparison maps.

Lemma 8.2 Let T be an ordered face structure, X a convex subset in T . The
embeddings d(k)X −→ X and c(k)X −→ X induce monotone morphisms d

(k)
X :

[d(k)X] −→ [X] and c(k)
X : [c(k)X] −→ [X] so that the triangles

[d(k)X] [X]-

ν

�
�
�
�
���

T

6

ν

[c(k)X]�

ν

@
@

@
@
@@I

d
(k)
X

d(k)[X]

6

f d(k)
[X]

�
�
�
�
���

c
(k)
X

c(k)
[X]

@
@

@
@
@@I

c(k)[X]

6

g

commute, where f and g are monotone isomorphisms.

Proof. The morphisms ν send cuts over a face to that face. The commutation
of the upper triangles comes to the observation (see below) that both d

(k)
X and c

(k)
X

sends cuts over a to cuts over a for any a in d(k)X and c(k)X, respectively.
Next we deal with the left lower triangle

[d(k)X] [X]-
d

(k)
X

d(k)[X]

6

f d(k)
[X]

�
�
�
�
���

In dimensions l < k, we have [X]l = [d(k)X]l = d(k)[X]l and

fl = (d(k)
[X])l = (d(k)

X )l = id[X]l

In dimension k, we have

d(k)[X]k = {(a, ∅, EXa ) : a ∈ Xk − γ(X−λk+1)},

[d(k)X]k = {(a, ∅, ∅) : a ∈ Xk − γ(X−λk+1)}
and
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(a, ∅, ∅) (a, ∅, EXa )-

(a, ∅, EXa )

6

@@
�
�
�
�
��

From the description it is clear that both triangles commute and that f is an iso.
Now we shall describe the lower right triangle

[X] [c(k)X]�
c

(k)
X

c(k)
[X]

@
@
@

@
@@I

c(k)[X]

6

g

In this case we need to look at the cells of both dimensions k and k − 1. In lower
dimensions this triangle is, as in the previous case, the triangle of identities. To
describe the above diagram, we shall describe the diagram

[X] c(k)[X]�

X c(k)X�

6
ν

6

[c(k)[X]]�
ν

[c(k)X]� ν

6
g

As the horizontal arrows in the left hand square are inclusions we need to describe
only the right hand square. In dimension k, we have

(c(k)X)k = Xk − δ(X−λk+1)

[c(k)X]k = {(a, ∅, ∅) ∈ C(Ec(k)X
a ) : a ∈ Xk − δ(X−λk+1)}

c(k)[X]k = [X]− δ([X]−λk+1) = {(a,−, ∅) ∈ C(EXa ) : a ∈ Xk − δ(X−λk+1)}

c(k)[X]k = [c(k)[X]]k = {((a,−, ∅), ∅, ∅) ∈ C(Ec
(k)[X]

(a,−,∅)) : (a,−, ∅) ∈ c(k)[X]k}

and the commutation of the square is

(a, ∅, ∅) ((a,−, ∅), ∅, ∅)�

a (a, ∅, ∅)�

6 6

So the diagram in dimension k commutes and gk is a bijection.
In dimension k − 1 we have

(c(k)X)k−1 = Xk−1 − ι(Xk+1)

[c(k)X]k−1 = {(x, L0, U0) ∈ C(Ec(k)X
x ) : x ∈ Xk−1 − ι(Xk+1)}

c(k)[X]k−1 = {(x, L1, U1) ∈ C(EXx ) : there is no α ∈ X, such that

∃a,b∈δ(α) γ(a) = x ∈ δ(b), (a, ↓ α,−), (b, ↓ α,−) ∈ [X]−λ

and (γ(a),−, ↑ a) = (x, L1, U1) = (x, ↓ b,−)}

c(k)[X]k−1 = [c(k)[X]]k−1 =

= {((x, L1, U1), L2, U2) ∈ C(Ec
(k)[X]

(x,L1,U1)) : (x, L1, U1) ∈ c(k)[X]k−1}

and the commutation of the square is
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(x, L1, U1) ((x, L1, U1), L2, U2)�

x (x, L0, U0)�

6 6

where the bijective correspondence between cuts (x, L0, U0) in C(Ec(k)X
x ) and the

cuts of cuts ((x, L1, U1), L2, U2) in [c(k)[X]]k−1 is described below.
First we introduce a piece of notation. We denote the faces ain, aout ∈ X−λk −

δ(X−λk+1) such that γ(ain) = x ∈ δ(aout). Such faces do not need to exists but if they
do they are unique. We have

L0 = {l ∈ Ec(k)X
x : (l,−, ∅) ∈ L2 or ∃a∈L1 a ≤+ l},

U0 = {l ∈ Ec(k)X
x : (l,−, ∅) ∈ U2 or ∃a∈U1 a ≤+ l},

L1 = {a ∈ EXx : ∃l∈L0 a ≤+ l or ain exists and a <+ ain},

U1 = {a ∈ EXx : ∃l∈U0 a ≤+ l or aout exists and a <+ aout, }

L2 = {(l,−, ∅) ∈ Ec
(k)[X]

(x,−,↑l) : l ∈ L0},

U2 = {(l,−, ∅) ∈ Ec
(k)[X]

(x,−,↑l) : l ∈ U0}.

It is a matter of a check to see that this correspondence is bijective and that g is
indeed an iso. Note that in this notation the map c

(k)
X : [c(k)X] −→ [X] is given by

(x, L0, U0) 7→ (x, L1, U1).

2

Proposition 8.3 Let q : S → T be a positive cover, I = ker(q) be an ideal in T
determining this cover. Then we have positive covers d(k)(q) : d(k)S → d(k)T and
c(k)(q) : c(k)S → c(k)T , with kernels I ∩ d(k)S and I ∩ c(k)S, respectively, making
both squares

d(k)T T-

d(k)
T

d(k)S S-
d(k)
S

?

d(k)(q)
?

q

c(k)T�

c(k)
T

c(k)S�
c(k)
S

?

c(k)(q)

commute.

Proof. To see that d(k)q exists, we shall show that if a ∈ Sk and q(a) ∈ γ(T−λk+1) then
a ∈ γ(Sk+1). So pick α ∈ T−λk+1 such that γ(α) = q(a). As q is a cover, there is
β ∈ Sk+1 such that q(β) = α. Hence there is a I-path from a to γ(α) or from γ(α)
to a. In the latter case a ∈ γ(Sk+1) and we are done. So assume that there is an
upper I-path a, α1, . . . , αn, γ(β). As q(β) is not a loop and q(αi) = 1γ(β), we have
αi <

+ β and a ∈ ι(S). In particular, we have a ∈ γ(Sk+1), as required.
Similarly we can show that we have a hypergraph morphism q′ as in the diagram

T c(k)T�

S c(k)S�

?

q

?
[c(k)T ]�

ν

c(k)q
@
@
@@R

q′
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making the square commutes. We shall show that q′ can be lifted to c(k)q : c(k)S −→
[c(k)T ]. As the only empty loops in c(k)T have dimension k we need to define the
function

(c(k)q)k−1 : Sk−1 − ι(Sk+1) −→
⋃
{C(Ec(k)T

x ) : x ∈ Tk−1 − ι(Tk+1)}

only. For x ∈ Sk−1 − ι(Sk+1), we put

(c(k)q)k−1(x) =


1(γ(q′(x)),∅,∅) if q′(x) ∈ 1Tk−2

,
(x, ∅, ∅) Ec(k)T

q′(x) = ∅,
(x, ↓ a, ∅) a ∈ Sk − δ(Sk+1) and x ∈ δ(a),
(x, ∅, ↑ b) b ∈ Sk − δ(Sk+1) and x = γ(b).

As for any x ∈ Sk−1 − ι(Sk+1) if q′(x) ∈ Tk−1 and Ec(k)T
q′(x) 6= ∅ then either there is a

unique a ∈ Sk − δ(Sk+1) such that x ∈ δ(a) or there is a unique b ∈ Sk − δ(Sk+1)
such that x = γ(b), (c(k)q)k−1 is well defined. The remaining details are left for the
reader. 2

In particular, from this Proposition and Theorem 7.1, we have

Corollary 8.4 Let S be an ordered face structure, qS : S† −→ S it’s positive cover,
with kernel I, as defined in section 7. Then, dim(I) < dim(S), I ∩ c(S†) = I≤n−2

and
c(S†)/I≤n−2

∼= cS, d(S†)/I
∼= dS.

The globularity equations for ordered face structures can be deduced from the
above Proposition.

Proposition 8.5 Let S be an ordered face structure k, l ∈ ω, k < l ≤ dim(S). Then
the diagram

d(l)S c(l)S

S

d(l)
S

�
�
�
��

c(l)
S

@
@

@
@I

d(k)S c(k)S

6

d(k)

d(l)S

6

c(k)

c(l)S

��
�
��

�
��*

HH
HHY

HH
H

d(k)

c(l)S
c(k)

d(l)S

commutes.

Proof. Having Theorem 7.1 and Proposition 8.3 we see that the above diagram
commutes as a consequence of the same diagram being commutative for the positive
face structure. 2

9 k-tensor squares of ordered face structures

Let S and T be ordered face structures such that c(k)S = d(k)T . In that case we
define the k-tensor S ⊗k T of S and T and the k-tensor square in oFs

c(k)S = d(k)T T-

d(k)
T

S S ⊗k T-κS

6
c(k)
S

6
κT
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The local part of S ⊗k T is defined so that the square

|c(k)S| |T |-

d(k)
T

|S| |S ⊗k T |-κS

6
c(k)
S

6
κT

is a pushout in lFs, so the faces of S ⊗k T are as in the following table:

dim c(k)S d(k)T S ⊗k T
l > k ∅ ∅ Sl + Tl
k Sk − δ(S−λk+1) Tk − γ(T−λk+1) Sk + γ(T−λk+1) = Tk + δ(S−λk+1)

k − 1 C(Sk−1 − ι(Sk+1)) Tk−1 Sk−1

l < k − 1 Sl Tl Sl

By the assumption the first and the second columns are equal and the third describes
the faces of S ⊗k T . To simplify the description of S ⊗k T , we assume that

Sk − δ(S−λk+1) = Tk − γ(T−λk+1) = Sk ∩ Tk,

and we introduce the notation for the function

[−] = (c(k)
S )k−1 : (c(k)S)k−1 = Tk−1 −→ Sk−1.

that sends t-cuts in S, (with t ∈ Sk−1, i.e. elements of Tk−1) to t. All the components
of the maps κS : S −→ S ⊗k T and κT : T −→ S ⊗k T are inclusions except for
(κT )k−1 which is [−]. The domain and codomain maps in S ⊗k T , denoted γ⊗ and
δ⊗ for short, are obvious except for k-faces in γ(T−λk+1). If t ∈ γ(T−λk+1) we put:

γ⊗(t) = [γT (t)], δ⊗(t) = {[u] : u ∈ δT (t)}.

