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Abstract

We introduce the notion of an ordered face structure. The ordered face
structures to many-to-one computads are like positive face structures, c.f. [Z],
to positive-to-one computads. This allow us to give an explicit combinatorial
description of many-to-one computads in terms of ordered face structures.
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1 Introduction

The definition of multitopic categories the weak w-categories in the sense of Makkai
contains two ingredients. The first constitutes a description of shapes of cells
that are considered (this includes the relation between cells and their domains and
codomains), c.f. [HMP] and the second constitutes a mechanism of composition, c.f.
[M]. This paper is a contribution to a better understanding of the first ingredient
of the M.Makkai’s definition of multitopic categories, and we provide a relatively
simple combinatorial description of the category many-to-one computads. The pa-
per goes much along with [Z] except it deals with all many-to-one computads rather
than positive-to-one computads. This generates some substantial complications and
the structure of cells turns out to be much richer.

Ordered face structures

Our main combinatorial device introduced and studied in this paper is the ordered
face structure. The ordered face structures correspond to all possible ’shapes’ of
cells (not only indeterminates) in many-to-one computads'. In order to relate them
to our previous work [MZ], [Z] we can draw an analogy in the following table.

shapes of
type of indeterminates \ arbitrary cells
computads described in terms of
graph—like | computads | graph—Ilike | computads
structures structures
one—to—one a” (a™)* simple simple
[MZ] w—graphs | categories
positive—to—one principal positive positive face positive
[Z] positive face | computopes | structures | computypes
structures
many—to—one principal computopes | ordered face pointed
[this paper] ordered face structures | computypes
structures

Now are going to explain it in an intuitive way. In the table we describe cells in com-
putads of three kinds. The later being strictly more general than the former. The
one-to-one computads are the simplest. They are free w-categories over w-graphs?.
The positive-to-one computads are computads in which the indeterminates (or in-
dets) on the higher dimension have as codomains indeterminates and as domains
cells that are not identities. Finally, the many-to-one computads are computads in
which the indets have as codomains indets again but there is no specific restriction
for the domains (other than that they must be parallel to codomains).

Fix n € w. The w-graph (also called globular set) o™, has one n-face and exactly
two faces of lower dimensions than n, i.e.

0 ifl>n
o = {2n} ifl=n
{21+ 1,21} ifo<i<n

with domain and codomain given by d, ¢ : aff — o, d(x) = {2l—1}, ¢(x) = 21—-2
for x € of, and 1 <[ < n. For example a* can be pictured as follows:

IFor the definition of many-to-one computad see the appendix.
2In the literature w-graphs are sometimes called globular sets.
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i.e. 8 is the unique face of dimension 4 in a* that has 7 as its domain and 6 as its
codomain, 7 and 6 have 5 as its domain and 4 as its codomain, and so on. More
visually we can draw o as follows
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The free category (a™)* generated by o™ has the property that for any w-category
C, the set wCat((a™)*,C) of w-functors from (a™)* to C' correspond naturally to
the set C,, of n-cells of C'. Thus in one-to-one computads the shapes of indets are
particularly simple and this is why the w-graphs describing them are called simple.
Simple w-graphs are some ’special’ pushouts of a’s. Instead of trying to repeat the
definition from [MZ] we rather show an example:
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So indets have still indets as domains and codomains and even if there is no one
indet that generates all the w-graph, as in a"’s, the domains and codomains of
indets so fit together that they could be (uniquely) composed ’if they were placed
in an w-category’. Simple w-categories, c.f. [MZ], are w-categories generated by
such w-graphs. The category of simple w-categories is dual to the category of disks
introduced in [J] . Note that there are two definite ways the indets of the same
dimension can be compared. The face x is smaller from y in one way and from z
the other way. We write z <* y and & <~ 2. The first order® is called upper and
the second is called lower. More formally, the upper order on cells of dimension n is
the least transitive relation such that d(a) <% ¢(a) for any face a of dimension n + 1
(d and ¢ are operations of domain and codomain, respectively). Similarly, the lower
order on cells of dimension 7 is the least transitive relation such that if d(x) = ¢(z)
then x <~ z. In this case both orders are definable using d and c¢. For more on this
see [MZ].

The shapes of indeterminates in positive-to-one face structures are more compli-
cated. We again use drawing to explain what principal positive face structures are.
The one below has dimension 3.

3Here and later by order we mean strict order i.e. irreflexive and transitive relation.
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Thus in positive face structures the codomains of indets are still indets but the
domains are so called pasting diagrams of indets, i.e. domains contains indets that
‘suitably fit together so that we could compose them’. In these structures we have
the usual operation of taking codomain but the ’operation’ of taking domain of a
face returns a non-empty set of faces rather than a single face. To emphasize this
change we use for these operations the Greek letters v and ¢ instead of ¢ and d.
Thus v(a) = ag, y(a3) = z3, 6(a) = {a1,a2,a3}, §(ag) = {z1,24, 25,26}, d(az) =
{z3,26}. From the table we have that positive face structures to principal positive
face structures are like simple w-graphs to w-graphs of form «', for some n. Thus
it should be not surprising that positive face structures looks like this:
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Different points, arrows etc. denote necessarily different cells, and if we omit their
names in figures it is for making it less baroque. Note that in this case the indets
of the same dimension can be compared much the same way as indets in simple
w-graphs in two definite ways. The face x12 is smaller than xg in one way and than
x4 the other way, and again we write w12 <' 9 and x12 <~ z4. Again the first
order is called upper and the second is called lower. More formally, the upper order
on faces of dimension n is the least transitive relation such that x <™ y whenever
there is a face a of dimension n 4 1 such that x € §(a) and y(a) = y. Similarly, the
lower order on faces of dimension n is the least transitive relation such that z <~ y
whenever v(x) € d(y). Any positive face structure 7' generates a computads 7.
The cells of dimension n of such a computad are positive face substructures of T’
of dimension at most n. These computads are called positive computypes. If T is a
principal positive face structure then T is a positive computope?. In this case T*
determines T' up to an isomorphism. For more on this see [Z].

The shapes of indeterminates in many-to-one face structures are even more com-
plicated as this time the domains of indets might be identities (=’empty on some-
thing’). This generates a lot of complications as we have three new kinds of faces.
Apart from positive faces like in previous case we have empty-domain faces and then
as a consequence we have loops (=faces with domain equal codomain) and we also
need to deal with empty faces. The last kind of faces is not indicated in the pictures.
On each face x of dimension n there is an empty face 1, of dimension n + 1. They
are much like with identities whose role they play. We again use drawing to explain
intuitively what principal ordered face structures are:

4The word ’positive’ is used here more like a shorthand and in presence of ’other positive’ notions
this one should be named properly as 'positive-to-one’.
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and a bit more fancy
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In these structures we also use the Greek letters v and ¢ for domains and codomains,
respectively. Similarly as in positive face structures the codomain is an operation
associating faces to faces. But the domain operation is still more involved as it
may associate to a face a non-empty set of faces or a single empty face. Thus we
have d(a) = {a1,...,a6}, y(a) = ag but d(az) = 1s,, d(bp) = 1ls. Note that we
should write §(z1) = {so} instead of §(zg) = sp but we will, as we did in [Z], mix
singletons with elements when dealing with faces or sets of faces e.g. both conditions
v(xg) € 6(xp) and y(xg) = d(xg) are meaningful in this convention and in fact, as
we will see later, due to this ’double meaning’ they are equivalent in all ordered
face structures saying that zq is a loop. This time the relations between faces and
their domains and codomains does not encode all the needed data. The upper order
<* can be defined like in positive face structures from v and §. However, due to
existence of loops, the relation <~ defined as before is not a strict order in general.
In the above examples we have z3 <~ x4, x4 <~ x3 and similarly yo <™ y1, y1 <~ ¥o.
But we definitely need to know that x4 comes before x3 and that yo comes before y; .
This is why we need as a separate additional data a strict order <™ that is contained
in <7 telling us that z4 <™ x3 and yo <™ y; but not that z3 <™ z3 and y; <™ ys.
As we need to have the strict order <™ as an additional piece of data we call those
face structures ordered. Note however that in the above cases we could solve our
problem of ordering the faces locally that is having just restriction of the order <~
to sets that are domains of other faces. But to describe all the cells of many-to-one
computads we need more than just that. Below we have some examples of ordered
face structure
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We see that faces xg and x5 must be comparable via <~ but they are not in domain
of any other face. Thus a kind of global order <™ is needed. Note however that the
fact that x17 comes before both x¢ and x4 and that xg comes after all of them could
be deduced in a different way. The way the ordered face structure T’ generate a
many-to-one computad 7™ is more involved then in case of positive face structures.
An n-cell in T7¥ is a local morphism ¢ : X — T where X is an ordered face structure
of dimension at most n and ¢ is a map that preserves v, § but the order <™ is
preserved only locally i.e. for a € X ¢ : (d(a), <)) — (d(¢(a)), <;(a)) is an order

a
isomorphism, where <7, <7 are restrictions of orders <™ to d(a) and d(p(a)),
respectively. Thus we have a cell ¢:

X

s s—J LY LT
éSy Lz by

in the computad generated by the ordered face structure 7% (where T is the last
example of an ordered face structure above). The faces of the above ordered face
structures are labelled by the faces they are sent to by the local morphism ¢. Clearly,
in this case the local preservation of the order <™ does not impose any restriction
on the map ¢ : X — T other than preservation of v and §. From this it should
be clear that we cannot in general determine T having just 7. For example the
ordered face structures

S S
A A
c)|la a)llc

Zyllb T x l}byz

are not isomorphic, as y <~ x and z <~ x in the left one and z <~ y and z <™ z
in the right one, but they generate isomorphic computads. In other word passing
from T to T we are loosing part of data and this is why 7™ is not sufficient, in
general (unlike T'), to determine the shape of a cell in a many-to-one computad. To
keep this information we need to choose one cell in 7™ with the natural choice being
the identity on T, idp : T — T. The w-categories T™ together with a distinguished
cells idp are pointed computypes which are the computad-like descriptions of types
of all cells in many-to-one computads. The pointed computypes can be defined
abstractly but we are going to explain it elsewhere. If T' is a principal ordered face
structure then this distinguished cell can be chosen in a unique way and hance it
does not to be chosen at all as we know anyway which one we were to choose. This is



why the computopes, the computad-like descriptions of types of indets in many-to-
one computads are the w-categories generated by principal ordered face structures
(without an additional cell chosen).

Primitive notions and axioms

Thus we related ordered face structures to simple w-graphs and positive face struc-
tures and we have described the primitive notions v, d, <~ that we had chosen
to axiomatize them. Now we shall describe some intuitions behind the axioms of
ordered faces structures. Even if they are more involved they are quite close in the
spirit to the axioms of positive face structures.

As in case of positive face structures, the most important axiom is the axiom of
globularity. In case of w-graphs it is just cc = c¢d and dc = dd which, if we rebaptize
c as v and d as 9, take form

(@) =7d(a), dy(a) =dd(a). (1)

As it was pointed out in [Z] this equations cannot hold even for positive-to-one faces
as the right hand sides might be much bigger the left hand sides. In the example of
a principal positive computad from page 4, we have

yy(@) = 20 # {x0, T2, 23} = VI(0¥),

57(04) - {x1,$4,$5,$6} £{$1,$2,$3,1’4,$5,I’6} = 55(05)

Thus we corrected the formula (1) by subtracting some faces from the right side
getting
(@) =~d0(a) = d6(a),  dv(a) = d6(a) —vo(a). (2)

Now it works for positive-to-one faces but if we allow loops in the domains of faces,
and we must if we allow empty-domain faces, these formulas still doesn’t work as
we can see for the face a; in positive ordered face structure on page 5. We have

yy(a1) = so # 0 = yd(a1) — d6(a1), dvy(a1) = s4# 0 = 6d(a1) — vd(a1)

Thus we see that we subtracted too much. Correcting this we drop these loops and
we get
(@) =76(a) =86 Na),  dy(a) = 86(a) — 46 (a). (3)

where §~*(a) means the set of those faces in §() that are not loops. Now the
formula (3) works for the face a; and even for the face a on page 5. But there is
still a problem with empty-domain faces, as we have for by in the same ordered face
structure.