To finish off the definition of S ⊗k T , it is enough to define <⊗,l,∼, for l ≥ 1. For
l < k, <(S⊗kT )l,∼ is <Sl,∼ and <(S⊗kT )l,∼ is <Sl,∼ + <Tl,∼, for l > k + 1. Thus, it
remains to define the orders <(S⊗kT )k,∼ and <(S⊗kT )k+1,∼. The order <(S⊗kT )k+1,∼

is defined for a, b ∈ (S ⊗k T )k+1 = Sk+1 + Tk+1 we put

a <(S⊗kT )k+1,∼ b iff


either a, b ∈ Sk+1 and a <Sk+1,∼ b,
or a, b ∈ Tk+1 and a <Tk+1,∼ b,
or a ∈ Sk+1, b ∈ Tk+1 and a <S⊗kT,− b.

i.e. it is <S,∼ on Sk+1, <T,∼ on is Tk+1, and moreover if the faces comes from
different parts and are <S⊗kT,− related, then faces from S comes before the faces
from T . The last clause of this definition is the only reason S ⊗k T is not a pushout
in oFs, in general. It may cause a face a from S to be <∼-smaller than a face
b from T even if there is no ∼-relation between a and b, whatsoever. By Lemma
4.28, to define the order <(S⊗kT )k,∼ it is enough to say that it agrees with <Tk,∼ on
the set (S ⊗k T )k − δ((S ⊗k T )−λk+1) = (Tk − δ(T−λk+1)). However we give below the
full, but more involved, definition of the order <(S⊗kT )k,∼. We have (S ⊗k T )k =
Sk + γ(T−λk+1) = Tk + δ(S−λk+1). We define <(S⊗kT )k,∼ to be <S,∼ on Sk, and to be
<T,∼ on Tk+1. The essential case is if x ∈ δ(S−λk+1) and y ∈ γ(T−λk+1). In that case
there is a unique x′ ∈ Sk∩Tk that x <+ x′. We put x <(S⊗kT )k,∼ y iff x′ <Tk,∼ y and
y <(S⊗kT )k,∼ x iff y <Tk,∼ x′ and y <(S⊗kT )k,− x. In other words for x, y ∈ (S⊗kT )k,
we have:

x <(S⊗kT )k,∼ y iff



either x, y ∈ S and x <S,∼ y,
or x, y ∈ T and x <T,∼ y,
or x ∈ δ(S−λk+1), y ∈ γ(T−λk+1) and ∃z∈Sk∩Tk x ≤S,+ z and z <T,∼ y,
or x ∈ γ(T−λk+1), y ∈ δ(S−λk+1) and x <(S⊗kT )k,− y

and ∃z∈Sk∩Tk x ≤T,+ z and x <S,∼ z.
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Examples. Before we prove some properties of the above construction let us look
at some examples of k-tensors:

S S ⊗0 T-κS T� κT

� ���6⇓a
x

s

� �AAK⇓b
y

� ��� CCO⇓a x

s

� ��� CCO⇓b y

s

In this case the only relation that is not coming from the fact that S ⊗0 T is a
pushout locally is x <∼ y. We have that x comes before y as in ’case of doubt’ faces
from S comes before those from T .

The next example is a bit more involved. For the ordered face structures

S

• •-

•

�
�� @

@R
x
⇓

•-y0

� �
	∧⇓a � ���6⇓a1
y2
� �AAK⇓a0
y1

T

• •-x •-

• •-

�
��� C

CCW�
��

�
��*

⇓b1
⇓b2 y0

y1

y2

� �
	∧⇓ b � ��� CCO⇓
we have c(1)S = d(1)T

• •-x •-y2 •-y1 •-y0

and their 1-tensor S ⊗1 T square is

S ⊗1 T

• •-

•

�
��� @

@@R⇓
•-y0

� �
	∧⇓a � �
	∧⇓ b

� ��
�
�

�
�
���

⇓b1�
�6⇓

� ��
��

A
AAK

⇓b2
� ���6⇓a1
y2
� �AAK⇓a0
y1

� ��� CCO⇓

with a <∼ b as the only additional data not following from the fact that S ⊗1 T is
a pushout locally.

Proposition 9.1 Let S and T be ordered face structures, k ∈ ω, and c(k)S = d(k)T .
Then S ⊗k T is an ordered face structure, and the k-tensor square

c(k)S T-

d(k)
T

S S ⊗k T-κS

6
c(k)
S

6
κT

commutes in oFs. Moreover the functor | − | : oFs −→ lFs sends the k-tensor
squares to pushouts.

Proof. The whole proof is a matter of a check. We shall discuss globularity leaving
the verification of other axioms of ordered face structure for the reader.

The globularity condition for faces in S ⊗k T for other faces than those in Tk
and Tk+1 holds as a direct consequence of globularity for S and T . A simple check
shows that in fact globularity for Tk is also a consequence of globularity for T . Thus
we need to verify the globularity for a ∈ Tk+1 ⊆ (S⊗k T )k+1. We will write γ for γT

67



and γ⊗ for γS⊗kT . For empty-domain faces the globularity is obvious so we assume
that a ∈ T−εk+1. Put

L = {a ∈ γu(T−λk+1) : there is a Sλ ∩ Tk − path (possibly empty) from δ(a) to γa}.

We have

(S ⊗k T )λl =


Sλl + T λl for l > k,
Sλk + L for l = k,
Sλl for l < k.

We shall describe the sets involved in the globularity conditions:

δ⊗(a) = δ(a), δ̇⊗,−λ(a) = δ̇−λ(a)− L,

γ⊗γ⊗(a) = [γγ(a)], δ⊗γ⊗(a) = {[t] : t ∈ δγ(a)]},

γ⊗δ⊗(a) = {[γ(x)] : x ∈ δ(a)}, δ⊗δ⊗(a) = {[t] : t ∈ δδ(a)]},

γ⊗δ⊗,−λ(a) = {[γ(x)] : x ∈ δ(a)− L}, δ⊗δ⊗(a) = {[t] : ∃x∈δ(a)−L t ∈ δ(x)]}.

By assumption on T we have γγ(a) = γδ(a) − δδ̇−λ(a). Thus to show the γ-
globularity

γ⊗γ⊗(a) = γ⊗δ⊗(a)− δ⊗δ̇⊗,−λ(a)

we need to show

1. γ⊗γ⊗(a) 6∈ δ⊗δ̇⊗,−λ(a)

2. γ⊗δ⊗(a) ⊆ γ⊗γ⊗(a) ∪ δ⊗δ̇⊗,−λ(a).

Ad 1. Suppose 1. does not hold and fix face x ∈ δ(a) − L, t ∈ δ̇(x) such that
there is an upper (Sλ ∩ T )-path t, x0, . . . , xk, γγ(a) from t to γγ(a). In particular,
this is Tk − γ(T−λk+1)-path. As x ∈ Tk, we have x0 ≤+ x.As γ(x) ≤+ γγ(a), by Path
Lemma and the definition of L, we have that x ∈ L, contrary to the assumption.

Ad 2. Fix x ∈ δ(a). Let γ(x), x1, . . . , xk, γγ(a) be the flat upper (Tk − γ(T−λk+1))-
path. If this path is Sλ-path then [γ(x)] = [γγ(a)], if it is not then [γγ(x)] ∈
δ⊗δ̇⊗,−λ(a), as required.

For δ-globularity we consider only the case γ(a) ∈ T−ε. The other case is easy.
For empty-faces in T we have γγδε(a) ⊆ θδγ(a) and hence passing to equivalence
classes we also have γ⊗γ⊗δ⊗,ε(a) ⊆ θ⊗δ⊗γ(a). Moreover as δγ(a) = δ̇δ(a)−γδ̇−λ(a)
holds in T to show δ⊗γ⊗(a) = δ̇⊗δ(a) − γ⊗δ̇⊗,−λ(a) we need to show again two
things

3. δ⊗γ⊗(a) ∩ γ⊗δ̇⊗,−λ(a) = ∅,

4. δ⊗δ⊗(a) ⊆ δ⊗γ⊗(a) ∪ γ⊗δ̇⊗,−λ(a)

Ad 3. Suppose contrary, that 3. does not hold. Fix t ∈ δγ(a) such that [t] ∈
γ⊗δ̇⊗,−λ(a). So there is x ∈ δ−λ(a)−L and upper (Sλk ∩Tk)-path t, x1, . . . , xk, γ(x),
with k ≥ 1. If t ∈ δ(x) or γ(xi) ∈ δ(x), for some i = 1, . . . , k−1 then x ∈ L, contrary
to the supposition. If t 6∈ δ(x) and xi <

+ x, for some i = 1, . . . , k, then, by Lemma
4.8.1 and Path Lemma, γ(a) <+ x ∈ δ(a) which is again a contradiction. Thus 3.
holds.

Ad 4. Fix t ∈ δ(x) such that x ∈ δ(a). Let x1, . . . , xk, t be the maximal flat
upper (Tk − γ(T−λk+1))-path ending at t. By Path Lemma either there is t′ ∈ δγ(a)
such that t′ ∈ δ(x1) or t′ = γ(xi), for some i = 1, . . . , k − 1, or xi <

+ γ(a),
for some i = 1, . . . , k, xi ∈ T ε and γγ(x) ∈ θδγ(a). In the former case, if the
path t′, xj , . . . , xk, t is an Sλ-path then [t] ∈ δ⊗γ⊗(a), if not then using again Path
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Lemma we get that [t] ∈ γ⊗δ̇⊗,−λ(a). In the later case we can also easily show that
[t] ∈ γ⊗δ̇⊗,−λ(a), as required. 2

The following propositions establish a connection between tensor squares of or-
dered faces structures and special pushouts of positive face structures.

Proposition 9.2 Let X and Y be positive face structures, k ∈ ω, c(k)(X) =
d(k)(Y ), and J an ideal in the special pushout8 X +k Y . The quotient by ideal
J of the special pushout being the top of the following cube

c(k)(X)/J k Y/J Y
-

d(k)

c(k)(X) Y-
d(k)

?

p

?

p
X/JX (X +k Y )/J

X X +k Y-κ

?

p

κ
�
�
��

κ
�
�
��

�
�
��

c(k)

�
�
��

c(k)

-
κ

?

p

is a k-tensor square on the bottom of the following cube, where JX , J Y , and J k
are the ideals that arise by intersecting J with X, Y , and c(k)(X), respectively. In
the cube all squares commutes, and all vertical maps are covers.

Proof. This is a matter of a simple check. 2

Proposition 9.3 Let S and T be ordered face structures, k ∈ ω, and c(k)S = d(k)T
and a positive cover p : (S ⊗k T )‡ −→ S ⊗k T with the kernel J . Then there are
covers S‡ → S and T ‡ → T , such that the top square of the following cube

c(k)(S) T-
d(k)

c(k)(S‡) T ‡-d(k)

?

p

?

p
S S ⊗k T

S‡ (S ⊗k T )‡-κ

?

p

κ
�
�
��

κ
�
�
��

�
�
��

c(k)

�
�
��

c(k)

-
κ

?

p

is a special pushout in Fs+/1, and the bottom square is the quotient k-tensor square
of the top by the kernel J .

Proof. We denote (S ⊗k T )‡ by P . We shall define the positive face structures S‡,
T ‡, and the morphisms from them in the diagram

S S ⊗k T-
κS

S‡ P-
κ‡S

?

qS

?

q

T�
κS

T ‡�
κ‡T

? ?

qT

S can be identified with a subset of S ⊗k T (via κS). We define S‡ as the inverse
image of S i.e. S‡ = q−1(S + 1S). S‡ is a positive face structure as a convex subset
of a positive face structure P . qS is the restriction of q to S‡. It is onto since q is.
It is also easy to see that the kernel of qS is J ∩ S‡.