7Y(bo) = s # O = 73(bo) — 36~ (bo),
57(bo) = s # O = 66(bo) — 76~ (bo).

As a remedy for this we shall still diminish the set that we subtract by dropping
empty faces which might be there. So we drop these empty-faces and we get

1y(@) =13(a) — 852 (@),  Fy(a) = 66(a) — 7§ (a). (4)

where §~*() means the set of those faces in §(c)™ that are not empty faces®. We
are almost there but if in the domain §(«) of a face a we have both empty-domain
faces and faces with positive domains as we have in §(«) in on page 5, then the
set d0(c) may contain both empty and non-empty faces whereas dy(a) definitely

>This means that this set is either empty if §(c) is an empty face or it is 6(a)™>.



contain just one kind of faces either one single empty faces or a non-empty set of
non-empty faces. However if we have faces of both kinds in §§(«) the empty faces
must be empty-faces on domains or codomains of the non-empty faces in this set.
And this is the final modification that we do to our equation:

(@) = 78(a) =65 M a),  dv(a) =1 66(a) — 6 M a). ()

where A =; B is equivalence of two set of faces of the same dimension modulo empty
faces which means that

1. if one set contains only empty faces then the other also contains only empty
faces and these sets are equal,

2. or else both sets contain the same non-empty faces and any empty face in
either set is an empty face on domain or codomain of a non-empty face is
those sets.

In other words if A denote non-empty faces in A, A denote empty faces in A we have
A=, Biff A= B and A - BuU l'y(B)U(S(B) and B C AU 17(A)u6(A)' Still in other
words A and B are sets of faces that generates, via v and 4, the same substructures.

The last axiom, loop filling is the only other axiom that does not mention order
explicitly, it says that there are no empty loops, i.e. if there is a loop it must be a
codomain of at least one face which is not a loop.

The remaining four axioms talk about orders <™ and <™. Local discreteness
says that faces in a domain of any other face cannot be comparable via the upper
order <™. The strictness, disjointness together with pencil linearity say in a sense
that <™ is the maximal strict order order relation that is contained in the relation
<~ and disjoint from <¥.

Note that as <, <~ are the transitive closures of elementary relations so these
axioms are not first order axiom and in fact they are expressed in the transitive
closure logic.

Future work

This paper covers only part of the program developed in [Z] for positive-to-one
computads. We end this here as it is already very long paper. But the remaining
parts of the program from [Z] for many-to-one computads and the application of
this to the multitopic categories, c.f. [HPM],[M], will be presented soon.

Content of the paper

Section 2 contains the definition of a hypergraph and some notation needed to
introduce the notion of an ordered face structure. In section 3 we introduce the
main notion of this paper the notion of an ordered face structure. In section 4
we develop most of the needed elementary theory of ordered face structures. This
section should be more consulted when needed than read through. The monotone
morphism, is the stricter of two kind of morphisms between ordered face structures,
it preserves the order <™ globally. The image of such a morphism is a convex set.
In section 5 we show that from the convex set we can recover the whole morphism
up to an isomorphism. The domain of such a morphism is recovered via cuts of
empty loops in the convex subset. The next two sections show the connection
between positive and ordered face structures. In section 6 we describe how we can
divide a positive face structure by an ideal to get an ordered face structure. In
section 7 we show that for any ordered face structure S there is a positive face
structure ST and ideal so that ST divided by this ideal is isomorphic to S. The



positive face structure ST is defined with the help of cuts of so called initial faces.
In sections 8 and 9 we describe some abstract structure of the category oFs and
show some of their properties. This allow us to define in section 10 a free functor
(—=)* : IFs — wClat from the category of local face structures 1Fs to the category
of w-categories. Local face structures are structures that have operations + and
0 as in ordered face structures but with the order <™ (in fact a binary relation)
restricted to domains of faces only. The section 11 discusses basic properties of
principal and normal ordered face structures the face structures that are generated
by a single face and such that can be domains (in the sense of monoidal globular
category oFs) of such structures. In section 12 we study decompositions of ordered
face structures. In [Z] we have defined the decompositions of positive face structures
along some faces. Here we decompose ordered face structure S along a cut of initial
faces @ rather than a face a as this decomposition in more like a decomposition of
the positive cover ST and then after decomposition divided to get the decomposition
of S. Doing it this way we can deduce most of the properties of this decomposition
from the corresponding decomposition of positive face structures. In section 13 we
show that the w-category T™, for 1" being an ordered face structure, is in fact a
many-to-one computad. The next two sections 14 and 15 describe with the help of
ordered face structures the terminal many-to-one computad and all the cells in an
arbitrary many-to-one computad.

Notation and conventions

As we already indicated we will intensionally confuse singletons with elements when
dealing with faces in ordered face structures. In the paper we often will be using
cells of different but neighboring dimensions. As it is a bit confusing anyway we try
to make it a bit easier to follow by a careful use of the following convention. «, (3
are faces of the same dimension, say n, then a, b are the faces of the same dimension
n — 1, x,y,z are the faces of the same dimension n — 2, ¢, s are the faces of the
same dimension n — 3, u,v are the faces of the same dimension n — 4. We may
use occasionally A, B to denote faces of dimension n 4+ 1. These faces may appear
with indices but these letter should be a direct hint which dimension we are working
on. The above examples were already using this convention. Last but not least the
composition of two morphisms

x—1 .y 9 4

may be denoted as either g o f or more often f;g. In any case we will write which
way we mean the composition.
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2 Hypergraphs

A hypergraph S is

1. a family {Sk}xre, of finite sets of faces; only finitely many among these sets
are non-empty;

2. a family of functions {’y,f : Sky1 l1s, — Sk}rew; where 1g, = {1, : u € Sy} is
the set of empty faces of dimension k; the face 1, is the empty k-dimensional
face on a non-empty face u of dimension k — 1.



3. a family of total relations {573 : Skt W 1ls, — Skl 1ls, | trew: for a € Sk
we denote 87 (a) = {x € Sy W 1s,_, : (a,x) € 67}; 67 (a) is either singleton
or it is non-empty subset of Si. Moreover (55 :S1Wlg, — Solhlg | is a
function (for this expression to make sense we assume that S_; = (). We put
5(a) = 6(a)N S and é(a) = d6(a) N 1g.

Spy11g,
v\
Sk llg, | Sk

A morphism of hypergraphs f : S — T is a family of functions fy : Sy — Tk, for
k € w, such that the diagrams

Jrs1 Jr41

Sk+1 T Sk+1 > Tt

v\ Jv 5{ 5
S, T, Sk Lilg, T 17y,
k fk k k—1 fk I 1fk-1 k—1

commute (where 15, (1) = 1y, (4, for z € S;_2), for k € w.

The commutation of the left hand square is the commutation of the diagram
of sets an functions but in case of the right hand square we mean more than
commutation of a diagram of relations, i.e. we demand that for any a € S>1,
fa : 8(a) — 6(f(a)) be a bijection, where f, is the restriction of f to d(a) (if
d(a) = 1, we mean by that 0(f(a)) = 1f«,)). The category of hypergraphs is de-
noted by Hg.

Convention. If a € Sy we treat vy(a) sometimes as an element of Si_; and
sometimes as a subset {y(a)} of Sk_1. Similarly §(a) is treated sometimes as a set
of faces or as a single face if this set of faces is a singleton. In particular, when we
write y(a) = d(b) we mean rather {y(a)} = 6(b) or in other words that d(b) has one
element this element is a face (not an empty face) and that this face is v(a). We
can also write y(a) € §(b) to mean that §(b) C S and that «(a) is one (of possibly
many) elements of §(b). This convention simplifies the formulas considerably.

Notation. Before we go on, we need some notation. Let S be an ordered hyper-
graph.

1. The dimension of S is max{k € w : Sk # 0}, and it is denoted by dim(.S).

2. The sets of faces of different dimensions are assumed to be disjoint (i.e. Sx N
S; =10, for k #1); S is also used to mean the set of all faces of S i.e. Uji_q Sk;
the notation A C S mean that A is a set of some faces of S; Ay = AN Sy, for
k€ w.

3. If a € Sy then the face a has dimension k and we write dim(a) = k.

4. Sor = Ui S, S<k = Ui< Si- The set S = U<, Si is closed under 6
and « so it is a sub-hypergraph of .S, called k-truncation of S.

5. 0(A) = Ugea 9(a) is the image of A C .S under 9;
v(A) ={v(a) : a € A} is the image of A under 7.
Following the convention mentioned above if either 7(A) or 0(A) is a singleton
we may treat them as a (possibly empty) single face.

10



6.

For a € S>1, the set 0(a) = d(a) U~(a) is the set of codimension 1 faces in a.
We put 6(a) =6(a) N S.

7. Let x,a € S. We define the following subsets of faces of S:

8.

9.

10.

11.

)

) non-empty domain faces: S™¢ =S — S¢; we write 0 ¢(A) for 6(A) NS,
c) loops: S* ={a € S :d(a)=r(a)};

) non-loops: S~ = S — S; we also write 6~*(A) for §(A) N S,

) )

)

unary faces: S* ={a € S :|6(a)| = 1};

for o € S>2 we define the set of internal faces of «;
o) ={r e S:3a,bedNa):v(a) =2 €6(0)} =107 (a) N5 (a)

) internal faces: 1(S);

) initial faces: T =T° = S¢ — ~v(S™);

(1) x—cluster (of initial faces): T, =I5 = {a € T% : yy(a) = z};
)
)

On each set Sy we introduce two binary relations <%+~ and <%+, We usually
omit k in the superscript and sometimes even S.

(a) <%~ is the empty relation. For k& > 0, the relation <%~ is the transitive
closure of the relation <**~ on Sk, such that a <%~ b iff y(a) € §(b).
We write a L5~ b if either a <%+~ b or b <%~ a, and we write a <~ b
iff a=bora<" b

(b) <%k is the transitive closure of the relation <% on Sy, such that
a <%+t b iff there is a € Sk_ﬁl, such that a € §(«) and y(«) = b. We write
a LSF b if either a <% b or b <%%F @, and we write a <T b if either
a=bora<"'bh.

(c) a t bif both conditions @ /* b and a £~ b hold.
Let a,b € Sg. A lower path from a to b in S is a sequence of faces aq, ..., am
in Sk such that a = ag, b = a,, and, y(a;—1) € 6(a;), fori =1,...,m.
A lower path is a flat lower path if it contains no loops other than a or b.
Let z,y € Sk. An upper path from x to y in S is a sequence ag, . . ., Gy, in Sk41
such that z € §(ap), y = v(am) and, v(a;—1) € §(a;), fori=1,...,m.
An upper path is a flat upper path if it contains no loops.
The iterations of v, § and § will be denoted in two different ways. By ~+*,
6% and 6% we mean k applications of v and &, respectively. By v*), §() and
0%) we mean the application as many times v, 6 and 6, respectively, to get

faces of dimension k. For example if a € S5 then §3(a) = §66(a) C So and
6@ (a) = 66(a) C S3.

11



3 Face structures

To simplify the notation, we treat both d and « as functions acting on faces as well
as on sets of faces, which means that sometimes we confuse elements with singletons.
Clearly, both § and v when considered as functions on sets are monotone.

We need the following relation. Let S be a hypergraph. We introduce an ’equal-
ity’ relations =1 on subsets of S, U1lg, ,, for k € w, that may ignore the 1g-part of
the sets in presence of faces from S. Let A, B C S, Ulg, ,. We set that A is 1-equal
B, notation A =1 B, iff AU 19(AQS) =BU 19(305)-

An ordered face structure (S, <5+™)re, (also denoted S) is a hypergraph S to-
gether with a family of {<% ™}, of binary relations (<™ is a relation on Sy),
if it is non-empty, i.e. Sy # () and

1. Globularity: for a € S>o:
77(a) = vd(a) = 56~ (a), 5v(a) =1 66(a) — v (a).

and for any a € S:
(1) = a=v(1q)-

2. Local discreteness: if x,y € 6(a) then x LT y.

3. Strictness: for k € w, the relations <%+t and <51~ are strict orders®; <50+
is linear; (i.e. no flat path is a cycle).

4. Disjointness: for k € w, the relation <°%™ is a maximal strict order relation
contained in <%~ that is disjoint from <%=, i.e. for k > 0,

156~ A | Set=

for any a,b € Si:
if a<™b then a<™ b

if 6(a)Né(b) =0 then a<™b iff a<™ b
(i.e. if faces are not incident then <™ is the same as <7).
5. Pencil linearity: for any a,b € S>1, a # b,
if §(a)NA(b)#0 then either a L~ b or a LT b
for any a € 55,5, b € S>o,
if yvy(a) € ¢(b) then either a <~ b or a<t b
(i.e. if faces are incident then they are comparable).
6. Loop-filling: S* C v(S™); (i.e. no empty loops).

The relation <™ is called the upper order and <" is called lower order.

The morphism of ordered face structures, the monotone morphism, f : S — T
is a hypergraph morphism that preserves the order <™. The category of ordered
face structures, is denoted by oF's.

The relation <™~ in an ordered face structure .S induces a binary relation
(6(a), <) for each a € Sso (where < is the restriction of <™ to the set d(a)).
In the construction of the free w-categories over an ordered face structure we need

5By strict order we mean an irreflexive and transitive relation.
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to consider hypergraph morphisms that preserves only this induced structure (not
the whole relation <~). This is why we introduce the category of local face struc-
tures.

A local face structure (S, <5%™),cs is a hypergraph S together with a family of
{(6(a), <5¥™)}aes of binary relations. The morphism of local face structures, the
local morphism, f : S — T is a hypergraph morphism that is a local isomorphism
i.e. for a € Su the restricted map f, : (§(a), <)) — (0(f(a)), <J(a)) 1s an order

a
isomorphism, where f, is the restriction of f to 5(@). The category of local face
structures, is denoted by 1F's.
Clearly we have a ’forgetful’ functor:

| —|: oFs — IFs

sending (S, <%™)ie, to (S, <X)aes.,, Where < is the restriction of <™ to d(a),
for a € S5.
Remarks. Before we go on, we shall comment on the notions introduced above.

1. The reason why we call the first condition ’globularity’ is that it will imply
the usual globularity condition in the w-categories generated by ordered face
structures. The word ’local’ in 'Local discreetness’ as anywhere else in the
paper refers to the fact that this property concerns sets of faces constituting
the domain of a face rather than the set of all faces.

The property of 'pencil linearity’ is strongly connected with the property of
positive face structures with the same name, c.f. [Z]. There it means that
the set of faces with a fixed codomain x, v-pencil, (as well as the set of faces
whose domains contain a fixed face x, 6-pencil,) are linearly ordered by <™.
For ordered face structures the same is true about the faces that are not loops.
The full condition also has some implications for loops in pencils.

2. The relation =1, needed to express the J-globularity, is a way to say that
two sets of faces, that may contain empty faces, are essentially equal, even if
they differ by some empty faces. We identify via =; two such sets if those
empty faces are morally there anyway. A, B C S; U1lg, ,. Then the following
conditions are equivalent

(a) A= B;
(b) the subhypergraphs of S generated by A and B are equal;

3. We shall analyze in details y-globularity and d§-globularity but some easier
observations first:

(a) 607<(a) = 6d(a), 06°(a) = 0d(a).
(b) If & € T¢ then 6~ (z) = 0 and vy(z) = v8(z) = y(1,) = 6(1,) = 66(z) =
~v0(x). In particular, vy(x) is a loop and 6(x) = Lyn(a)s (i.e. u=ryy(x)).
) =

(c) If v(a) € T¢ then dy(a) = 1,y (

For d-globularity we distinguish two cases y(a) € T¢ and v(a) € T~¢, and each
has two parts, for faces, and for empty-faces (the condition for empty faces is
translated to the condition about faces one dimension lower).

Case y(a) € T7¢ :
faces: dv(a) = 6d(a) — v~ a);
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e-faces: yy6°(a) C 00vy(a);
this is because we must have 66°(a) C 1gsy(q)-
Case v(a) € T* :
faces: 66(a) C 6 (a);

e-faces: yyy(a) = 776°(a);
this is because we must have 1., = 67(a) = 06°(a) = 1 5¢(q)-

The ~-globularity is much easier. We notice that if a € T¢ then the condition
is still slightly simpler, empty faces play no role. We consider again two cases:

Case a € T¢: yy(a) = vyd(a).

Case a € T~: ~yy(a) = yd(a) — 66~ (a);
i.e. all elements of ¥d(a) but vy(a) are in 66~*(a). So we have zq € (a)
~-maximal in §(a) such that vv(a) = v(z0). xo might be a loop in which
case, if v(a) is not a loop, there is another (unique) element z1 € §~*(a),
such that v(z1) = yy(a).

. If S has dimension n, as a hypergraph, then we say that S is ordered n-face

structure.

A k-truncation of an ordered n-face structure S is not in general an an ordered
k-face structure. However k-truncation of a local n-face structure is a local
k-face structure. This will be important later, in the description of the many-
to-one computads.

The size of an ordered face structure S is the sequence natural numbers
size(S) = {|Sn — 5(351‘1)]}71@, with almost all being equal 0. We have an
order < on such sequences, so that {z, tnew < {Un}new iff there is k € w such
that z < yr and for all | > k, x; = y;. This order is well founded and many
facts about ordered face structures will be proven by induction on the size.

Let S be an ordered face structure. S is k-normal iff dim(S) < k and
size(S); = 1, for | < k. S is k-principal iff size(S); = 1, for | < k. S is
principal iff size(S); < 1, for [ € w. S is principal of dimension k iff S is
principal and dim(S) = k. By pFs (nF's) we denote full subcategories of oF's
whose objects are principal (normal) ordered face structures, respectively.

4 Combinatorial properties of ordered face structures

Local properties

Lemma 4.1 Let S be an ordered face structure, x,a € S. Then

1.

NS & e

if 8(a) = 1, then z = yy(a);
if a € S° then y(a) € S»;

if y(a) € S¢ then 6°(a) # 0;
if a € S then ~v(a) & 6(a);
00(a) = 66%(a);

if v <ty theny & Z;

ifx <~y theny A7°.
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Proof. Ad 1. Assume that d(a) = 1, for some z € S. Then 6~*(a) = § and using
~v-globularity we get

y(a) =8(a) — 65 a) = y8(a) = (1s) =«

Ad 2. Suppose a € S°. By 1. we have §(a) = 1,(q)- Then 6~Ma) = 0. So using
d-globularity we have

57(65) = (5(5(&) - 757)\(@) = 6(177(a)) = ’77(0’)

i.e. y(a) is a loop.
Ad 3. Assume v(a) € S°. The using 2. and globularity we obtain

Lyyy(a) = 07(a) = d6(a) — ¥ Na).

Thus there is x € (a) such that §(z) = 1,,(a), i-6. © € 6°(a).

Ad 4. If we were to have y(a) € §(a) then we would have y(a) <™ ~(a) contra-
dicting strictness of <*.

Ad 5. As we have yy(a),vd(a) C S and év(a) C §6(a) we have

06(a) = (yy(a) N éy(a) Nvd(a) Nd(a)) Nlg = 66(a) = 56°(a).
6. and 7. are obvious. O

Lemma 4.2 Let S be an ordered face structure, t,a,b,a € S.

~

. Ifa#b,a,be S, and either y(a) = y(b) or 6(a) Nd(b) # 0 then a L b.
If a,b € 6~*(a), and either v(a) = y(b) or §(a) N d(b) # O then a = b.

Let t € §6(a). Then there is a unique flat upper 6~(a)-path from t to vy(c).

e

If a € S7¢ then there is the ~-largest element a € 5(04). For this a we have
v(a) = yy(a). All other elements of §(«) have a well-defined ~-successor.

5. If (o) € S™ then there is the ~-largest element a € 5Ma). For this a
we have y(a) = yy(a). All other elements of 0 M) have a well-defined ~-

successor in 6 a).
6. If y(a) € S~ and x € dy(a) then there is a € 5> (a) such that z € §(a).
7. If a <t b then vy(a) <T ~(b).

Proof. Ad 1. Let a,b be as in the Lemma. By pencil linearity, as 6(a)N6(b) # 0, it is
enough to show that a L~ b does not hold. Suppose contrary that a <~ b. Then, by
disjointness, a <~ b. Thus we have a flat lower path a = aqg,...ar = b, with £ > 0.
Now if v(a) = v(b) then we have a flat upper path v(a), a1, ..., ax,vy(a) showing that
v(a) <t v(a). This contradicts strictness. on the other hand, if some z € §(a)Nd(b)
then we have a flat upper path z,aq,...,ar_1,7v(ar_1). Hence x <™ ~y(ap_1). As
x,v(ag—1) € 6(b) we get a contradiction with local discreetness.

Ad 2. This is immediate consequence of 1. and local discreetness.

Ad 3. Fix t € 66(a). Let t,x1,...,25,7(2) be the longest flat upper 46(a)-
path starting from ¢ (it might be empty). Such a path exists by strictness. If
~v(xr) = yy(a) we are done. So assume that v(zx) # yy(a). We have v(xx) € vd(a).
So by globularity y(zj) € 66~ and hence there is 441 € 6~*(a) such that v(xy) €
0(zky1), 1e. t,T1,. .., Tk, Tit1, Y (TR41) 1s a longer flat path starting from ¢ and we
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get a contradiction. Thus y(zj) = y7y(a) and we have §5(a)-path from ¢ to yy(a).
The uniqueness of this path follows from 2.

Ad 4. As a € S7¢, by globularity, there is a € d(«) such that v(a) = yy(a). If
there is a loop a € 6(a) such that y(a) = yy(a) then by local discreetness there is
~-largest such loop. Let ag be the ~-largest loop in §(a) such that vy(ag) = yy(«)
if such a loop exists or else the unique ag € 6~*(a) such that y(ap) = yy(a). We
shall show that ag is the ~-largest element in 0(«).

We consider two cases. If v(b) = yy(a) by pencil linearity, 2. and definition of
ap we have b <™ ag. If v(b) # ~v(«) then by 1. there is a flat upper §(«a)-path
v(b), b1, ..., bk, vy(a) with & > 0. By the previous argument b, <~ ag and hence
b <™ ag. Thus in either case ag is the ~-largest element in §(«). For a € () —{ap}
we define the successor in §(«) as follows:

(a) = info(A) if A= {d €a):v(a) =7(a)and a’ <~ a} # 0,
Sl = g such that a” € 67*(a), v(a) € 6(a”), otherwise.

The verification that it is a well defined successor is left for the reader.

Ad 5. Assume that y(a) € S™*. First assume we have ag € 6 *(a) such that
~v(ag) = yy(a). Then by 2. such ag is unique and by an argument similar to the one
above ag is ~-largest in 6~*(a) and all other elements in () have a successor
there. Thus it remains to find ag.

Note that to find ag it is enough to find = € §6(«) such that  # yy(a). Having
such z, by 3., we have a flat upper 5"\(a)—path Z,b1,..., b, yy(a) with & > 0. We
put ag = by.

To find x we consider two cases. If v € S~ then yy(a) & dv(a) C 6(a) and
dv(a) # 0. Then any element of dy(«) can be taken as x.

If v € S° then 1,,,(a) = 67(a) C d6(c). So there is a € §() such that d(«a)
Liyy(a)- If v(a@) = yy(a) then we found ag = a directly. Otherwise yy(a) # v(a)
vd(a). So v(a) € 66(a) and we put z = v(a).