The description of faces of T ‡ is more involved.
8By this we mean the pushouts, in the category of positive face structures Fs+/1, of a special

kind that have been described in [Z].
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1. T ‡>k = q−1(T>k ∪ 1T≥k),

2. T ‡k = Pk − δ(S‡k+1),

3. T ‡k−1 = Pk − ι(S‡k+1),

4. T ‡<k−1 = S‡<k−1(= P<k−1).

qT is the restriction of q to T ‡.
The verification that qT is a cover and c(k)S‡ = d(k)T ‡, which comes to verifica-

tion of two equalities

c(k)S‡k = q−1(Sk ∪ 1Sk−1
)− δ(q−1(Sk+1 ∪ 1Sk+1

)) =

= Pk − δ(S‡k+1)− γ(Tk+1 ∪ 1Tk+1
) = d(k)T ‡k

c(k)S‡k−1 = Sk−1 − ι(S‡k+1) = Pk−1 − ι(S‡k+1) = d(k)T ‡k−1

is left for the reader. 2

The following proposition describe explicitly the abstract properties of k-domain,
k-codomain, and k-tensor operations in oFs. For more abstract treatment of these
properties in terms of the notion of a graded tensor category see [Z1].

Proposition 9.4 The k-tensor operation oFs is functorial, compatible with the k-
domain and k-codomain operations, associative, and satisfy the middle exchange
law.

Proof. In the course of the proof I will explain precisely what I mean by this
statement in details. Roughly speaking, it means that the all local morphisms form
al objects of oFs into a single ordered faces structure S has a natural structure of an
ω-category S∗, with domains, codomains, and compositions in S∗ defined in terms
of k-domain, k-codomain, and k-tensor operations in oFs.

The operations will be defined the operations on the skeleton of oFs. If X and Y
are isomorphic ordered face structures there is a unique isomorphism between them
and in fact it is the only monotone morphism between them. We shall identify two
morphisms f : X → Y and f ′ : X ′ → Y ′ in oFs iff there are isomorphisms making
the square

X ′ Y ′-
f ′

X Y-
f

?
∼=

?
∼=

commutes. As these identifications are harmless we shall work in oFs recalling the
identifications if needed.

To explain the functoriality of k-tensor we define the category oFs ×k oFs as
follows. The objects of oFs×k oFs are pairs of ordered face structures (S, S′) such
that c(k)S = d(k)S′ and whose maps are pairs of monotone morphisms (f, f ′) :
(S, S′) −→ (T, T ′) such that the diagram

T c(k)T�

c(k)
T

S c(k)S�
c

(k)
S

?
f

?
f ′′

T ′-

d(k)
T ′

S′-
d(k)
S′

? ?
f ′
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commutes, where f ′′ is the restriction of f ′ to d(k)S′. We have four functors

π0, π1, π,⊗k : oFs×k oFs −→ oFs.

The three first functors are defined on objects as follows π0(S, S′) = S,
π1(S, S′) = S′, π(S, S′) = c(k)S for (S, S′) in oFs ×k oFs, and on morphisms they
are defined in the obvious way. The functor ⊗k is defined on object and morphisms
in the obvious way but we need to verify that the local morphisms we get between
local pushouts are in fact monotone. This we leave for the reader. Moreover we
have four obvious natural transformations making the square

π π1-
d(k)

π0 ⊗k-κ0

6
c(k)

6
κ1

commutes, in Nat(oFs×k oFs,oFs).
By compatibility of k-tensor operation with the k-domain and k-codomain op-

erations, we mean that for any ordered face structure X the squares

d(k)X d(k)X-
1d(k)X

X X-
1X

6
d(k)
X

6
d(k)
X

c(k)X c(k)X-
1c(k)X

X X-
1X

6
c(k)
X

6
c(k)
X

are k-tensor squares. Moreover, for k > l, there are isomorphism making the trian-
gles

d(k)X ⊗l d(k)X ′ d(k)(X ⊗l X ′)-∼=

X ⊗l X ′

d(k)
X ⊗l d

(k)
X′

�
�
��� d(k)

X⊗lX′
@
@

@@I

c(k)X ⊗l c(k)X ′ c(k)(X ⊗l X ′)-∼=

X ⊗l X ′

c(k)
X ⊗l c

(k)
X′

�
�
��� c(k)

X⊗lX′
@

@
@@I

commute, and for k ≤ l, there are isomorphism making the triangles

d(k)X d(k)(X ⊗l X ′)-∼=

X ⊗l X ′

κ1
X ◦ d(k)

X
�
�
��� d(k)

X⊗lX′
@
@

@@I

c(k)X ′ c(k)(X ⊗l X ′)-∼=

X ⊗l X ′

κ2
X′ ◦ c(k)

X
�
�
��� c(k)

X⊗lX′
@

@
@@I

commute.
The associativity isomorphisms come from the fact that for any ordered face

structure X, Y , Z such that c(k)X = d(k)Y and c(k)Y = d(k)Z both objects

(X ⊗k Y )⊗k Z, X ⊗k (Y ⊗k Z)

are locally colimits of the diagram

X Y

c(k)X

c(k)
X

@
@
@I

�
�
��

Z

c(k)Y
@

@
@I

d(k)
Z

�
�
��d(k)

Y c(k)
Y
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and the local isomorphism between them is in fact a monotone morphism. This
easily follows from Proposition 4.27.

Similarly, the interchange isomorphism between objects

(X ⊗k Y )⊗l (Z ⊗k T ), (X ⊗l Z)⊗k (Y ⊗l T )

where k < l, is defined as the local isomorphism between two colimits of the diagram

c(l)X c(k)X�
c(k)
X

c(l)Y-
d(k)
Y

Z
?

d(l)
Z

X

6
c(l)
X

T
?

d(l)
T

Y

6
c(l)
Y

which is in fact a monotone isomorphism. 2

Remark. It may seem that the k-tensor operation is a bit arbitrary, as only part
the order<∼ in the ordered face structure S⊗kS′ is determined by the fact that it is a
pushout locally and that the embeddings κS : S → S⊗kS′ and κS

′
: S′ → S⊗kS′ are

monotone morphisms. If this structure determine uniquely the order <∼ in S ⊗k S′
(and hence the whole structure of S ⊗k S′) then we shall call such a k-tensor locally
determined. It is not hard to see that the k-tensor S ⊗k S′ is locally determined iff
there are no ’free’ loops of dimension k+1 over the same k-face x ∈ c(k)S that came
from both S and S′, i.e. there are no l ∈ Sλk+1 − δ(S

−λ
k+2) and l′ ∈ S′λk+1 − δ(S

′−λ
k+2)

such that γ(l) = γ(l′) (as usually in such cases we assume that c(k)S = d(k)S′).
However if we ask for an operation which is both pushout locally and functorial (in
the sense explained above) then the k-tensor operation is the only possible one.

Proposition 9.5 The k-tensor operation is the unique functor ⊗k : oFs×koFs −→
oFs which is a pushout functor locally, i.e. the square

π π1-
d(k)

π0 ⊗k-κ0

6
c(k)

6
κ1

evaluated at any object of oFs×k oFs is a pushout in lFs.

Proof. Assume that for any (X,X ′) ∈ oFs×k oFs the square

c(k)X X ′-

d(k)
X′

X X ⊗k X ′-
κ0
X

6
c(k)
X

6
κ1
X′

is a pushout in lFs. This condition determines the functor ⊗k uniquely on all the
objects (Y, Y ′) of oFs×koFs for which k-tensor Y ⊗kY ′ is locally determined. How-
ever every object (X,X ′) can be embedded in oFs×k oFs into a locally determined
object (Y, Y ′), i.e. we have morphism (f, f ′) : (X,X ′) −→ (Y, Y ′) in oFs ×k oFs.
As the morphism f ⊗f ′ : X⊗X ′ −→ Y ⊗Y ′ is monotone the order <∼ in X⊗X ′ is
uniquely determined by the order <∼ in Y ⊗Y ′, i.e. ⊗k is indeed the unique functor
satisfying the above requirements. 2

Thus the above proposition says that ⊗k is the only operation which is at the
same time functorial and locally determined as a pushout.
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10 ω-categories generated by local face structures

Now we shall describe an ω-category T ∗ generated by an ordered face structure T ,
i.e. we shall describe a functor

(−)∗ : oFs −→ ωCat

however to prove some properties of (−)∗ it is more convenient to describe this
functor on a larger category lFs, i.e. we shall describe in fact a functor

(−)∗ : lFs −→ ωCat

We have forgetful functors, for n ∈ ω,

πn : oFsn −→ lFs

For a local face structure T , and for n ∈ ω, the set T ∗n of n-cells of T ∗ is the set
of isomorphisms classes of objects of the comma category πn ↓ T .

For k ≤ n, the domain and codomain operations in T ∗

d(k),T ∗ , c(k),T ∗ : T ∗n −→ T ∗k

of the k-th domain and the k-th codomain are defined by composition. For an object
X of oFsn and a cell x : X −→ T in T ∗n , we define

d(k),T ∗(x) = d(k)
X ;x : d(k)X −→ T, c(k),T ∗(x) = c(k)

X ;x : c(k)X −→ T

The identity operation
i(n) : T ∗k −→ T ∗n

is an inclusion. The composition map

mn,k,n : T ∗n ×T ∗k T
∗
n −→ T ∗n

is given by the k-tensor, i.e. for two n-cells x : X → T , y : Y → T in T ∗n such that
c(k)
X ;x = d(k)

Y ; y then
mn,k,n(x, y) = [x, y]

where [x, y] is the unique map making the following diagram

c(k)X = d(k)Y Y-

d(k)
Y

X X ⊗k Y-

6

c(k)
X

6

[x, y]x

y

T

��
��

�
��*

���
���

���
���

���
�:



















�

commutes. Note that [x, y] exists and is unique since the forgetful functor | − | :
oFs −→ lFs sends X ⊗k Y to a pushout. We often write x;ky for mn,k,n(x, y).

Proposition 10.1 Let T be a local face structure. Then T ∗ is an ω-category. In
fact, we have a functor (−)∗ : lFs −→ ωCat.

73



Proof. All the properties in question of T ∗ follows more or less in the same way
from the fact that oFs is a monoidal globular category and the the tensors in oFs
are pushouts locally. To see how it goes we shall check the associativity of the
compositions. So suppose we have local morphisms x : X → T , y : Y → T ,
z : Z → T such that c(k)(x) = d(k)(y) and c(k)(y) = d(k)(z), i.e. the diagram

X Y

c(k)X
@@I ���

Z

c(k)Y
@@I ���

T

6yx
�
��

��*
z
H

HH
HHY

commutes. Hence the two compositions of these cells are isomorphic via the canon-
ical (local) isomorphism of pushouts

(X ⊗k Y )⊗k Z X ⊗k (Y ⊗k Z)-∼=

T

[[x, y], z]

�
�
�
��

[x, [y, z]]

@
@

@
@I

But as we shown in Proposition 9.4 these isomorphisms are in fact monotone mor-
phisms. Thus the morphisms [[x, y], z] and [x, [y, z]] represent the same cell in T ∗.

The verification that T ∗ satisfy also the remaining condition of the definition
of the ω-category is left for the reader. It should be also obvious that any local
morphism between local face structures f : S → T induces an ω-functor f∗ : S∗ →
T ∗ by composition. 2

The k-truncation S≤k of an ordered face structure S need not to be an ordered
face structure, however it gives rise to a local face structure of dimension k, i.e. for
k ∈ ω we have a truncation functor

trk : oFs −→ lFsk

sending (S,<Sk,∼)k∈ω to (S,<∼a )a∈S>1,≤k , where <∼a is the restriction of <∼ to δ̇(a),
for a ∈ S>1,≤k. Here lFsk denotes the full subcategory of lFs whose object have
dimension at most k. Clearly, we have a commuting square

ωCat kCat-
trk

oFs lFsk-trk

?