Ad 6. Suppose y(a) € S~ and z € dy(a). Then v(a) € S—¢ and we have
yy(a) & 6v(a) C 66(a). By 3. there is a flat upper 6~ (a)-path z, a1, . . ., ag, yy(a).
Then z € 6(ay) and a; € 6~*(a), as required.

Ad 7. The essential case a <™ b follows from 3. Then use induction. O

Notation. Having 4.2.4 we can introduce farther notation. If o € S7¢ then the
~-largest element in §(a) will be denoted ().

If v(a) € S~ then the ~-largest element in 6~*(a) will be denoted o~ (a).

Clearly, whenever the formulas make sense, we have

m |l

(@) = 7(e(a) = (e Na)).
Lemma 4.3 Let S be an ordered face structure, a,b,« € S.

v(a) € S* iff 6(a) € S* ora € S°.

~

2. Ifbe S* and a <t b then a € S™.

3. If a € S* then there is o € I, such that y(a) <% a and 6(a) = L,(y).
4. If a € S° then there is b € T such that b <™ a. In that case §(b) = §(a).
5. If x € S* then there is b € T such that v(b) < . In that case §(b) = Ly(a)-

Proof. Ad 1. <. By Lemma 4.1.2 if a € S then v(a) is a loop. So assume
that d(a) € S*. Then 0~*(a) = O(= 66~ *(a) = v6~*(a). As for z € d(a) we have
v(z) = 6(x), we also have vd(a) = dd(a). Thus by globularity, we have

17v(a) = 78(a) — 66~*(a) = v8(a) = 66(a) = 36(a) — 70~ *(a) = 67(a)
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i.e. y(a) is a loop, as required.
=. Suppose now that y(a) € S*. If §(a) = 1,(4) then a € S°. So assume that
d(a) C S. By globularity, we have

7v8(a) = 867 (a) = vv(a) = y(a) = 66(a) — 76 (a). (6)

If ~*(a) = 0 then 66~ (a) = v6~*(a) = 0 and vd(a) = 66(a) = yy(a) i.e. 6(a) C S?,
as required.

So suppose now that d=*(a) # 0. Let € 6 *(a) be the ~-largest element in
6~*(a). Such an z exists by Lemma 4.2. Then y(z) € yv6~*(a) C vd(a). By (6)
we have v(z) € 66~*(a), and hence we have 2/ € 0~*(a) such that v(z) € &(z).
As z,2' € §(a) we have x T x’. Moreover if we were to have v(z') € §(z) we
would have ~(z) < 7(z) contradicting strictness. Thus, by pencil linearity, we
have x <™ 2/, i.e. = is not ~-largest element in 5_’\(a) contrary to the supposition.
Hence 6 *(a) = 0 indeed, and d(a) C S*, as required.

Ad 2. Use 1. and then induction.

Ad 3. Use loop-filling, pencil linearity, strictness, and 1. to get a maximal
upper S — y(S™)-path ai,..., o, a ending at a with & > 0. Then «a; € Z(q) and
v(a1) <F a.

Ad 4. Suppose v(a) € S°. By globularity we have 1,,,) = év(a) € dd(a).
Then there is a € 6°(a)) # 0. The thesis follows form the above observation= ,
strictness, and inductions.

Ad 5. Fix z € S*. By loop-filling and strictness there is a € S such that
v(a) <t . The rest follows from 4. O

Lemma 4.4 Let S be an ordered face structure a,a,b € S.

1. (o) = vy(a).
2. If a <* b then t(a) C (b).

Proof. Ad 1. First we prove vy(a) C (). Fix u € vy(a), i.e. we have
z,y € 6 My(a) such that v(z) = u € d(y). Let z,a1,...,ar 2’ be a maximal flat
upper 6~ y(a)-path starting from z such that yy(a;) = u for i = 1,..., k. It might
be empty in which case z = 2/. As x € S~ by Lemma 4.3.2, 2/ € S™*. Since
v(z') = u € vy(a) it follows that v(z') # yyy(«). Thus 2’ # yy(«). By Lemma
4.2.3 there is a € 0~*(a) such that 2/ € §(a). By maximality of z,ay,...,ay,’
we have yy(a) # (). Again by Lemma 4.2.3 there is ¢/ € 0~ *(a) such that
v(2') =wu € §(y'). But then u € 1(a) C d(a).

Now we shall show td(a) C vy(a). Let a € §(a) and u € (a), i.e. there are
7',y € 67*(a) such that y(z') = u € §(y’). We shall construct =,y € 6 *y(a) such
that y(z) = u € 0(y), i.e. u € ().

Construction of z. Let ay,...,a1, 2’ be the maximal flat §~¢(a)-path (possibly
empty) ending at z’ such that yy(a;) = y(z') and y(a;) € S, fori = 1,...,1L.
Thus there is © € §~*(a;) such that v(z) = yy(a;). If z € §y(a) we have x with
the required property (if the sequence is empty 2 = z’). So suppose contrary that
x & 6v(a). Since x € §6(c), by globularity, it follows that z € ¥4~ *(a). So there
is a1 € 5"\(04) such that y(a;41) = =. Since z € S~ we have a;,1 € S7°.
But then the path a;y1,qay,...,a1,2" is longer then the maximal one and we get a
contradiction.

Construction of y. Let by,...,by, 2" be the maximal flat §~*°(a)-path (possibly
empty) ending at 3 such that u € 66~(b;) = (') and (b;) € S~ fori=1,...,k.
By Lemma 4.2.6 there is y € 6~*(b;,) such that u € §(y) (if the sequence is empty
y =1y). If y € éy(a) we have y as required. So suppose that y & dy(a). As
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y € 66(a), by globularity, we have that y € 76~ (). So there is by + 1 € 6~ (a)

such that y(bgi1) = y. Since y € S, we have by, € S™°. But then the path

bki1,bp,--.,b1,y is longer then the maximal one and we get a contradiction again.
Ad 2. Use 1. and induction. O

Lemma 4.5 Let S be an ordered face structure o, a,b € S.

1. We have inclusions

0yy(a) — 078()

|

567y (o) — 666(cv)

0(a) = vy(a) U6~ (a), yv(a) N 667 (a) = 0.
00(a) = dv(a) Uyd~*(a), 6v(a) Ny~ *(a) = 0.
99(@) = ’y’y(a) 1(a) Udy=e(a) (disjoint sum).
10(a) = 66(a) = 05(a).

0600 (a) = 06~(a).
If a <T b then 66(a) C 06(b).
00+ (a) = 56—+ (@) U~F)(a).

© % XS v e

00 +2) (a) C 6% (a). (don’t bother with 1,’s)

Y6 28(er) = 70 (@).
11. 46 20F 42 (@) = 4§ Ay B2 ().

~
S

Proof. Ad 1. This is an easy consequence of §y(a) C §6(a) and yy(a) C vé(a).

Ad 2. Let A =~v(a) U5 a). Clearly A C 68(a). We shall show the converse
inclusion. From globularity we have yy(a) € v6(a) C A and &y C §0 (a) = 56 Ma)U
66Ma) U 66(a). Moreover 80*(a) = v6*a) C ~vd(a). Finally, if 6(a) # 0 then
6(a) = Lyr(a)- SO 66(a) = 0(1yy(a)) = 77(a) € A. Thus the other inclusion holds as
well. The second part follows directly from ~-globularity.

Ad 3. Let B = dy(a) Uxd*a). Clearly B C 66(a). We shall show the converse
inclusion. From globularity we have §6(a) C B and vy € vd(a) = 76 *(a) Uy (a)U
~é(a) Moreover v6*(a) = 60*(a) C 86(a). Finally, if 6(a) # 0 then d(a) = Lyy(a)- SO
vo(a) = Y¥(1yy(a)) = 7¥(a) € A. Thus the other inclusion holds as well. The second
part follows directly from §-globularity.

Ad 4. Using 2. and 3. we have

v(a) N (yy(a) U y(a)) = (v0~*a) N 66~ (a)) N (yy(a) Udvy(a)) C
C (v6a) N dv(a)) U (y7(a) N 66 (a) =0 U0 =0

t(a) U (yy(a) Udy(a)) = (v *(a) N 657 (a)) U (vy(a) U §y(a)) 2

D (v Ma) Udy(a)) N (vy(a) U6~ (a)) = 06(a) N 60(a) = 66(a)

Note that dy(a) = dv~°(a) and if y(a) € S* then dy(a) = ~y(a). From these
observations the rest follows.
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5. Easy application of 2. and 3.

6. We need to show that 06(a) C 66v(a). By 4. it is enough to show the
following three inclusions: t8(a) C 00y(c), yyd(a) C 00y(cx), dv8(a) C 00~ (cr). The
first follows immediately from 4. If v(a) € S* then, as in this case v§(a) = yy(«
the second and third inclusions hold as well. Thus we shall show the second and
third inclusion in case y(a) € S~

Assume t € yyd(a). Pick ~-minimal a € §(«) such that ¢ = yy(a). Then either
a € S° or a € S7°. In the former case (a) = 1,,(,) € 66(), and by J-globularity
(see definition of =) we have that t = vy(a) € #6y(a). In the later case by Lemma
4.2.4 (see also notation after the proof) z = o~*(a) € 6=*(a) is well defined and we
have v(z) = vy(a). By ~-minimality of a, we get = & 76~ (). As z € §6(a) again
by é-globularity we have that x € §y(«). Thus ¢ = y(z) € vdy(a). Thus in either
case t € §0~(a). This end the proof of the second inclusion.

Now assume ¢ € Jy6(«). Pick ~-minimal a € 6(«) such that ¢ € dy(a). Then
either @ € S or a € S™¢. In the former case v(a) € S*. Then using the second
inclusion we get

t € 6(a) = vy(a) € y78(a) C 66y(cv)

In the later case by Lemma 4.2.6 there is x € §(a) (i.e. = € d§()) such that
t € 6(z). By ~-minimality of a, z € y6~>. So by d-globularity we have z € §y().
Thus t € §(z) C 66y(a). Thus in either case t € #0y(cr). This end the proof of the
third inclusion and the whole statement 6.

For 7. and 8. Use 1., 5., 6., and induction.

9. Exercise.

Ad 10. D. As dy(a) C 66(a) we have 6 My(a) € 6 2d(a). So vd *y(a) C
Y6 A(a).

C. Let t € v *8(a). Pick ~-minimal a € §(a) such that there is 2 € §*(a)
so that t = y(z). By ~-minimality of a = ¢ 75‘A(a) and hence by d-globularity
z € 6 y(a). Thus t = v(z) € v6~*y(a), as required.

11. follows from 10. by induction. O

Lemma 4.6 (09 induction) Let S be an ordered face structure o, a,b € S.
1. ifa € 5_/\5(05) then vvy(«) & 6(a);

if a,b € §¢(a) then 8(a) N (D) = 0;

00(cr) = () U0—(v) ;

e e

00-induction. Whenever

(a) if AC00(c);
(b) yy(a) € A;
(c) for all a € 6=%(a), if v(a) € A then §(a) C A

we have A = 06(c).

Proof. 1. and 2. follows from pencil linearity. 3. follows from Lemma 4.5.2 and
that §6—*¢ = §6—*. The 66-induction follows from 3. O

Lemma 4.7 Let S be an ordered face structure a,a’ € S.
1. If a,a’ € S™ and y(a) € §(a’) then a <~ d'.

2. If a <= da' and O(a) N O(a') # O then v(a) € §(d’).
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Proof. Ad 1. Let a,b € S~ such that y(a) € v(b). By strictness we cannot have
b <~ a. Thus by pencil linearity it is enough to to show that a JT b.

Suppose a <t b, i.e. there is a flat upper path a,a1,...,a,,b. As a € S72,
by Lemma 4.3, v(oy) € S7*, for i = 1,...,r. Now either v(a) = yy(a,-) = v(b)
or there is 1 < i < r such that v(a) # vy(ey). As b € S~ and ~(a) € §(b) the
former is impossible. Fix minimal i such that vy(a) # vvy(a4,). Then, by Lemma
4.5.2, v(a) € 06(ai,). As y(aiy_1) € S (or a € S~ if iy = 1) using Lemma
4.4 we get y(a) € t(ag,) C t(a). On the other hand v(a) € d(a) C dy(,) and
5v(ay) Ne(ay) = 0. But this contradicts Lemma 4.5.4. Thus a <™ b cannot hold.

Now suppose that b < a, i.e. there is a flat upper path b,51,...,8,,b. As
a € S7*, by Lemma 4.3, v(3;) € S, for i = 1,...,r. Now either v(a) € §v(8,)
or there is 1 < i < r such that y(a) € 6v(3;). As a € S~ and y(8,) = a the
former is impossible. Fix minimal i; such that v(a) & dv(5;,). By Lemma 4.5.3
we have v(a) € v0(3;,). As b e S, if iy > 1 then v(8;,_1) € S, as well. Thus
v(a) € «(Bi;) C u(Br). But v(a) = yy(5;). But this contradicts Lemma 4.5.4. again
and hence b <™ a cannot hold either.

Therefore a /' b and then a <™ b.

Ad 2. If a <~ b then we have a lower path a = ag,aq,...,a;, ax+1 = @', with
k > 0, such that ay,...,ax is flat. If & = 0 then v(a) € §(a’) and we are done. We
shall show, using 6(a) N O(a’) # 0, that k£ > 0 is impossible.

If v(a) = v(a') then v(a), a1, ..., ak, (akt1),v(a’) is a flat upper path, where the
face (ag41) in parenthesis () is optional i.e. it is in the path iff it is not a loop. If
k > 0 then <7 is not strict.

If z € 6(a) Nd(a’) then we have a flat upper z, (ap), a1, ..., ag, y(ar), with ag
optional. If £ > 0 then x <™ ~(ay) € §(a’). If x = y(ax) then <™ is not strict and
if © # ~y(ay) then, as x,v(ar) € d(a’), we get contradiction with local discreetness.

If v(a') = §(a) then v(a'), (ag), a1, ..., ak, (ag+1),v(a’) is a flat upper path, and
again if k > 0, we get contradiction with strictness of <™. O

Lemma 4.8 Let S be an ordered face structure o, a,b,x € S.
1. If 6(a) Ne(a) # O then a < ().

2. IfaeS—~(S™) and x € 6(a) Ni(a) then there is b € §(a) such that a < b
and x € 6(b).

Proof. 2. can be easily deduced from the proof of 1.

Ad 1. First we show that if z € ¢(«) then there is o/ <* « such that z € «(a/) and
o € S —~(S™). Take as o/ a +-minimal face such that z € (o) and o/ <T a. If
o € y(S™) then there is £ € S™ such that y(¢) = o/. Asz € 1(a’) = 1y(€) = 15 (€)
there is o’ € §(€) such that x € (o). As o’ <™ o/, @ was not minimal contrary
to the supposition. Thus o/ € S — v(S™).

Next we show that it is enough to show 1. in case o € S —~(S™). Suppose that
z € f(a)Ne(a) for some x € S. By the above there is o/ <t «a such that z € (a/) and
o €8S —~(S™). So by Lemma 4.2.7 and the above we have a <T v(a/) <T (),
as required.

So assume that a € S —~(S~*) and z € §(a) N () for some z € S. We consider
three cases:

1. a € S~ and v(a) = = € 1(a);
2. a€ S and x € 6(a) Ni(a);

3. a €S
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We fix b, c € 6 *(a) such that y(b) = x € §(c) for the rest of the argument.

Case 1. By Lemma 4.2.1 we have a L bor a = b. If a < b then we are done. So
we need to show that b £ a. Suppose contrary that b <™ a and b, 31, ..., 8, a is a
flat upper (S —~(S™*))-path from b to a. Asb € §(41)Nd(a) and By, € S—(S™)
we have 81 = a. Thus z = y(a) € (o) = ¢(81) C o(Br) and = = y(a) = yy(6r) &
t(By) and we get a contradiction.

Case 2. Again by Lemma 4.2.1 we get that a LT cora = ¢. Ifa < ¢
we are done. We shall show that ¢ £ a. Suppose contrary that ¢ < a and
¢,B1,..., B a is a flat upper (S — v(S™*))-path from c to a. As c € §(B1) N d(a)
and 31, € S —v(S™) we have 31 = a. Hence x = v(a) € t(a) = ¢(B1) C ¢(3,) and
x € 0(a) = dv(0r) € 1(Br) and we get a contradiction again.

Case 3. By loop-filling, pencil linearity, and strictness we have a flat (S—~(S~*))-
path ag, ..., a; ending at a such that ag € S°. As a € S* we have v(ey) € SA for
i=0,...,k, and yy(ap) = v(a). Thus by pencil linearity we have either oy <™ «
or ag <t a. As ag,a € S —(S™?) the later is impossible. It remains to show that
if ag <™ o then a <* (). Let ag, 1, ..., 0 = a be a flat lower S — ~v(S~*)-path.
Since «;, 8 € S — 7(S™) we have a; = 3; for i = 1,...,min(k,r). If » < k then
y(a) <T a. But y(a) € S* 3 a. This is a contradiction with Lemma 4.3.1. So k < r
and hence a = y(ag) <7 (8,) = y(a). Since a € S* 3 y(a), we have in fact that
a <* v(a), as required. O

Lemma 4.9 Let S be an ordered face structure a,b,c,d € S.

1. Ifa<™b<~cand a,c <' d then b <% d.

Proof. 1. is easy. O

Global properties

Let S be an ordered face structure, n,i € w, a,a; € Sy, for e =1,..., k. The weight
of a face a is the number

wt(a) = |{be S : b <t a}|

The weight of a flat path @ = ay, .. .ay is is the sum of weights of its faces wt(a) =

Zf:l wt(a;).

Lemma 4.10 Let S be an ordered face structure a,a € S, and a1,...,ar flat lower
5~Ma)-path with k > 0. Then

k
wt(y(a)) > Z wt(a;).
i=1

Moreover, wt(a) =0 iff a € S* ora & v(S™).

Proof. Let «,a; be as in assumptions of Lemma. Then for b € S, if b <* a; then
b<tv(a). Asa; £7 aj for any 1 < i, j <k, to prove the inequality we need to show
that the faces on the right hand side are calculated at most once, i.e. for b € S,
if b <™ a; then b £7 a; for j # i. Suppose contrary, that b <™ a; and b <% a;, with
i < j. Then, by Lemma 4.2.7, v(b) <" ~(a;) and hence b <~ a;. So by Lemma 4.7
b <™~ a;. But b <t a; and we get a contradiction with disjointness.

The last statement of Lemma is left for the reader. O

Lemma 4.11 Let S be an ordered face structure, X convex subset of S, x,y € X.
If x <t y then there is a unique flat upper (X — (X ~))-path from x to y.
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Proof. Let X, x, and y be as in assumptions of Lemma. As X is convex there
is a flat upper X-path z,aq,...,ar,y. Assume that it is a path with the smallest
weight. Suppose that there is 4 < k such that a; € (X ). Hence there is o € X~
such that v(a) = a;. Let

R ifi=1,
] ~(a;—1) otherwise.

Then 2’ € §(a;) N dy(a) € 56(a;). By Lemma 4.2.3 there is a flat upper 6= (a)-
path a/,b1,...,b.,7v(a;). By Lemma 4.10, wt(b1,...,b.) < wt(a;), and hence
wt(ay,...,ai—1,b1,...,bp,aiq1,...,a) < wt(a,...,a), contrary to the supposi-
tion that the weight of the path x,aq,...,ag,y is minimal. Thus z,a1,...,a,y is a
(X — v(X~*))-path, as required. The uniqueness of the path follows from Lemma
4.7 and pencil linearity. O

A lower flat path ag,...,ay is a mazimal path if 5(a;) C 6(S) — v(S™) and
v(ax) € v(S) — 8(S7), i.e. if it can’t be extended either way.

Lemma 4.12 (Path Lemma) Let k > 0, ag, ..., a; be a maximal lower flat path
in an ordered face structure S, b € S, 0 < s < k, as <™ b. Then there are
0<I<s<p<k such that

~

a; <t bfori=1,...,p;

2. 7(ap) = (b);

3. either | >0 and y(a;—1) € 6(b)
or 1l =0 and either ag € S¢ and yy(ag) € 65(b) or ap € S™¢ and §(ap) C 6(b);

4.0; <"b<~aj, fori=1,...,l—1andj=p+1,...,k;

R

v(a;) € u(S), forl <i<p.
Proof. We put
I =min{l' < s:Vpcics a; <T b} p=max{p' > s:Vscicy a; <t ol

Then 1. holds by definition.

Ad 2. Suppose contrary that y(ap) # v(b). Let ap, o, ..., b be a flat upper
path from a, to b. As a € S~ we have v(3,) € S~ for i = 1,...,r. Let iy =
min{i : y(ap) # v(B:)}. Then v(a,) € ¢(Bs,) and hence, by maximality of the path,
p < k and §(apy1) Ne(Biy) # 0. Thus, by Lemma 4.8, apr1 < v(Biy) < v(Br) = b
contrary to the definition of p.

Ad 3. Let a;,01,...,0-,b be a flat upper path. We consider two cases: [ > 0
and [ = 0.

Case [ > 0. Suppose contrary that y(a;—1) & 6v(5r). Let i1 = min{i : y(a;—1) ¢
5v(Bi)}. Then ~v(a;—1) € ¢(B;;) and hence, by Lemma 4.8, a;—1 <t v(3;) <*
~v(B,) = b contrary to the definition of [.

Case [ = 0. If ag € S® then, using Lemma 4.5, we have

Yy(ao) € 005(Bo) C 00v(5,) = 06(a) = 0(ar),

as required in this case.

So now assume that ag € S7¢. As, by maximality of the path, there is no face
a € S~ such that v(a) € 6(ag), we have §(ag) N6 *(3;) = 0 for i = 1,...,7.
Clearly d(ag) € d6(5p). Suppose that d(ag) C 66(5;) with @ < r. Then
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8(ap) € 86(B;) — 0 (Bi) = 6v(Bi) € 66(Bis1)

(last € make sense only for i < r). Thus d(ag) C 0v(5,) = 6(b), as required.

4. follows easily from Lemma 4.3.7.

Ad 5. Fixl <i¢<p. Leta;pBi,...,0-,b be a flat upper path. If we were to
have y(a;) & Ui— ¢(Br), by an argument similar as in 2., we would have y(a;) = (b)
contradicting strictness. O

Lemma 4.13 (Second Path Lemma) Let k > 0, ag,...,a; be a flat lower path
in an ordered face structure S, x € §(ag) —v(S™), b € S, ar <t b. Then either
x € 6(b) or there is 0 < i < k, such that y(a;) € §(b), and hence x < y for some

y €4(b), (y=r(ai))

Proof. This is an easy consequence of Path Lemma. O

Convex sets

Let S be an ordered face structure, n,i € w, a,a; € Sy, for ¢ = 1,..., k. The height
of a face a in S is the length of the longest flat upper (S — v(S~*))-path ending
at a. The height of a is denoted by htg(a) or if it does not lead to confusions by
ht(a). The height of a flat path @ = aq,...ay is is the sum of heights of its faces
hi(@) = Y, hi(a).

The depth of a face a in S is the length of the longest flat upper (S — y(S™))-
path starting from a. The depth of a is denoted by dhg(a) or if it does not lead to
confusions by dh(a). The depth of a flat path @ = aq,...ay is is the sum of depths
of its faces dh(a@) = S2F_, dh(a;).

Let X be a subhypergraph of S. We say that X is a convexr subset in S if it is
non-empty and the relation <X is the restriction of <% to X.