(−)∗

?

(−)∗

Thus we have a functor
(−)∗≤k : oFs −→ kCat

which is defined as either of the above compositions. kCat is the category of k-
categories.

11 Principal and Normal ordered face structures

We recall few notions form section 3. Let N be an ordered face structure. N is k-
normal iff dim(N) ≤ k and size(N)l = 1, for l < k. N is k-principal iff size(N)l = 1,
for l ≤ k. N is principal iff size(N)l ≤ 1, for l ≤ ω. N is principal of dimension k
iff N is principal and dim(N) = k.

Notation for a k-normal N : {pNl } = {pl} = Nl − δ(Nl+1), for l < k.
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Lemma 11.1 Let P , Q, N , T be an ordered face structures, k ∈ ω, P , Q principal,
N k-normal.

1. If the map f : P → T is local then it is a monotone morphism.

2. If the map f : N → T is local then f is monotone iff fk preserves <∼.

3. If dim(P ) = dim(Q) and the maps f : P → T and g : Q → T are local such
that f(pP ) = g(pQ) then there is a unique monotone isomorphism h : P → Q
making the triangle

P Q-h

T

f@
@R

g�
�	

commutes, where pP , pQ are the unique faces of dimension k in P and in Q,
respectively.

4. If dim(P ) = n > dim(Q) then any monotone morphism x : Q→ P factorizes
either via dP : dP → P or cP : cP → P .

Proof. 1. and 2. follows immediately from Lemma 4.27. 4. follows easily from
3.

Ad 3. Let dim(P ) = dim(Q) = k. By 1. we need to construct a local isomor-
phism only. The argument is by induction on k. For k = 0 the claim is obvious. For
k > 0, we have by induction hypothesis the local morphism h′ : c(k−1)P −→ c(k−1)Q.
Then we note that the bijections f : δ(pP ) −→ δ(f(pP )), g : δ(pQ) −→ δ(g(pQ))
preserves order. As f(pP ) = g(pQ) we get easily the local morphism h : P −→ Q.
2

Example. Note that in Lemma 11.1.4 it is essential that Q is principal and not
any ordered face structure. In the example as below

X :

x0
� ���6⇓b
x1

s

� �AAK⇓a
x0

dP � ��� CCO⇓b x

s
cP� ��� CCO⇓a x

s

P

���
�
A
AK

⇓ ⇓⇒
α

a b x

s
dP cP

�
��

�
��

�
��*

HH
H
HH

HH
HHY

with morphism f : X → P sending xi to x and other cells to the same cell we clearly
cannot factor f via neither dP nor cP .

Lemma 11.2 Let T be an ordered face structure, l, k ∈ ω, l < k, and α ∈ Tk. We
have

1. {α} is a convex set and [α] is a principal ordered face structure,

2. δ(α) is a convex set and [δ(α)] is a (k − 1)-normal ordered face structure,

3. Moreover, if k > 0, then

c(l)[α] = [γ(l)(α)] d(l)[α] = [δ(l)(α)].
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Proof. We shall prove 1. The rest is left as an exercise.
The proof goes by induction of the dim(α) = k. If k = 0 then the thesis is

obvious. So assume that k > 0, the thesis holds for γ(α) and we shall prove it for
α. If α ∈ T λ ∪ T ε then < α > has faces as follows

dim faces
k α

k − 1 γ(α)
k − 2 δ̇γ(α) ∪ γγ(α)

and hence the thesis is obvious. So assume that α ∈ T−λε. Then < α > has faces
as follows

dim faces
k α

k − 1 δ(α) ∪ γ(α)
k − 2 δδ̇−λ(α) ∪ γγ(α)
k − 3 δδ̇−λγ(α) ∪ γγγ(α)

For the faces of dimension k and k−1 the thesis is obvious, for dimensions k−3 and
lower the thesis holds by inductive assumption on γ(α). We need to check that <S,+

and <<α>,+ agree on < α >k−2. First note that by Lemma 4.2.3, if x ∈ δδ̇−λ(α) then
x <<α>,+ γγ(α). So assume that x ∈ δ(a) and y ∈ δ(b), a, b ∈ δ̇(α), x <S,+ y. Let
x, a1, . . . , an, y be a flat upper T − γ(T−λ)-path from x to y and x, b1, . . . , bl, γγ(α)
be a flat upper δ̇(α)-path from x to γγ(α). If y = γ(bl0) for some l0 ≤ l, we
are done. So assume contrary. Then by Path Lemma, there is l1 ≤ l such that
an <

+ bl1 , γ(an) = y 6= γ(bl1). Thus we have a flat upper path an, β1, . . . , βr, bl1
and, as y 6= γ(bl1), there is r0 ≤ r such that y ∈ ι(βr0). Hence δ(b) ∩ ι(βr0) 6= ∅ and
by Lemma 4.8.1, b <+ γ(br0) ≤ bl1 . But b, bl1 ∈ δ(α) and we get a contradiction
with discreetness. 2

Let k ∈ ω, N be a k-normal ordered face structure. We define a (k + 1)-
hypergraph N•, that contains two additional faces: pN

•
k+1 of dimension k + 1, and

pN
•

k of dimension k. We shall drop superscripts if it does not lead to confusions.
We also put

γ(pk+1) = pk, γ(pk) = pk−1,

δ(pk+1) =

{
Nk if Nk 6= ∅,
1pk−1

otherwise.
δ(pk) =

{
δ(Nk)− γ(Nk) if Nk 6= ∅,
1pk−2

otherwise.

Clearly, γ(pk) and δ(pk) are defined only if k > 0.
As N is k-normal, Nk+1 = ∅, so Nk cannot contain loops. Thus, if Nk 6= ∅ then

δ(Nk) − γ(Nk) 6= ∅ and δ(pk) is well defined. This determines N• uniquely. N• is
called the principal extension of N .

Examples. Here are some examples of 1-normal ordered face structures N and
their principal extensions N•:

N

N•

•

� ��� CCO⇓
•

• •-

-
• •
-
⇓

• •

• •-
��� @@R

• •-

• •-
��� @@R⇓

and some examples of 2-normal ordered face structures N and their principal exten-
sions N•:

76



N

N•

• •-

• •-� �
	∧⇓
• •-

• •-

�
�� A

AU��
��

��1

⇓
⇓ � �CCO⇓

• •-

• •-

�
�� A

AU��
��

��1

⇓
⇓ � �CCO⇓ • •-

• •-

�
�� A

AU
⇓=⇒

Clearly, • the ’empty’ 1-normal, and • −→ • is ’empty’ 2-normal ordered face
structure.

Proposition 11.3 Let N be a k-normal ordered face structure. Then

1. N• is a principal ordered face structure of dimension k + 1.

2. We have d(N•) ∼= N , c(N•) ∼= (dN)•.

3. If N is a principal, then N ∼= (dN)•.

Proof. Exercise. 2

12 Decomposition of ordered face structures

As positive face structures are easier and we understand well their decompositions we
define decomposition of ordered face structures via positive ones. This will simplify
the proof of properties of the decompositions, as they will be easy consequences
of the analogous properties of decompositions of positive face structures. However
to get a better insight how the ordered face structures are decomposed we shall
characterize the decompositions using convex subsets and stretching empty loops.
We decompose along an I-cut rather than a face.

NB. We write ǎ instead of (a, L, U) if we don’t need to specify explicitly which
cut over a we consider.

The k-decomposition of X is any presentation of X as a k-tensor X = X1 ⊗k X2

of two other ordered face structures. X1 is the lower part of the decomposition and
X2 is the upper part of the decomposition. The k-decomposition of X = X1 ⊗k X2

is said to be proper iff size(X1), size(X2) < size(X).
Let X be an ordered faces structure, ǎ ∈ X†, J the kernel of the standard

positive cover q : X† → X. We define the decomposition of X along ǎ as the bottom
square of the following cube

c(k)(X↓ǎ) X↑ǎ-
d(k)

c(k)(X†↓ǎ) X†↑ǎ-d(k)

?

p

?

p
X↓ǎ X

X†↓ǎ X†-κ

?

p

κ
�
�
��

κ
�
�
��

�
�
��

c(k)

�
�
��

c(k)

-
κ

?

p

where the top square is the decomposition of the positive face structure X† along ǎ,
and the bottom square
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c(k)(X↓ǎ) X↑ǎ-
d(k)

X↓ǎ X-
κ↓ǎX

6

c(k)

6

κ↑ǎX

is obtained from the top square by dividing by J .

Lemma 12.1 We note for the record

d(k)(X↓ǎ) = d(k)(X), c(k)(X↑ǎ) = c(k)(X),

c(k)(X↓ǎ) = d(k)(X↑ǎ), X↓ǎ ⊗k X↑ǎ = X.

Proof. Exercise. 2

Lemma 12.2 Let S, T be ordered face structures, k ∈ ω, and ǎ = (a, L, U) ∈
(T †k − ι(T

†
k+2)). Then

1. ǎ ∈ Sd(T ) iff there are α, β ∈ Tk+1 such that (γ(k)(α),−, ↑ γ(k+1)(α)) ≤+ ǎ
and (γ(k)(β),−, ↑ γ(k+1)(β)) 6≤+ ǎ.

2. Sd(T ) = Sd(T †).

3. size(T ) = size(T †).

4. if c(k)(S) = d(k)(T ) then, for l ∈ ω,

size(S ⊗k T )l =

{
size(S)l + size(T )l if l > k,
size(T )l if l ≤ k.

5. size(T )k ≥ 1 iff k ≤ dim(T ).

6. Sd(T )k 6= ∅ iff size(T )k+1 ≥ 2.

7. T is principal iff Sd(T ) is empty.

Proof. Easy. 2

Before we shall establish the important properties of this decomposition we shall
show another way of constructing this decomposition. Let Y be a convex subset of
an ordered face structure X. We define two subhypergraphs Y ⇓ǎ and Y ⇑ǎ of X:

Y ⇓ǎl =


{α ∈ Yl : (γ(k)(α),−, ↑ γ(k+1)(α)) ≤+ (a, L, U)} for l > k,
{b ∈ Yk : b ≤+ a or b 6∈ γ(Y −λk+1)} for l = k

Xl for l < k.

Y ⇑ǎl =


{α ∈ Yl : (γ(k)(α),−, ↑ γ(k+1)(α)) 6≤+ (a, L, U)} for l > k,
{b ∈ Yk : b 6<+ a} for l = k

Yk−1 − ι(Y ⇓ǎk+1) for l = k − 1
Yl for l < k − 1.

Lemma 12.3 With the notation as above Y ⇓ǎ and Y ⇑ǎ are convex subhypergraphs
of X, c(k)(Y ⇓ǎ) = d(k)(Y ⇑ǎ). Moreover EY ⇓ǎ = ∅ and

EY ⇑ǎ =

{
{a} if a is a loop,
∅ otherwise.
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Proof. Easy. 2

Lemma 12.4 With the notation as above there are monotone isomorphisms h↓ and
h↑ making the triangles

X↓ǎ X-
κ

[X⇓ǎ]

6
h↓ ν

�
�
��

X↓ǎ-κ

ν
@

@
@I

[X⇑ǎ]

6
h↑

commute. κ↑ǎX

Proof. By Lemma 5.3 it is enough to show that the image of the monotone morphism
κ↑ǎX : X↑ǎ −→ X is X⇑ǎ and the image of the monotone morphism κ↓ǎX : X↓ǎ −→ X
is X⇓ǎ. The remaining details are left for the reader. 2

Note that, by the above Lemma X⇓ǎ is isomorphic to X↓ǎ and if a is not a loop
in X, X⇑ǎ is isomorphic to X↑ǎ. However the ordered face structure X↑ǎ is not that
complicated even if a is a loop. We shall describe it now. Thus EX⇑ǎ = {a}. In
this case, up to isomorphism, the underlying hypergraph of X↑ǎ can be describe as
follows.

X↑ǎl =

{
X⇑ǎl if l 6= k − 1,
(X⇑ǎk−1 − {γ(a)}) ∪ {γ(a)−, γ(a)+} if l = k − 1.

γX
↑ǎ

and δX
↑ǎ

are as in X⇑ǎ (and X) except for γX
↑ǎ

k−1 and δX
↑ǎ

k−1 . For c ∈ X↑ǎk we
put (γ and δ stands for γX and δX , respectively)

γX
↑ǎ

(c) =


γ(c) if γ(c) 6= γ(a),
γ(a)− if γ(c) = γ(a) and c <∼ a,
γ(a)+ otherwise.

δX
↑ǎ

(c) =


δ(c) if γ(b) 6∈ δ(c),
(δ(c)− {γ(a)}) ∪ {γ(a)+} if γ(a) ∈ δ(c) and a <∼ c,
(δ(c)− {γ(a)}) ∪ {γ(a)−} otherwise.

The order <∼ in X↓ǎ and X↑ǎ is uniquely determined by the fact that it is reflected
from X via κ↓ǎX and κ↑ǎX .

Examples. For the ordered face structure T as below

u2 u1-
x5

u0-
x0

T

��⇓a2

�
�
� 6

x3

� ���6⇓a3
x4
� �AAK⇓a1
x2
� �AA @@I⇓a0
x1

and a cut ǔ1 = (u1, {a3}, {a2, a1}) we have the following decomposition

T ↓ǔ1

u2 u1-
x5

��⇓a2

�
�
� 6

x3

� ���6⇓a3
x4

T ↑ǔ1

u1 u0-
x0

� �AAK⇓a1
x2
� �AA @@I⇓a0
x1

and for the cut x̌4 = (x4, ∅, ∅) we have the following decomposition
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T ↓x̌4

u2 u1-
x5

u0-
x0

� ��� CCO⇓a3
x4

T ↑x̌4

u2 (u1, ∅, {x4})-x0
-x4

(u1, {x4}, ∅)-
x3

⇓a2 x0
-u0

� ���6⇓a1
x2
� �AAK⇓a0
x1

The following Lemma establishes some properties of the double decompositions.
The double decomposition is meant in the sense of convex set decomposition, i.e.
when we write X↓x̌↑ǎ we mean [X⇓x̌⇑ǎ].

Lemma 12.5 Let X be an ordered face structure, ǎ = (a, L, U), x̌ = (x, L′, U ′) ∈
(X† − ι(X†)), k = dim(x) < dim(a) = m.

1. We have the following equations of ordered face structures:

X↓x̌↓ǎ = X↓ǎ↓x̌, X↓x̌↑ǎ = X↑ǎ↓x̌, X↑x̌↓ǎ = X↓ǎ↑x̌, X↑x̌↑ǎ = X↑ǎ↑x̌,

i.e. x-decompositions and a-decompositions commute.

2. If x̌ ∈ Sd(X) then x̌ ∈ Sdκ↓ǎ(X↓ǎ) ∩ Sdκ↑ǎ(X↑ǎ).

3. Moreover, we have the following equations concerning domains and codomains

c(k)(X↓x̌↓ǎ) = c(k)(X↓x̌↑ǎ) = d(k)(X↑x̌↓ǎ) = d(k)(X↑x̌↑ǎ)

c(m)(X↓x̌↓ǎ) = d(m)(X↓x̌↑ǎ), c(m)(X↑x̌↓ǎ) = d(m)(X↑x̌↑ǎ).

4. Finally, we have the following equations concerning compositions

X↓x̌↓ǎ ⊗m X↓x̌↑ǎ = X↓x̌, X↑x̌↓ǎ ⊗m X↑x̌↑ǎ = X↑x̌,

X↓x̌↓ǎ ⊗k X↑x̌↓ǎ = X↓ǎ, X↓x̌↑ǎ ⊗k X↑x̌↑ǎ = X↑ǎ.

Proof. We need to verify the above equations for arrows ⇓ and ⇑ instead of ↓
and ↑. 2

Lemma 12.6 Let T be ordered face structure, X convex subhypergraph of T , and
a, b ∈ X, ǎ = (a, L, U), b̌ = (b, L′, U ′) ∈ T † − ι(T †), dim(a) = dim(b) = m.

1. We have the following equations of ordered face structures:

X↓ǎ↓b̌ = X↓b̌↓ǎ, X↑ǎ↑b̌ = X↑b̌↑ǎ,

i.e. the same direction a-decompositions and b-decompositions commute.

2. Assume ǎ <+ b̌. Then we have the following farther equations of ordered face
structures:

X↑b̌ = X↑ǎ↑b̌, X↓ǎ = X↓ǎ↓b̌, X↓b̌↑ǎ = X↑ǎ↓b̌.

Moreover, if ǎ, b̌ ∈ Sd(X) then ǎ ∈ Sdκ↑b̌(X
↓b̌) and b̌ ∈ Sdκ↑ǎ(X↑ǎ).

3. Assume ǎ <−l b̌, for some l < m. Then X↑b̌↓ǎ, X↑ǎ↓b̌, are ordered face struc-
tures, and

X↓ǎ ⊗m X↑ǎ↓b̌ = X↓b̌ ⊗m X↑b̌↓ǎ

Moreover, if a, b ∈ Sd(X) then either there is k such that l − 1 ≤ k < m and
(γ(k)(a),−, ↑ γ(k+1)(a)) ∈ Sd(X) or ǎ ∈ Sdκ↑b̌(X

↑b̌) and b̌ ∈ Sdκ↑ǎ(X↑ǎ).

80



Proof. Easy. 2

The following properties of ordered face structures are inherited from the corre-
sponding properties of positive face structures.

Lemma 12.7 Let T be ordered face structures of dimension n, l < n − 1, ǎ =
(a, L, U) ∈ Sd(T )l. Then

1. ǎ ∈ Sd(cT ) ∩ Sd(dT );

2. d(T ↓ǎ) = (dT )↓ǎ;

3. d(T ↑ǎ) = (dT )↑ǎ;

4. c(T ↓ǎ) = (cT )↓ǎ;

5. c(T ↑ǎ) = (cT )↑ǎ.

Proof. See the the corresponding properties of positive face structures in [Z]. 2

Lemma 12.8 Let T, T1, T2 be ordered face structures, dim(T1), dim(T2) > k, such
that c(k)(T1) = d(k)(T2) and T = T1 ⊗k T2, and let Z = γ((T1)k+1) − δ((T−λ1 )k+1).
Then ∅ 6= Z ⊆ c(k)(T1)k. For any face a ∈ Z, the cut ǎ = (a, Ia ∩ (T1)k+2, Ia ∩
(T2)k+2) ∈ Sd(T ) and one of the following conditions holds:

1. either T1 = T ↓ǎ and T2 = T ↑ǎ;

2. or ǎ ∈ Sd(T1)k, T ↓ǎ = T ↓ǎ1 and T ↑ǎ = T ↑ǎ1 ⊗k T2;

3. or ǎ ∈ Sd(T2)k, T ↑ǎ = T ↑ǎ2 and T ↓ǎ = T1 ⊗k T ↓ǎ2 .

Proof. See the the corresponding properties of positive face structures in [Z]. 2

13 T ∗ is a many-to-one computad

Proposition 13.1 Let T be an ordered face structure. Then T ∗ is a many-to-one
computad, whose indets correspond to the faces of T .

Proof. In fact, to be able to carry on the induction we need to prove more. Let
T be an ordered face structure, n ∈ ω.

Inductive Hypothesis for n. For any ordered face structure T , the n-truncation
T ∗≤n of T ∗ is a many-to-one computad whose n-indets are in the image of the em-
bedding ν : Tn −→ T ∗n , sending a ∈ Tn to the local morphism νa : [a] −→ T in
T ∗≤n.

The proof proceeds by induction on n. The Inductive Hypothesis for n = 0, 1 is
obvious.

So assume that the Inductive Hypothesis holds already for some n ≥ 1. Suppose
that T is an ordered face structure. We shall show that T ∗≤n+1 is a many-to-one
computad whose n+ 1-indets are in the image of ν : Tn+1 −→ T ∗n+1.

We need to verify that for any ω-functor f : T ∗≤n −→ C to any ω-category C,
and any function |f | : Tn+1 −→ Cn+1 such that for a ∈ Tn+1, and νa : [a]→ T

dC(|f |(a)) = f(d(νa)), cC(|f |(a)) = f(c(νa)),

there is a unique ω-functor F : T ∗≤n+1 −→ C, such that

Fn+1(νa) = |f |(a), F≤n = f

as in the diagram
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T≤n T ∗≤n-
ν≤n

Tn+1 T ∗≤n+1
-

?

δ

?

γ

?

d
?

c

F
��

��
�*

���
���

���
���:

f















�
C

νn+1

|f |

We need some notation for decompositions of cells in T ∗. If ϕ : X → T ∈ T ∗
and ǎ is a cut in X† then ϕ↓ǎ = κ↓ǎ;ϕ : X↓ǎ −→ T , and ϕ↑ǎ = κ↑ǎ;ϕ : X↓ǎ −→ T .

We define Fn+1 as follows. For ϕ : X → T ∈ T ∗n+1

Fn+1(ϕ) =


idf(ϕ) if dim(X) ≤ n,
|f |(a) if ϕ = νa : [a]→ T , for some a ∈ Tn+1,
Fn+1(ϕ↓ǎ);l Fn+1(ϕ↑ǎ) if dim(X) = n+ 1, ǎ ∈ Sd(X)l.

Clearly Fk = fk, for k ≤ n. The above morphism, if well defined, clearly preserves
identities. We need to verify, for any ϕ : X → T in T ∗n+1, the following three
conditions:

I F is well defined, i.e. for ǎ, b̌ ∈ Sd(X) we have Fn+1(ϕ↓ǎ);l Fn+1(ϕ↑ǎ) =
Fn+1(ϕ↓b̌);l Fn+1(ϕ↑b̌),

II F preserves the domains and codomains i.e.we have F (dϕ) = d(F (ϕ)) and
F (cϕ) = c(F (ϕ)),

III F preserves compositions i.e., we have F (ϕ) = F (ϕ1);k F (ϕ2) whenever ϕi :
Xi → T ∈ T ∗n+1 for i = 1, 2, c(k)(ϕ1) = d(k)(ϕ2), and ϕ = ϕ1;k ϕ2.

Assume that ϕ : X → T ∈ T ∗k+1, and for faces y : Y → T of T ∗ of size less than
size(X) the conditions [I], [II], [III] holds. We shall show that [I], [II], [III] hold
for ϕ, as well. For X such that size(X)n+1 = 0 all three conditions are obvious.