Let X be a convex subset of S, a € X. The X-depth of a face a is the length
of the longest flat upper (X — v(X~*))-path starting from a. The X-depth of
a is denoted by dhx(a). If X = S and it does not lead to confusions we write
dh(a). The X-depth of a flat path @ = a1, ...ay is is the sum of depths of its faces

dhX (6) = 21?21 dhX(ai)‘

Lemma 4.14 Let X be a convexr subset of an ordered face structure S. Then X
satisfy all the axioms of ordered face structures but loop-filling, where as <™~ we
take <~ restricted to X .

Proof. The only fact that needs a comment is that if a <*~ b then a <%~ b. But
this follows from the observation that a = ag,a1,...,ax—1,ax = b, (k > 0) is a lower
path iff v(ag),a1,...,ax_1,7v(ag—_1) is a (possibly empty) upper path. O

Lemma 4.15 Let X be a convex subset of an ordered face structure S, and o, a,b €
X.

1. dhx(a) =0 iff a & 6~ MX).
2. Ifae X —~(X) and b € 6() then dhx(b) = dhx(v(a)) + 1.
3. a <T b then dhx(a) > dhx(b)).

Proof. Easy. O
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Lemma 4.16 Let S be an ordered face structure, X convex subset of S, x,y €
X —(X) and x <t y. Then there is a flat upper (X — 6(X~*))-path from z to y.

Proof. Let x,y € X —«(X) and x <* y. Let z,a1,...,am,y be a flat upper
X-path of least X-depth. Suppose that it is not (X — §(X~))-path. Thus by
Lemma 4.15 dhx (a1, ...,an) > 0. Pick as of maximal X-depth in ai,...,a;. Let
a € X —y(X ) such that a, € §(c). Let

I =min{l' <s:Vyc<sa; €6(a)} p=max{p' > s: Ve<i<p a; € 6(a)}.

Since z,y € X — (X)), by an argument similar to the one given in Path Lemma, we
get that v(ap) = yy(a) and with

;) )z ifl =1,
v v(a;—1) otherwise.

x' € 0y(a). Thus z,ay,...,a;—1,7(a),@pt1 - .., am,y is a path of a smaller X-depth
then z,aq,...,am,y, contrary to the assumption. Therefore x,aq, ..., am,y is in fact
a (X —8(X*))-path. O

Order

Lemma 4.17 Let S be an ordered face structure, a € S. Then the set
{beS:a<tb}
is linearly ordered by <™.

Proof. Let a,aq,...,q; be a maximal flat upper S — v(S~*)-path starting from a.
Then the set
{a}U{y(as):i=1,...,k}={be S :a<" b}

is obviously linearly ordered. O

Lemma 4.18 Let S be an ordered face structure a,b,c € S.
1. Ifa<tband b <™ c then a <~ c.

2. Ifa <™ b and b <" c then either a <~ c or a <™ c.

Proof. Ad 1. Assume a <™ b and b <~ ¢. Let a,aq,...,ax,b be a flat upper path
from a to b and b = by, by,...,b = ¢ a lower path from from b to ¢. Using Lemma
4.2 we get a flat upper |; §(;)-path v(a), a1, ..., a,y(b). Thus we have a lower path
a,ay,...,ap,b1,...,0p=c,ie. a < c. If (a) NO(c) = O then clearly a <™ c.

If (a) N 6O(c) # O then by pencil linearity we have a L™ c or a L™ ¢. We shall
show that the only condition that does not lead to a contradiction is a <™ c.

If a <T ¢, then, as a <™ b, by Lemma 4.17 we have b LT ¢. Contradiction.

If c <' a, then, as a <™ b, we have ¢ L b. Contradiction.

If ¢ <™ a, then, as b <™ ¢, we have b L~ a. Contradiction.

Ad 2. Assume a <~ b and b <' c¢. First note that by an argument as above
we can show that if @ and ¢ are comparable at all then either a <™~ cor a <™ c.
Thus it is enough to show that a and ¢ are comparable. Let a,aq,...,ar,b be a
lower path with k > 0. We can assume that aq,...,a; is a flat path. As, b <* ¢ by
Path Lemma either ag <™ b or ay <™ b. In the former case we have 6(a) N 6(c) =0
and that a <~ ¢. Thus a <™ ¢. In the later either v(a) € d(c) and we are done or
there is a flat upper path a,aq,...,a,,c and i < r such that v(a) € ¢(e;). Then by
Lemma 4.8 we have a <t v(a;) < v(a.) = ¢, as required. O
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Lemma 4.19 Let S be an ordered face structure, a,b € S. Then we have
1. If a <* b then y(a) <t ~(b);
2. If a <~ b then vy(a) <T ~v(b);

o

If v(a) = () then either a =b ora L™ b ora L™ b;

If y(a) <t ~(b) then either a <t b or a <™ b;

-_R

5. If v(a) L~ v(b) then a £~ b and a L b.

Proof. 1. is repeated from Lemma 4.2.7.

Ad 2. If a <™ b then there is a lower path a = ag,a1,...,a,, = b. Hence
v(a),a1,...,am,v(b) is an upper path. So either v(a) = v(b) or after dropping loops
from the sequence aq, ..., a,, we get a flat upper path from y(a) to v(b), as required.

Ad 3. This is an immediate consequence of pencil linearity.

Ad 4. Suppose that y(a) <* ~(b). If 8(a) N O(b) # () then the thesis is obvious.
So assume that 6(a) N O(b) = (. Thus, by disjointness, it is enough to show that
either a <™ b or a <= b. There is a flat upper path v(a),ai,...,am,v(b), with
m > 1.

Now we argue by cases. If b is a loop the clearly a <= b. Similarly, if b = ap,
then m > 1 and hence a <~ b. Finally, assume that a,, <t b. If a; <™ b then a <°.
If a; <* b then we have a flat path aq, o, ..., a,,b. Using our assumptions we find
i < r such that y(a) € ¢(o;). Then by Lemma 4.8.1 we get that a <™ v(a;) <™ b,
as required.

Ad 5. Tt is an immediate consequence of 1., 2. and disjointness. O

Proposition 4.20 Let S be an ordered face structure, a,b € S. Let {a;}o<i<n,
{bito<i<n be two sequences of codomains of a and b, respectively, so that

a; = ’y(i) (a), b; = W(i)(b)

(i.e. dim(a;) =1), fori=0,...,n. Then, there are two numbers | and k such that
0<I<Ek<n, 1<k and either

1. a; =b; fori<l,
2. a; <T b forl <i<k,
3. a; <~ by fork=1i<n,
4. a; L b; fork <i<n,
or 1.-4. holds with the roles of a and b interchanged.
Proof. The above conditions we can present more visually as:
ag=bg,...,a_1 =b_1,a; < by,...a < by,

ap1 < bpy1, app2 L bky2, .o an L by

These conditions we will verify from the bottom up. Note that by strictness <50t ig
a linear order. So either ag = by or ag L™ by. In the later case [ = 0. As a # b then
there is ¢ < n such that a; # b;. Let [ be minimal such, i.e. [ = min{i : a; # b;}. By
Lemma 4.19.3, a; L™ b or a; 1L~ b;. We put k = max{i <n:a; LT b;ori=10}. If
k =n we are done. If k < n then by Lemma 4.19.4, we have ag+; L~ bgy1. Then
if k 4+ 1 < n, by Lemma 4.19.5, a; Y b; for k + 2 < i < n. Finally, by Lemma 4.19.1
and .2 all the inequalities head in the same direction. This ends the proof. O
For a,b € S we define a <} b iff v (a) <™ 7 (b).
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Corollary 4.21 Let S be an ordered face structure, a,b € S,, a # b. Then either
a LT b or there is a unique 0 < 1 < n such that a 1770, but not both.

The above Corollary allows us to define an order <* (also denoted <) on all cells
of S as follows. For a,b € S,

a<b iff a<tbor 3 a<b

Corollary 4.22 For any ordered face structure S, and k € w, the relation <°
restricted to Sy, is a linear order.

Proof. 1In the proof we use Lemma 4.18 without mention. We need to verify that
<9 is transitive. Let a,b,¢ € S,, I,k <n € w. We argue by cases.

Case a <™ b <™ ¢. Then by transitivity of <™ we have a <™ c.

Case a <t b <" ¢. Then v (a) <t 4O () <~ v (c). Therefore 4 (a) <~
70 (c) and hence a <} c.

Case a <" b <T ¢. Then v (a) <~ V(b)) <t v (c). Thus either v (a) <~
YW (c) and hence a <7* ¢ or ¥y (a) <* v()(¢). In the later case by Proposition 4.20
we have either a <™ ¢ or there is I’ such that [ <!’ <n and a <}/ c.

Case a <7 b <] c. If k =1 then by transitivity of <~ we have a <} c.

If k£ > 1 then vO(a) <t 7O () <~ 4B (c). Therefore vV (a) <~ 1 (¢) and
hence a <j” c.

If k < I then v (a) <~ 4®)(b) <T ~*)(c). Therefore either v*)(a) <~ v*)(¢)
and hence a <}’ b or 7 #®) (@) <t 4*)(¢). In the later case again by Proposition 4.20
we have either a <™ ¢ or there is k" such that k <k’ <n and a < ¢. O

Monotone morphisms

From Corollary 4.22 we also get

Corollary 4.23 Let f: S — T be a monotone morphism of ordered face structures,
and Lk ew,l <k, x,y € Sy. Then

1oz <y iff fz) <) f(y);
2. x <ty iff f(z) <t f(y).

Proof. Obvious. O
Remak. Note however that monotone morphisms do not preserve the relation
<* in general.

Corollary 4.24 Any monotone morphism of ordered face structures which is a bi-
jection is an isomorphism.

Proof. If f is a monotone bijection of ordered face structures it is clearly a local
isomorphism. But by Lemma 4.23 it reflects <™ as well, i.e. it is a monotone
isomorphism. O

Lemma 4.25 Let f : S — T be a monotone morphism of ordered face structures.
Ifa €T then if f~1(a) # 0 there are b,c € f~1(a) and a flat upper S* —~(S~*)-path
byai,...,ap,c, withr >0, such that f~1(a) = {b} U {y(i) }1<i<r. In particular all
faces in f~'(a) are parallel to each other and the whole set is linearly ordered by
<t.
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Proof. Suppose b, c € S such that f(b) = f(c) =a € T. Then for any I, f(b) £7° f(c).
Therefore for any [, b £ ¢. Thus, by Lemma 4.20, b <* ¢. Hence There is a flat
upper S — v(S*)-path b,ay,...,a,,c. As f(b) = f(c), we have f(o;) € T?, for
i=1,...,r. In particular, a; € S*, for i = 1,...,r. So we have shown that between
any two different elements of f~!(a) there is a flat upper S* — v(S~*)-path. This
clearly imply all the remaining parts of Lemma. O

Corollary 4.26 Any endomorphism of an ordered face structures is an identity.

Proof. Let f: S — S be a monotone morphism. First note that as Sy is linearly
ordered by <%, if z,y € Sy then ht(z) + dh(z) = ht(y) + dh(y), and = = y iff
ht(x) = ht(y). As f preserves <~ using Lemma 4.7, we get that fy: Sp — Sp is an
identity.

In order to get a contradiction we suppose that f is not identity. Let k& be the
minimal such that f; # lg, and let a € Sy be <®-minimal such that f(a) # a.
By minimality of k¥ we have f(a)|la. We shall show that f(a) LT a. By previous
observation and pencil linearity we have that either f(a) L™ a or f(a) L™~ a. If
a <~ f(a) then we get an infinite sequence a <~ f(a) <~ ff(a) <™ ... contradicting
strictness of <™. The condition f(a) <~ a cannot hold for the similar reasons.
Suppose that a < f(a) (the argument for the case f(a) <t a is similar). Let
a,aq,...,ap, f(a) be a flat upper path with » > 0. Then, by Lemma 4.7, we have
o; <~ a1 for i =1,...,r — 1. Hence we get an infinite sequence

ar <7 fla1) <7 fflon) <¥
again contradicting strictness of <™. Thus f must be an identity indeed. O

Proposition 4.27 Let f : S — T be a local morphism of ordered face structures
that preserves <~ on sets Sk—é(S,;;\l), fork € w. Then f is a monotone morphism.
In particular if S is n-normal then f is a monotone morphism iff fn : S, — T,
preserves <™.