If X is principal of dimension n + 1, [I] is trivially true as Sd(X) = ∅, [III] is
true as if ϕ = ϕ1;k ϕ2, with X principal then either ϕ1 or ϕ2 is an identity. So we
need to check [II]. We have that Xn+1 = {mX} and ϕ(mX) = a ∈ Tk+1. By Lemma
11.1.3, there is a unique isomorphism h : [a]→ X making the triangle

[ϕ(mX)] X-h

T

νϕ(mX)@
@R

ϕ�
�	

commutes, i.e. νϕ(mX) and ϕ represent the same cell in T ∗, and hence [II] follows
immediately from the properties of f .

Now assume that X is not principal and dim(X) = n+ 1.
Ad I. First we will consider two saddle cuts ǎ, x̌ ∈ Sd(X) of different dimension

k = dim(x) < dim(a) = m. Using Lemma 12.5 we have

F (ϕ↓ǎ);m F (ϕ↑ǎ) = ind. hyp. III

= (F (ϕ↓ǎ↓x̌);k F (ϕ↓ǎ↑x̌));m (F (ϕ↑ǎ↓x̌);k F (ϕ↑ǎ↑x̌)) = MEL

= (F (ϕ↓ǎ↓x̌);m F (ϕ↑ǎ↓x̌));k (F (ϕ↓ǎ↑x̌);m F (ϕ↑ǎ↑x̌)) =
= (F (ϕ↓x̌↓ǎ);m F (ϕ↓x̌↑ǎ));k (F (ϕ↑x̌↓ǎ);m F (ϕ↑x̌↑ǎ)) = ind. hyp. III

= F (ϕ↓x̌);m F (ϕ↑x̌)
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Now we will consider two saddle cuts ǎ, b̌ ∈ Sd(X) of the same dimension dim(a) =
dim(b) = m. We shall use Lemma 12.6. Assume that ǎ <−l b̌, for some l < m. If
x̌ = (γ(k)(a),−, ↑ γ(k+1)(a)) ∈ Sd(X), for some k < m, then this case reduces to the
previous one for two pairs ǎ, x̌ ∈ Sd(X) and b̌, x̌ ∈ Sd(X). Otherwise ǎ ∈ Sd(X↑b̌),
ǎ ∈ Sd(X↑b̌), and we have

F (ϕ↓ǎ);k F (ϕ↑ǎ) = ind. hyp III

= F (ϕ↓ǎ);k (F (ϕ↑ǎ↓b̌);k F (ϕ↑ǎ↑b̌)) =

= (F (ϕ↓ǎ);k F (ϕ↑ǎ↓b̌));k F (ϕ↑b̌↑ǎ) = ind hyp III

= F (ϕ↓ǎ;k ϕ↑ǎ↓b̌);k F (ϕ↑b̌↑ǎ) =

= F (ϕ↓b̌;k ϕ↑b̌↓ǎ);k F (ϕ↑b̌↑ǎ) = ind hyp III

= (F (ϕ↓b̌);k F (ϕ↑b̌↓ǎ));k F (ϕ↑b̌↑ǎ) =

= F (ϕ↓b̌);k (F (ϕ↑b̌↓ǎ);k F (ϕ↑b̌↑ǎ)) = ind hyp III

= F (ϕ↓b̌);k F (ϕ↑b̌)

Finally, we consider the case a <+ b. We have

F (ϕ↓ǎ);k F (ϕ↑ǎ) = ind. hyp III

= F (ϕ↓ǎ);k (F (ϕ↑ǎ↓b̌);k F (ϕ↑ǎ↑b̌)) =

= (F (ϕ↓b̌↓ǎ);k F (ϕ↓b̌↑ǎ));k F (ϕ↑b̌) = ind hyp III

= F (ϕ↓b̌);k F (ϕ↑b̌)

This shows that F (ϕ) is well defined.
Ad II. We shall show that the domains are preserved. The proof that, the

codomains are preserved, is similar.
The fact that if Sd(X) = ∅ then F preserves domains and codomains follows

immediately from the assumption on f and |f | and Lemma 12.2. So assume that
Sd(X) 6= ∅ and let ǎ ∈ Sd(X)k. We use Lemma 12.7. We have to consider two
cases: k < n, and k = n. If k < n then

Fn(d(ϕ)) = Fn(d(ϕ)↓ǎ);k Fn(d(ϕ)↑ǎ) =
= Fn(d(ϕ↓ǎ));k Fn(d(ϕ↑ǎ)) = ind hyp II

= d(Fn+1(ϕ↓ǎ));k d(Fn+1(ϕ↑ǎ)) =
= d(Fn+1(ϕ↓ǎ);k Fn+1(ϕ↑ǎ)) = ind hyp I

= d(Fn+1(ϕ))

If k = n then

Fn(d(ϕ)) = Fn(d(ϕ↓ǎ;n ϕ↑ǎ)) =
= Fn(d(ϕ↓ǎ)) = ind hyp II

= d(Fn+1(ϕ↓ǎ)) = ind hyp II

= d(Fn+1(ϕ↓ǎ);n Fn+1(ϕ↑ǎ)) = ind hyp I

= d(Fn+1(ϕ))

Ad III. Suppose that ϕ = ϕ1;k ϕ2. We shall show that F preserves this compo-
sition. If dim(X1) = k then ϕ2 = ϕ, ϕ1 = d(k)(ϕ). We have

Fn+1(ϕ) = Fn+1(ϕ2) = 1(n+1)

Fk(d(k)(ϕ2))
;k Fn+1(ϕ2) =
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= 1(n+1)
Fk(ϕ1);k Fn+1(ϕ2) = Fn+1(ϕ1);k Fn+1(ϕ2)

The case dim(X2) = k is similar. So now assume that dim(X1), dim(X2) > k. We
shall use Lemma 12.8. Let us fix a face a ∈ γ((X1)k+1) − δ((X−λ1 )k+1), and a cut
ǎ = (a, Ia ∩ (X1)k+2, Ia ∩ (X2)k+2) ∈ Sd(X).

If X1 = X↓ǎ and X2 = X↑ǎ then we have

F (ϕ) = F (ϕ↓ǎ);k F (ϕ↑ǎ) = F (ϕ1);k F (ϕ2).

If ǎ ∈ Sd(T1)k, T ↓ǎ = T ↓ǎ1 and T ↑ǎ = T ↑ǎ1 ⊗k T2

F (ϕ) = F (ϕ↓ǎ);k F (ϕ↑ǎ) = ind hyp III

= F (ϕ↓ǎ);k (F (ϕ↑ǎ1 );k F (ϕ2)) =

= (F (ϕ↓ǎ1 );k F (ϕ↑ǎ1 ));k F (ϕ2) = ind hyp III

F (ϕ1);k F (ϕ2)

If ǎ ∈ Sd(T2)k, T ↑ǎ = T ↑ǎ2 and T ↓ǎ = T1 ⊗k T ↓ǎ2

F (ϕ) = F (ϕ↓ǎ);k F (ϕ↑ǎ) = ind hyp III

= (F (ϕ1);k F (ϕ↓ǎ2 ));k F (ϕ↑ǎ2 )) =

= F (ϕ↓ǎ1 );k (F (ϕ↑ǎ2 );k F (ϕ↑ǎ2 )) = ind hyp III

F (ϕ1);k F (ϕ2)

So in any case the composition is preserved. This ends the proof of the Lemma.
2

For n ∈ ω, we have truncation functors

(−)],n : oFsloc −→ Commam/1n , (−)∗,n : oFsloc −→ Compm/1n

such that, for S in oFs

S],n = (Sn, S∗<n, [δ], [γ]), (S)∗,n = S∗≤n

and for f : S → T in oFsloc we have

f \,n = (fn, (f<n)∗), (f)∗,n = f∗≤n.

Corollary 13.2 For every n ∈ ω, the functors (−)],n and (−)∗,n are well defined,
full, faithful, and they send all tensor squares to pushouts. Moreover, for S in oFs
we have S∗ = S],n

n
.

Proof. The functor (−)
n

: Commam/1n −→ Compm/1n , which is an equivalence of
categories, is described in the Appendix.

Fullness and faithfulness of (−)],n is left for the reader. We shall show simulta-
neously that for every n ∈ ω, both functors (−)],n and (−)∗,n send n-truncations of
tensor squares to pushouts. For n = 0, 1 this is obvious. So assume that n ≥ 1 and
that (−)∗,n and (−)],n send n-truncations of k-tensor squares to pushouts. Let

c(k)S T-

S S ⊗k T-

6 6
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be a tensor squares in oFs. The fact that the functor (−)],n+1 sends this square to a
pushout in Commam/1n+1 can be verified in each dimension separately. In dimensions
lower or equal to n this follows from the fact that the functor (−)∗,n sends n-
truncations of tensor squares to pushouts. In dimension n+ 1 we need to check that
the square in Set

(c(k)S)n+1 Tn+1
-

Sn+1 (S ⊗k T )n+1
-

6 6

is a pushout. But this easily follows from the the description of the tensor square
given earlier. So the whole square

c(k)S],n+1 T ],n+1-

S],n+1 (S ⊗k T )],n+1-

6 6

is a pushout in Commam/1n+1, i.e. (−)],n+1 send (n + 1)-truncations of k-tensor
squares to pushouts. As (−)∗,n+1 is a composition of (−)],n+1 with an equivalence
of categories it send (n+1)-truncations of k-tensor squares to pushouts, as well. 2

Corollary 13.3 The functor

(−)∗ : oFsloc −→ Compm/1

is full and faithful and sends tensor squares to pushouts.

Proof. This follows from the previous Corollary and the fact that the functor (−)
n

:
Commam/1n −→ Compm/1n (see Appendix) is an equivalence of categories. 2

Let P be a many-to-one computad, a a k-cell in P . A description of the cell a is
a pair

< Ta, τa : T ∗a −→ P >

where Ta is an ordered face structure and τa is a computad map such that

τa(idTa) = a.

14 The terminal many-to-one computad

In this section we shall describe the terminal many-to-one computad T .
The set of n-cell Tn consists of (isomorphisms classes of) ordered face structures

of dimension less than or equal to n. For n > 0, the operations of domain and
codomain dT , cT : Tn → Tn−1 are given, for S ∈ Tn by

d(S) =

{
S if dim(S) < n,
dS if dim(S) = n,

and

c(S) =

{
S if dim(S) < n,
cS if dim(S) = n.

and, for S, S′ ∈ Tn such that c(k)(S) = d(k)(S′) the composition is just the k-tensor
of S and S′ as ordered face structures i.e. S ⊗k S′

The identity idT : Tn−1 → Tn is the inclusion map.
The n-indets in T are the principal ordered n-face structures.
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Proposition 14.1 T described above is the terminal many-to-one computad.

Proof. The fact that T is an ω-category is easy. The fact that T is free with free
n-generators being principal n-face structures can be shown much like the freeness
of S∗ before. The fact that T is terminal follows from the following observation:

Observation. For every parallel pair of ordered face structures N and B (i.e.
dN = dB and cN = cB) such that N is normal and B is principal, there is a
unique (up to an iso) principal ordered face structure N• such that dN• = N and
cN• = B. 2

Lemma 14.2 Let S be an ordered face structure and ! : S∗ −→ T the unique
computad map from S∗ to T . Then, for x : X → S ∈ S∗k we have

!k(x) = X.

Proof. The proof is by induction on k ∈ ω and the size of X in S∗k . For k = 0, 1
the lemma is obvious. Let k > 1 and assume that lemma holds for i < k.

If dim(X) = l < k then, using the inductive hypothesis and the fact that ! is an
ω-functor, we have

!k(x) =!k(1(k)
x ) = 1(k)

!l(x) = 1(k)
X = X

Suppose that dim(X) = k and X is principal. As ! is a computad map !k(x) is
an indet, i.e. it is principal, as well. We have, using again the inductive hypothesis
and the fact that ! is an ω-functor,

d(!k(x)) =!k−1(dx) = dX

c(!k(x)) =!k−1(cx) = cX

As X is the only (up to a unique iso) ordered face structure with the domain dX
and the codomain cX, it follows that !k(x) = X, as required.

Finally, suppose that dim(X) = k, X is not principal, and for the ordered face
structures of size smaller than the size of X the lemma holds. Thus there are l ∈ ω
and ǎ ∈ Sd(X)l so that

!k(x) =!k(x↑ǎ;l x↓ǎ) =!k(x↑ǎ)⊗l!k(x↓ǎ) = X↑ǎ ⊗l X↓ǎ = X,

as required 2

15 A description of the many-to-one computads

In this section we shall describe all the cells in many-to-one computads using ordered
face structures, in other words we shall describe in concrete terms the functor:

(−) : Commam/1n −→ Compm/1n

More precisely, the many-to-one computads of dimension 1 (and all computads
as well) are free computads over graphs and they are well understood. So suppose
that n > 1, and we are given an object of Commam/1n , i.e. a quadruple (|P|n,P, d, c)
such that

1. a many-to-one (n− 1)-computad P;

2. a set |P |n with two functions c : |P|n −→ |P|n−1 and d : |P|n −→ Pn−1 such
that for x ∈ |P|n, cc(x) = cd(x) and dc(x) = dd(x).
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If the maps d and c in the object (|P|n,P, d, c) are understood from the context we
can abbreviate notation to (|P|n,P).

For an ordered face structure S, we denote by S],n the object (Sn, (S<n)∗, [δ], [γ])
in Commam/1n . In fact, we have an obvious functor

(−)],n : oFsloc −→ Commam/1n

such that
S 7→ S],n = (Sn, (S<n)∗, [δ], [γ])

Any many-to-one computad P can be restricted to its part in Commam/1n . So we
have an obvious forgetful functor

(−)\,n : Compm/1 −→ Commam/1n

such that
P 7→ P\,n = (|P|n,P<n, d, c)

We shall describe the many-to-one n-computad P whose (n− 1)-truncation is P
and whose n-indets are |P|n with the domains and codomains given by c and d.

n-cells of P. An n-cell in Pn is a(n equivalence class of) pair(s) (S, f) where

1. S is an ordered face structure, dim(S) ≤ n;

2. f : S],n −→ P\,n is a morphism in Commam/1n , i.e.

S∗n−1 Pn−1-
fn−1

Sn |P|n-|f |n

?

[δ]

?

[γ]

?

d

?

c

commutes.

We identify two pairs (S, f), (S′, f ′) if there is a monotone isomorphism h : S −→
S′ such that the triangles of sets and of (n− 1)-computads

Sn S′n
-hn

|P|n

fn
@
@
@R

f ′n
�

�
�	

(S<n)∗ (S′<n)∗-(h<n)∗

P

f<n
@
@
@R

f ′<n
�

�
�	

commute. Clearly, such an h, if exists, is unique. Even if formally cells in Pn
are equivalence classes of triples we will work on triples themselves as if they were
cells understanding that equality between such cells is an isomorphism in the sense
defined above.

Domains and codomains in P. The domain and codomain functions

d(k), c(k) : Pn −→ Pk

are defined for an n-cell (S, f) as follows:

d(k)(S, f) =

{
(S, f) if dim(S) ≤ k,
(d(k)S, d(k)f) otherwise.

where, for x ∈ (d(k)S)k (and hence νx : [x]→ d(k)S),

(d(k)f)k(x) = fk(νx)(x)
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(i.e. we take the cell νx : [x] → d(k)S of S∗, then value of f on it, and then we
evaluate the map in Commam/1n on x the only element of [x]k), and

(d(k)f)<k = (dkS ; f<n)<k.

c(k)(S, f) =

{
(S, f) if dim(S) ≤ k,
(c(k)S, c(k)f) otherwise.

where, for x ∈ (c(k)S)k (and hence νx : [x]→ c(k)S),

(c(k)f)k(x) = fk(νx)(x)

and
(c(k)f)<k = (ckS ; f<n)<k.

i.e. we calculate the k-th domain and k-th codomain of an n-cell (S, f) by taking
d(k) and c(k) of the domain S of the cell f , respectively, and by restricting the maps
f accordingly.

Identities in P. The identity function

i : Pn−1 −→ Pn

is defined for an (n− 1)-cell ((S, f) in Pn−1, as follows:

i(S, f) =

{
(S, f) if dim(S) < n− 1,
(S, f) if dim(S)=n-1

Note that f is the map Compm/1n−1 which is the value of the functor (−) on a map f
from Commam/1n−1. So it is in fact defined as ’the same (n − 1)-cell’ but considered
as an n-cell.

Compositions in P. Suppose that (Si, f i) are n-cells for i = 0, 1, such that

c(k)(S0, f0) = d(k)(S1, f1).

Then their k-composition in Commam/1n is defined as

(S0, f0);k (S1, f1) = (S0 ⊗k S1, [f0, f1])

i.e.

(S0 ⊗k S1)∗n−1 Pn−1
-

[f0
n−1, f

1
n−1]

(S0 ⊗k S1)n |P|n-[f0
n, f

1
n]

?

[δ]

?

[γ]

?

d

?

c

This ends the description of the computad P.
Now let h : P → Q be a morphism in Commam/1n , i.e. a function hn : |P|n −→

|Q|n and a (n− 1)-computad morphism h<n : P<n −→ Q<n such that the square

Pn−1 Qn−1
-

hn−1

|P|n |Q|n-hn

?

d

?

c

?

d

?

c

88



commutes serially. We define
h : P −→ Q

by putting hk = hk, for k < n, and for (S, f) ∈ Pn, we put

h(S, f) = (S, h ◦ f).

Embedding ηP : |P|n −→ Pn is defined in the Proposition below.
Notation. Let x = (X, f : X],n → P\,n) be a cell in Pn as above, and ǎ ∈ Sd(X)k.

Then by x↑ǎ = (X↑ǎ, f↑ǎ) and x↓ǎ = (X↓ǎ, f↓ǎ) we denote the cells in Pn that
are the obvious restrictions of x. Clearly, we have c(k)(x↑ǎ) = d(k)(x↓ǎ) and that
x = x↑ǎ;k x↓ǎ, where k = dim(a).

The following Proposition contains several statements. We have put all of the
together since they have to be proved simultaneously, i.e. to prove them for n we
need to know all of them for n− 1.

Proposition 15.1 Let n ∈ ω. We have

1. Let P be an object of Commam/1n . We define the function

ηP : |P|n −→ Pn

as follows. Let x ∈ |P|n. As c(x) is an indet d(x) is a normal cell of dimension
n− 1. Thus there is a unique descriptions of the cells d(x) and c(x)

< Td(x), τd(x) : T ∗d(x) −→ P<n >, < Tc(x), τc(x) : T ∗c(x) −→ P<n >

with Td(x) being (n−1)-normal ordered face structure and Tc(x) being principal
ordered face structure of dimension n− 1. Then we have a unique n-cell in P:

x̄ =< T •d(x), |τx|n : {1T •
d(x)
} → |P|n, (τx)<n : (T •d(x))

∗
<n → P<n >

(note: |T •d(x)|n = {1T •
d(x)
}) such that

|τx|n(1T •
d(x)

) = x

and, for y : Y → T •d(x) ∈ (T •d(x))
∗
<n

(τx)n−1(y) =



(τc(x))n−1(y′) if Y is principal
and y = y′; c(T •

d(x)
),

(τd(x))n−1(y′′) if Y is principal
and y = y′′; d(T •

d(x)
),

(τx)n−1(y↓ǎ);k (τx)n−1(y↑ǎ) if ǎ ∈ Sd(Y )k

and (τx)<(n−1) = (τdx)<(n−1). We put ηP(x) = x̄.

Then P is a many-to-one computad with ηP the inclusion of n-indeterminates.
Moreover, any many-to-one n-computad Q is equivalent to a computad P, for
some P in Commam/1n .

2. Let P be an object of Commam/1n , ! : P −→ T the unique morphism into the
terminal object T and f : S],n → P a cell in Pn. Then

!n(f : S],n → P) = S.

3. Let h : P → Q be an object of Commam/1n . Then h : P −→ Q is a computad
morphism.

89



4. Let k ≤ n, S be an ordered face structure of dimension at most n, f : S∗ −→ P
a morphism in Compm/1n and y : Y → S ∈ S∗k. We have that

fk(y) = (f ◦ y∗)\,k(= f \,k ◦ y],k : Y ],k −→ P\,k).

5. Let S be an ordered face structure of dimension n, P many-to-one computad,
g, h : S∗ −→ P computad maps. Then

g = h iff gn(1S) = hn(1S).

6. Let S be an ordered face structure of dimension at most n, P be an object in
Commam/1n . Then we have a bijective correspondence

f : S],n −→ P ∈ Commam/1n

f : S∗ −→ P ∈ Compm/1n

such that, fn(1S) = f , and for g : S∗ −→ P we have g = gn(1S).

7. The map
κPn :

∐
S

Comp(S∗,P) −→ Pn

g : S∗ → P 7→ gn(1S),

where coproduct is taken over all (up to iso) ordered face structures S of di-
mension at most n, is a bijection. In other words, any cell in P has a unique
description.

Proof. We prove all the statements simultaneously by induction on n. For
n = 0, 1 all of them are easy.

Ad 1. We have to verify that P satisfy the laws of ω-categories and that it is free
in the appropriate sense. Laws ω-categories are left for the reader. We shall show
that P is free in the appropriate sense.

Let C be an ω-category, g<n : P<n → C<n an (n−1)-functor and gn : |P|n → Cn
a function so that the diagram

Pn−1 Cn−1
-

gn−1

|P|n Cn-gn

?

d

?

c

?

d

?

c

commutes serially. We shall define an n-functor g : P → C extending g and gn. For
x = (X, f) ∈ Pn we put

gn(x) =


1gn−1◦fn−1(x) if dim(X) < n,
gn ◦ fn(mX) if dim(X) = n, X is principal, Xn = {mX}
gn(x↑ǎ);k gn(x↓ǎ) if dim(X) = n, ǎ ∈ Sd(S)k

We need to check that g is well defined, unique one that extends g, preserves domains,
codomains, compositions and identities.