Proof. Let < denote the relation <™ restricted to such pairs of elements a, b that
either a,b € 6(a) for some a € S or a,b € S —§(S™). Thus we must show that if a
hypergraph morphism f : S — T between ordered face structures preserves <, i.e.
is such that for any a,b € S if @ < b then f(a) <™~ b then it preserves <, i.e. for
any a,b € S if a <%~ b then f(a) <~ b.

So fix f : § — T preserving < and a,b € S such that a <~ b. Then by
disjointness and few other facts, there is a lower path a = aq, ..., ar = b such that
a; <~ a;41, for i = 0,...,k — 1. By transitivity of <™ it is enough to show that
f(a) <~ f(b) only in case y(a) € 6(b). We shall prove by induction of the sum of
depth of a and b, s = dh(a)+dh(b) that if y(a) € §(b) and a <™ b then f(a) <~ f(b).

If s =0 then a,b € S — §(S™) and hence, by assumption on f, f(a) <™ f(b).

So assume that s > 0 and that for s’ smaller than s the inductive hypothesis
holds. We consider two cases.

Case dh(a) > dh(b). So we have a € S~ — 7(S~*) such that a € (). Hence
5(b)UBs () # 0. TE5(b)Ne(ar) # O then, by Lemma 4.8, b <* (). If §(b)NOy(a) # 0
then either b <™ ~y(a) or y(a) <™ b, as two other cases easily lead to a contradiction.
If b <™ y(a) then a <™ v(a), and if y(a) <T b then a <* b. So in both cases we
get a contradiction. Now if b <* v(a), as a € S™ — 4(S™) and dh(a) > dh(b) we
have b € §(a). Hence a < b and then by assumption on f we get f(a) <™ f(b), as
required. If y(a) <™ b then, as yy(a) € §(b) by strictness and induction hypothesis,
we have f(a) <t f(y(a)) <™ f(b). So by Lemma 4.18 f(a) <~ f(b), as well.
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Case dh(a) < dh(b). So we have 3 € S~ — ~4(S~?) such that b € §(3). Then
a & 6(a) and a f* v(B). We shall show that v(a) € dv(3). Clearly we have
v(a) € 66(3). If we were to have y(a) € ¢(8) then a <t (8) and hence dh(a) >
dh(y(8)) +1 > dh(b) contradicting our assumption. Therefore y(a) € év(3). Now,
to get a contradiction, we assume that vy(a) = yy(5) € 6v(5). By d-globularity we
have ¢ € §~*(6) such that y(c¢) = v(a). Thus, by pencil linearity, either ¢ L™~ a
or ¢ LT a. Asif a <t cthen a <t ~(f), if ¢ < a then b <* a, and if a <™ ¢
then y(a) # v(c) the only non-trivial case, we have to consider, is ¢ <~ a. Thus
by Lemma 4.9 we have a <t «(3), and we get a contradiction again. Therefore
v(a) € 6v(B) as claimed.

As b <t 4(B) <~ a would lead to b <~ a and contradiction, we must have
a <~ (). Thus by induction hypothesis we have f(a) <~ f(y(5)). Clearly, we
also have f(b) < f(v(8)). As y(a) € §(b) we have y(f(a)) € §(f(b)) and hence, by
pencil linearity, either f(a) L~ f(b) or f(a) LT f(b). We shall show that the only
condition that does not lead to a contradiction is f(a) <™ f(b). If f(a) <t f(b)
then f(a) <™ f(v(B)) and contradiction. If f(b) <~ f(a) then, by Lemma 4.17,
f(a) LT f(v(B)) and contradiction. If f(b) <~ f(a) then f(b) <~ f(v(3)) and
again we get a contradiction. Thus f(a) <™ f(b), as required. O

Corollary 4.28 The ordered face structure S is uniquely determined by its local face
structure part |S| and the order <™ restricted to the sets Sy — (5(5,61)‘1), fork e w.

Proof. Let S and S’ be ordered face structures such that their local parts are
equal, i.e. |S| = |S’| and that the relation <™ agree with <™ on the set S —
§(S7). Then the identity morphism is preserving <™ on the set S —§(S™"). Thus
by Proposition 4.27 it is a monotone morphism, considered as a map either way, i.e.
S=¢5. 0

In general, there are more local than monotone morphisms between ordered
face structures. However if we restrict our attention to the principal ordered face
structures those two notions agree. We have

Corollary 4.29 The embedding | — | : pFs — 1F's is full and faithful.

Proof. Fix a local morphism f : S — T between ordered face structures, with S
being principal. Then for k € w the sets S, — §(S j‘l) has at most one element. So
<™ is obviously preserved on these sets, i.e. by Lemma 4.27 f is monotone. O

The limits and colimits in oF's are rather rare and in 1F's also do not always exist.
For example if we take a local face structure S such that Sy = {u}, S1 = {z,y, 2},
Sz = {a}, and with y(z) = v(y) = 7(z) = é(z) = 0(y) = 0(2) = u, 6(a) = {z,y},
v(a) = z, and <, being empty relation, then we have two local isomorphisms from
S to itself identity 15 and a map o switching « and y. Clearly in the coequalizer @
of 1g and o the faces z and y should be identified but then the map ¢ : S — @ in
to it cannot be local as there cannot be a bijection from d(a) to §(g(a)). Thus the
coequalizer 1g and o does not exists in 1Fs. However we have

Proposition 4.30 The colimits and connected limits of diagrams from oFs exists
in 1F's and are calculated in Set in each dimension separately.

Proof. The main property of the monotone morphisms of order face structures that
allow calculations of the above limits and colimits is the following. If f,g: S — T
are monotone morphisms and a € S5 such that f(a) = g(a) = b then the functions
fas9a : 0(a) — 6(b) are equal. This is an immediate consequence of Corollary 4.23.
O
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5 Stretching the convex subhypergraphs

From Corollary 4.23 follows immediately that the (hypergraph) image of a monotone
morphism is a convex subset of the codomain. In this section we shall show that the
converse is also true and it is true in an essentially unique way, i.e. if X is a convex
subset of T then there is a monotone morphism vx : [X] — T such that image of
vx is X, i.e. we can cover a convex set by an ordered face structure. Moreover, if
fi + S; — T, i =0,1, are monotone morphisms such that their images are equal,
im(fo) = im(f1), then there is a monotone isomorphism ¢ : Sp — S; making the
triangle

So g S1
fo\ / fi
T
commutes, i.e. the covering is essentially unique. As the title of the section suggests,
the construction of [X] is done by stretching X. The stretching means in this case
the splitting all the empty loops in the convex set X.

Let T be an ordered face structure, and X C T a subhypergraph. Recall that X
is convex in T if it is non-empty and the relation <7 is the restriction of <”* to
X. For the rest of the section assume that X is a convex subhypergraph of T. We
shall define an ordered face structure [X] and a monotone morphism vx : [X] — 7.

But first we need to explain what are cuts of empty loops.
We define the set of empty loops in X as

EX =X —y(X7)
and the set of empty loops in X over z € X as
EX ={a €& :v(a) =z}

As X is convex, the relation <”*~ restricted to £ is a linear order. We say that a
triple (z, L, U) is an z-cut i.e. a cut of £X iff LUU = &X and for I € L and I € U,
I <~ I'. Note that both L and U might be empty and hence, there is an z-cut for
any v € X (e.g. (v,0,EX)). Let C(EX) be the set of z-cuts.

We need some notation for cuts in X. If (z, L,U) is a z-cut then L determines
U and vice versa (L = £X — U and U = £X — L).

Therefore we sometimes denote this cut by describing only the lower cut (z, L, —)
or only the upper cut (x, —, U), whichever is easier to define. Let a be an arbitrary
face in X, y € 6(a). We define two sets

Ta:{bGEﬁa):a<Nb}, Lya:{b€5§:b<wa}

that determine the cuts (z, —, 1 @) and (y, |, a, —). We often omit subscript y inside
the cuts, i.e. we usually write (y, | a,—) when we mean (y, |, a,—). If v(a) = then
we sometimes write T, a instead of T a to emphasis that the cut is overz.

Now we are ready to define [X]. We put for k € w

Xlk={J C(&)

zeX}

We put, for (z,L,U) € [X];

7(‘%’ L, U) = (7(55)7 =1 l')
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and
1 _ if 6(z) =1
_ (@), = 1v(=@) . ()
o, L,U) = { ((t. 12, =): 1 €d(x)} otherwise.

We have a hypergraph map
vy : [X]—T

such that vx (z, L,U) = z, for (z, L,U) € [X]. The order <[XI™ is inherited from T
via vy, ie. (z,L,U) <X~ (2! L', U iff « <~ 2/, for (z, L,U), («/, L', U") € [X].
Let Z CT. By < Z > we mean the least subhypergraph of T containing Z. We
call Z convex set if < Z > is a convex subhypergraph. If Z is a convex set we write
£Z, 7] and vz instead of £<%>, [< Z >] and v.z~. Moreover, if Z = {a} we write
£, [a) and v, instead of £1°}, [{a}] and Via}-
Ezample. An ordered face structure T’

u9 T Ul 0 Uuo
YW
A
x x 1
~U024m3 2
has a convex subset X
X uz " uy o " up

T4 T2 L1
Jaz x3

with £X = {z4, 71} whose stretching is the following ordered face structure [X]:

T4

U2 7z~ (U’la@a {.1'4,.%'1}) E (u17 {$4}, {.1'1}) 1 (u17 {.1'4,.%1},@) “zo~ U0
4

We adopt the convention that the empty cut in [X], say (x5, 0,0), is identified with
the corresponding face in X, x5 in this case.

[X]

Lemma 5.1 Let T be an ordered face structure, X be a convex subset of T,
(a,L,U),(a', L', U") € [X]. Then

1. (a,L,U) is an empty domain face in [X] iff a is an empty domain face in T';

2. (a,L,U) is a loop in [X] iff a is a loop in T and there is no empty loop | € EX
such that | <T't q;

3. (a,L,U) < (/,L',U") iffa<t d or (a=a and L £L');

4. (a, L,U) <= (o', L'\U") iff a <= a' and (if v(a) € 0(a’) then Ey@q)y =Ty
au Ly @');

5. If (a, L,U) € [ X] ¢ then ¥(a, L,U) is 6(a) with colors’: if x,y € d(a) such that
y 1s <~ -successor of x in §(a) then (y,] a,—) is <~ -successor of (x,] a,—)
in §(a, L,U); in particular y(z, | a,—) € §(y, | a,—).

6. If (a,L,U) € [X]® then 6(a, L, U) = 1iyy(a),17(a),)-
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Proof. 1., 5. and 6. are obvious.

Ad 2. If (a,L,U) is a loop in [X] so must be a in 7. So fix a cut (a,L,U) in
[X] such that a is a loop. Let us denote y(a, L,U) = (v(a), —, T a) and é(a, L,U) =
(+(a), L a, ).

If there is [ € Sfia) such that [ <* a, then a £~ . Hence l € L' and [ € U’. So
~v(a,L,U) # 6(a, L,U) and (a, L,U) is not a loop.

If there isno [ € 5&)%&) such that [ <T a then any empty loop [ € 5%1) is <™-
comparable with a. Thus v(a, L,U) = (y(a),—, T a) = (7v(a), | a,—) = §(a, L,U).

Ad 3. Fix (a,L,U), (¢/, L',U’) in [X].

First we shall show that the condition is necessary. Suppose that
(a,L,U), (a1, L1,U1), ..., (ag, Lg, Ug), (@', L', U") is a flat upper path in [X].

Suppose that a # a/. Clearly a,aq,...,a,,d’ is an upper path in X. So after
deleting loops we get a flat upper X-path from a to @/, i.e. a <t d'.