All these calculations are similar, and they are very much like those in the proof
of Proposition 13.1. We shall check, assuming that we already know that g is well
defined, and preserves identities that compositions are preserved. So let x = (X, f),
x1 = (X1, f1), x2 = (X2, f2) be cells in Pn such that x = x1;kx2. Since g preserves
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identities, we can assume that dim(X1), dim(X1) > k. Let l ∈ ω be minimal such
that Sd(X)l 6= ∅. We have two cases:

Case 1. If l < k, then by Decomposition 3.2.a we have ǎ ∈ Sd(T2)l, and then

g(x) =
g(x↑ǎ);l g(x↓ǎ) =

g((x1;k x2)↑ǎ);l g((x1;k x2)↓ǎ) =

g(x↑ǎ1 ;k x
↑ǎ
2 );l g(x↓ǎ1 ;k x

↓ǎ
2 ) =

(g(x↑ǎ1 );k g(x↑ǎ2 ));l (g(x↓ǎ1 );k g(x↓ǎ2 )) =

(g(x↑ǎ1 );l g(x↓ǎ1 ));k (g(x↑ǎ2 );l g(x↓ǎ2 )) =
= g(x1);k g(x2)

Case 2. If l = k then by Decomposition 3.2.a we have ǎ ∈ Sd(X1) and

g(x) =
g(x↑ǎ);k g(x↓ǎ) =

g(x↑ǎ1 );k g(x↓ǎ1 ;k x2) =

g(x↑ǎ1 );k (g(x↓ǎ1 );k g(x2)) =

(g(x↑ǎ1 );k g(x↓ǎ1 ));k g(x2) =
= g(x1);k g(x2)

The remaining things are similar.
Ad 2. Let ! : P −→ T be the unique computad map into the terminal object, S

an ordered face structure such that dim(S) = l ≤ n, f : S],n −→ P a cell in Pn.
If l < n then by induction we have !n(f) = S. If l = n and S is principal then

we have, by induction

!n(d(f) : (dS)],n → P) = dS, !n(c(f) : (cS)],n → P) = cS.

As f is an indet in P, !n(f) is a principal ordered face structure. But the only (up
to an iso) principal ordered face structure B such that

dB = dS, dB = dS

is S itself. Thus, in this case, !n(f) = S.
Now assume that l = n, and S is not principal, and that for ordered face struc-

tures T of smaller size than S the statement holds. Let a ∈ Sd(S)k. We have

!n(f) =!n(f↑a;k f↓a) =!n(f↑a);k !n(f↓a) = S↑a;k S↓a = S

where f↑a = f ◦ (κ↑a)],n and f↓a = f ◦ (κ↓a)],n and κ↑a and κ↓a are the monotone
morphisms as in the following tensor square

c(k)S S↓a-

S↑a S-
κ↑a

6 6
κ↓a

Ad 3. The main thing is to show that h preserves compositions. This follows
from the fact that the functor

(−)],n : oFs −→ Commam/1n
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preserves special pushouts.
Ad 4. This is an immediate consequence of 3.
Ad 5. Let us fix ordered face structures S, Y , dim(S) = n, ǎ ∈ Sd(Y ), and

f, g : S∗ −→ P. Clearly, if f = g then f(1S) = g(1S). We shall prove the converse.
As

(c(l)Y ↓ǎ)],k (Y ↑ǎ)],k-

(Y ↓ǎ)],k Y ],k-

6 6

is a pushout in Commam/1k we have that for any y : Y → S ∈ S∗k

f \,k◦y],k = g\,k◦y],k iff f \,k◦(y↓ǎ)],k = g\,k◦(y↓ǎ)],k and f \,k◦(y↑ǎ)],k = g\,k◦(y↑ǎ)],k

From this observation it is easy to see that if for some y : Y → S ∈ S∗ we have
f(y) 6= g(y) then we can assume that this Y is principal. On the other hand, from the
above observation, the fact that both f and g are ω-functors and that f(1S) = g(1S)
we can deduce that for any y : Y → S ∈ S∗ with Y principal we have f(y) = g(y).
This together shows 5.

Ad 6. we shall use 5. Fix an ordered face structure S of dimension n and a
many-to-one computad P. For f : S],n → P\,n in Commam/1n we have

fn(1S) = (f ◦ (1S)],n)\,n = f ◦ (1S)],k = f.

On the other hand, for a computad map g : S∗ → P we have

gn(1S)(1S) = (gn(1S) ◦ (1S)],n)\,n =

= (g\,n ◦ (1S)],n ◦ (1S)],n)\,n = (g\,n ◦ (1S)],n)\,n = g(1S).

Thus by 5. we have gn(1S) = g.
Ad 7. It follows immediately from 6. 2

The following Proposition says a bit more about descriptions than point 7. of
the previous one.

Proposition 15.2 Let P be a many-to-one computad, n ∈ ω, and a ∈ Pn. Let
Ta =!Pn (a) (where !P : P −→ T is the unique morphism into the terminal many-
to-one computad). Then there is a unique computad map τa : T ∗a −→ P such that
(τa)n(1Ta) = a. Moreover, we have:

1. for any a ∈ P we have

τda = d(τa) = τda = τa ◦ (dTa)∗, τc(a) = c(τa) = τc(a) = τa ◦ (cTa)∗,

τ1a = τa

2. for any a, b ∈ P such that c(k)(a) = d(k)(b) we have

τa;kb = [τa, τb] : T ∗a ;k T ∗b −→ P,

3. for any ordered face structure S, for any computad map f : S∗ −→ P,

τfn(1S) = f.

4. for any ordered face structure S, any ω-functor f : S∗ −→ P can be essentially
uniquely factorized as
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S∗ P-
f

T ∗f(1S)

f in@
@R

τf(1S)
�
��

where f in is an inner map (i.e. f in(1S) = 1Tf(1S)
) and (τf(1S), Tf(1S)) is the

description of the cell f(1S).

Proof. Using the above description of the many-to-one computad P we have
that a : (Ta)],n −→ P\,n. We put τa = a. By Proposition 15.1 point 6, we have
that (τa)n(1Ta) = an(1Ta) = a, as required. The uniqueness of (Ta, τa) follows from
Proposition 15.1 point 5. The remaining part is left for the reader. 2
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16 Appendix

A definition of the many-to-one computads and the comma categories
The notion of a computad was introduced by Ross Street. We repeat this defini-

tion for a subcategory Compm/1 of the category of all computads Comp that have
indeterminates of a special shape, namely their codomains are again indeterminates.
We use this opportunity to introduce the notation used in the paper. In order to
define Compm/1 we define three sequences of categories Compm/1n , Commam/1n ,
and Comman.

1. For n = 0, the categories Compm/1n , Commam/1n , and Comman are just Set,
and the functor (−)

n
: Commam/1n −→ Compm/1n is the identity.

2. For n = 1, the categories Commam/1n and Comman are the category of
graphs (i.e. 1-graphs) and Compm/1n is the category of free ω-categories
over graphs with morphisms being the functors sending indets (=indetermi-
nates=generators) to indets.

3. Let n ≥ 1. We define the following functor

$m/1
n : Compm/1n −→ Set

such that

$m/1
n (P) = {(a, b) : a ∈ Pn, b ∈ |P|n, d(a) = d(b), c(a) = c(b)}

i.e. $
m/1
n (P) consists of those parallel pairs (a, b) of n-cells of P such that

b is an indet. On morphisms $n is defined in the obvious way. We define
Commam/1n+1 to be equal to the comma category Set ↓ $m/1

n . So we have a
diagram

Compm/1n Set-

$
m/1
n

Commam/1n+1

(−)≤n

�
�

�
�
��	

| − |n+1

@
@
@
@
@@Rµ ⇓

4. For n ≥ 1, we can define also a functor

$n : nCat −→ Set

such that

$n(C) = {(a, b) : a, b ∈ Cn, d(a) = d(b), c(a) = c(b)}

i.e. $n(C) consists of all parallel pairs (a, b) of n-cells of the n-category C. We
define Comman+1 to be equal to the comma category Set ↓ $n. We often de-
note objects of Comman+1 as quadruples C = (|C|n+1, C≤n, d, c), where C≤n
is an n-category, |C|n+1 is a set and (d, c) : |C|n+1 −→ $n(C≤n) is a func-
tion. Clearly, the category Commam/1n+1 is a full subcategory of Comman+1,
moreover we have a forgetful functor

Un+1 : (n+ 1)Cat −→ Comman+1
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such that for an (n+ 1)-category A

Un+1(A) = (An+1, A≤n, d, c)

i.e. Un+1 forgets the structure of compositions and identities at the top level.
This functor has a left adjoint

Fn+1 : Comman+1 −→ (n+ 1)Cat

The category Fn+1(|B|n+1, B, d, c) is said to be a free extension of the n-
category B by the indets |B|n+1. The category of many-to-one (n + 1)-
computads Compm/1n+1 is a subcategory of (n + 1)Cat whose objects are free
extensions of objects from Commam/1n+1. The morphisms in Compm/1n+1 are
(n + 1)-functors that sends indets to indets. Thus the functor Fn+1 restricts
to an equivalence of categories

Fm/1n+1 : Commam/1n+1 −→ Compm/1n+1,

its essential inverse will be denoted by

‖ − ‖n+1 : Compm/1n+1 −→ Commam/1n+1.

Thus for an (n+ 1)-computad P we have ‖P‖n+1 = (|P|n+1,P≤n, d, c).

5. The category Compm/1 is the category of such ω-categories P, that for every
n ∈ ω, P≤n is a many-to-one n-computad, and whose morphisms are ω-functors
sending indets to indets.

For n ∈ ω, we have functors

| − |n : Compm/1 −→ Set

associating to computads their n-indets, i.e.

f : A −→ B 7→ |f |n : |A|n −→ |B|n,

they all preserve colimits. Moreover we have a functor

| − | : Compm/1 −→ Set

associating to computads all their indets, i.e.

f : A −→ B 7→ |f | : |A| −→ |B|,

where
|A| =

∐
n∈ω
|A|n.

It also preserves colimits and moreover it is is faithful.

6. We have a truncation functor

(−)≤n : ωCat −→ nCat

such that
f : A −→ B 7→ f≤k : A≤k −→ B≤k

with k ∈ ω, it preserves limits and colimits.

95



References

[HMP] C. Hermida, M. Makkai, J. Power, On weak higher dimensional categories,
I Parts 1,2,3, J. Pure and Applied Alg. 153 (2000), pp. 221-246, 157 (2001),
pp. 247-277, 166 (2002), pp. 83-104.

[J] A. Joyal, Disks, Duality and Θ-categories. Preprint, (1997).

[M] M.Makkai, The multitopic omega-category of all multitopic omega-categories.
Preprint (1999).

[MZ] M. Makkai and M. Zawadowski, Disks and duality. TAC 8(7), 2001, pp.
114-243.

[Z] M. Zawadowski, On positive face structures and positive-to-one computads.
Preprint, 2006, pp. 1-77.

[Z1] M. Zawadowski, Multitopes are the same as principal ordered face structures.
Preprint, 2008, pp. 1-32.

96



Index

category
Hg, 10
lFs, 13
oFs, 12
Commam/1n , 94
Comp, 94
Compm/1, 94
Compm/1n , 94
free extension of, 95
kCat, 74
lFsk, 74
nFs, 14
pFs, 14

cell
description of a -, 85

convex subset, 23
cut, 29, 50

lower description of -, 50
upper description of -, 50

decomposition, 77
lower part of -, 77
proper, 77
upper part of -, 77

depth, 23
description of a cell, 85
disjointness, 12

face
-s based on x, 50
depth of -, 23
empty domain -, 11
height of -, 23
loop, 11
non-empty domain, 11
non-loop, 11
unary, 11
weight of -, 21

face structure
local -, 13
ordered, 12
n -, 14
normal -, 14
principal -, 14

free extension, 95

globularity, 12
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