Suppose now that a = a’ and L # L'. As (a,L,U) € 6(a1, L1,U1) # 0 we have
L =], aq. Moreover, v(ay, L, Uy) = (a/, L', U’) implies that T, o = U’. Since

(a, =, Ta i) = y(ai, Li, Us) € 6(iv1, Liv1, Uiv1) = (@, la qiv1, —)
we have that (a, |q ajt1,Tq @) isacut, fori=1,...,k—1. As T, a;N o ; = 0,
we have that |, a; Clg a1, fori=1,... k — 1. Thus
L=lsa1 Cloay CE ~Taap =65 -U =1

i.e. the condition is necessary.
Now we shall show that the condition is sufficient. First note that if | € £ then

6(1,0,—) =(a, L I,=) = (a, | L{I}U T 1),

’7(l7®7 _> = (aa _7T l) = (CL?l [y {l}7 T l)

Thus if a = o’ we have that (a,L,U) <* (a/, L', U") if L ¢L'.

Assume now that a <t a/. Let a,aq,...,azx,a’ be aflat upper X-path of minimal
weight. We claim that it is X — (X ~*)-path. Suppose contrary that there is
A € X~ such that y(A) = «;, for some i. Then we will have a flat upper §(A)-path
Biy..., 0 from y(a;—1) (or a if i = 0) to vy(a;). Replacing a; by (i, ..., 5, we get
a flat upper X-path of smaller weight than aq, ..., a; contrary to the choice of this
path. This a1,...,q is a flat upper X — v(X~*)-path indeed.

As a; € X — (X ™) we have

6(ai,0,—) ={(b, | @;,0) : b€ (i)},  v(,0,—) = (v(),0, T ).
From this and previous we get that
(a,L,U) <% (a,] a1,0) € §(cviz1,0,—),
Y(ai, 0, =) <T (y(a), | aig1,0) € 6(en, 0, )
Yo, 0, =) <* (', L, TU")
and this shows that (a, L, U) <* (d/, L', U’), as required.

Ad 4. Using 3. we have the following equivalent statement

(a,L,U) <= (d/,L',U")
Elzeé(a’) (7(‘1)7 =1 a) <t (.’ﬁ,l a/> _)
Fees(a) V(@) < zor (y(a) =z and &)~ Ty@) @ Sly) @)
a <~ a and (if vy(a) € d(a’) then &4y =T4(a) AU Ly() @)
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Lemma 5.2 Let S be an ordered face structure, X a convex subset of S, a € X,
u € 06(a), € EX. Then

1. If a € S° then y(a) L™ L.
2. Ifa € S7¢ then

(a) if u=77(a) then y(a) <~ L iff o(a) <™ I;
(b) ifu € v(a) then if x,y € 6(a) and x <~ | <~ y there is z € 6(a) such that
[<Tzandz <~ z <~ y;

(c) if u € dv(a) then | <~ ~(a) iff | <~ my, where xy is the ~-minimal
element in 0(a) such that u € 6(x).

Proof. Ad 1. By pencil linearity we have that either v(a) L™~ [ or y(a) LT [.
As [ is an empty loop we cannot have y(a) < I. We shall show that | <t ~(a) is
impossible, as well.

Suppose not, and that we have a flat upper X — (X )-path [,ay, ..., ax,v(a).
As ap € X ¢ we have that a; <™ a. But a € X%, so by Path Lemma, we have
a; <t a,fori=1,...,n. Let a;,a1,...,q,,a be a flat upper X-path. As [ € §(a)
and 0v(q;) Uy M) = 08(ey), either for all i, [ € 6y(ay), or there is ig such that
I € v6May,). In the former case | € 6v(a,) = 6(a) and we get a contradiction, as
a € T¢. In the later case [ is not an empty loop in X contrary to the assumption.

Ad 2(a). First, assume y(a) <~ I. As yy(a) = y(I), by pencil linearity we have
either p(a) L™ [ or g(a) L* . We shall show that the other cases then p(a) <™ I
lead quickly to a contradiction. If I <™ p(a) then y(a) <~ p(a) and this is a
contradiction. If I < p(a) then I < v(a) and this is a contradiction. If p(a) <* [
then I LT v(a) and this is again a contradiction. Thus we must have g(a) <~ I".

Next we assume p(a) <~ [. By pencil linearity we have either v(a) L~ [ or
v(a) LT 1. We need to show that y(a) <~ [. We shall show that the condition
I < ~(a) leads to a contradiction. The other two are easily excluded. Clearly
I &d(a).

So suppose that [ <* vy(a). Let l,a1,...,a, v(a) be a flat upper X — v(X)-
path. By Path Lemma, either there is ¢ < k such that vy(a;) € 6(a) or a; <t a for
i =1,...,k In the former case we have | <* 7y(a;) <™ p(a). Thus, by Lemma
4.18, 1 <~ p(a) and this is a contradiction. In the later case, there is a flat upper
X-path a1, a1,...,ap,a. Asl € §(a1) and | & 6(a) there is ¢ such that [ € (). In
particular [ is not an empty loop in X and we get a contradiction again.

Ad 2(b). Fix z,y € §(a) such that y(z) = u € 6(a), [ € EX such that z <~
I <~ y. If l € 6(a) 2(ii) obviously holds, so assume that I ¢ d(a). We have
v(1) <t y(y) <T 4vy(a). Thus by Proposition 4.19, either I <™ ~v(a) or I <t ~v(a).
The former case gives immediately = <™ 7(a) and a contradiction.

Thus we have [ <* 7(a). Fix a flat X-path l,a1,...,a,v(a). By Path Lemma,
either there is i < k such that v(a;) € 6(a) or a; <T a for all 1 < i < k. In the
former case y(a;) is the z we are looking for. We shall show that the later case leads
to a contradiction. Take a flat upper X-path ai,a1,...,0p,a. As 1 € §(a1) and
I € 6(a), there is 1 < i < r such that [ € v6~*(ay). In particular, [ & &,, contrary to
the assumption.

Ad 2(c). Suppose I <~ 7(a). Then, as other cases are easily excluded, we have
| < o indeed.

On the other hand, if I <™ z the only case not easily excluded is I <* v(a). Let
l,ai,...,ax,v(a) be a flat upper X — (X ~*)-path. By Path Lemma either there is

"In the following, the similar simple arguments we will describe in a shorter form as follows: as
other cases are easily excluded, we have p(a) <™ L.
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ip < k such that vy(a;,) € d(a) or a; <™ a for i = 1,..., k. In the later case, there is
a flat upper X-path a1, aq,...,a,a. Asl & §(a) and [ € §(ay), thereis 1 <i < k
such that | € (). In particular [ ¢ £, contrary to the assumption.

In the former case we shall show that u € 6v(a;), for i = 1,...,i9. We have
u = v(l) € 00(a1). Note that if for some i < iy, we would have that u € i(a;),
then, as u € §(xg), by Lemma 4.8, we would have zg <* 7(a;,), contradicting local
discreteness. Now suppose contrary, that for some i; < 49, we have u ¢ 0y(ag,).
Then, by the previous observation, we have u = yy(a;,) € v6*(a;, ). In particular,
6 )‘(all) # (0 and 7(a;) is not a loop, for iy < i < ig. As u & v(a;) for i < iy, we
have u = vv(a;) for i < ig. In particular u = vy(a;,) € ¥ *(a). But u € dv(a) and
6v(a) Nv6~a) = 0 so we get a contradiction. O

Proposition 5.3 Let T be an ordered face structure, X be a convexr subset of T.
Then

1. [X] is an ordered face structure, and vx : [X] — T is a monotone morphism;

2. 4f fi : Si = T, i = 0,1, are monotone morphisms such im(fy) = im(f1), then
there is a monotone isomorphism g : Sg — S1 making the triangle

\ /fl

So

commutes;
3. EX is empty iff vx is an embedding;
4. if X is a proper subset of T then size(T) > size(|X]).

Proof. Ad 1. The fact that vx is a monotone morphism is immediate from the
definition of [X]. We need to check that [X] satisfies the axioms of ordered face
structures. Local discreteness and Strictness, are easy using Lemma 5.1.

Disjointness. We shall check that if 6(a, L,U)N6(a’, L',U") = and (a, L,U) <~
(@', L',U") then (a,L,U) <~ (a/,L',U’). The remaining parts of the condition are
easy.

Suppose that 6(a,L,U) N O(a’, L', U") = 0 and (a,L,U) <~ (a’,L',U’). By
Lemma 5.1 we have that a <~ d’. If 6(a) N 6O(a’) = 0, we get by disjointness in T'
that a <™ d/, and we are done. Assume that 6(a) N 6(a’) # (. Thus by Lemma
4.7.2 y(a) € §(a’). By characterization of <™ in [X] we have 1,q) aU |yq) @’ =
Eya)- As (v(a),—,T a) € 0(a,L,U) and ( (a),] a',—) € 0(d/,L',U") we get that

(v(a),—, 1T a) # ( (a),l @',=). So &)~ Tya) @ #ly@ @ But then there is
L €T (a) aN Ly () a’. Hence a <™~ 1 <™~ d, 1 e. a<~ad as requ1red

Loop filling. Suppose (a, L,U) is a loop in [X]. If L # () then let I = max.(L). By
Lemma 5.1 (1,0, —) is not a loop in [X]. We have v(1,0, —) = (a,—,11) = (a,L,U).

Now consider the case L = (). a is not an empty loop since otherwise (a, L, U)
wouldn’t be a loop in [X]. Thus there is o € X~ such that vy(a) = a. Clearly, we
can choose such a in X~ — 4(X~*). Then (a, ), —) is not a loop and

V(O"@v _) = (7(01)’ =1 a) = (Q’Q))T Oz) = (CL,L,U).

Pencil linearity. Let (a,L,U) # (a’,L',U’) be some faces in [X] such that
0(a,L,U)NO(a’,L',U") # 0. Then either a L~ bora LT bor (a =band L # L).
In the first case we have (a, L,U) L~ (a’, L',U’) and in the remaining cases we have
(a,L,U) L+ (', L', U").

33



£

 To see the second part of the pencil linearity assume that a = (a, L,U) € [X]°,
b= (b,L',U") € [X], z € §(b), such that (z,] b,—),(y,| b,—) € 5 (b, L', U"), and

yy(a) = y(x,| b,—) € 0(y, | b,—)

i.e. for some t € 6(y)

(v(a), = T(a) = (v(z), = T2) = (1, 1y, —) (7)

We need to show that either @ <™ b or @ <t b. From the characterization of <™
and <7 in [X] it is enough to show that either a <™ b or a <* b. And for that, by
Lemma 4.19.4, it is enough to show that «y(a) <™ ~(b). We shall consider four cases
separately:

1. 2,y € T

2. x € T~ and y € T and there is ly € €yy(q) such that [, <ty

3. ye T~ and = € T and there is [, € Eyr(a) such that I, < a;

4. z,y € T* and there are Iyl € &,y such that [, <T z and I, <T y.

Case 1. If z,y € T~ then yy(a) € ¢(b). So, by pencil linearity in T, we get that
either a <~ b or a <™ b.

Case 2. In this case we have y(a) <~ l,. As y(x) = yvy(a) we have either
x L~ y(a) or x LT y(a). We have y(a) £~ z. Moreover, by Lemma 4.3, z £% v(a),
as x € T~ and ~(a) € T*. So we have either either y(a) <* 2 or z <~ 7(a). In
the former case we get immediately v(a) <™ ~(b). In the later case, we have

~

z <~ yla) <~ ly, x<Tyb) >, (8)
So we have yy(a) < y(l,) <t 47(b). Thus, by Lemma 4.19, we have v(a) LT v(b)
or v(a) L™~ «(b). Using (8) we see that of four conditions only the y(a) <* ~(b)
does not lead to a contradiction.

Case 3. First note that y(l;) = v(z) = yy(a) and hence y(a) L1 I, or y(a) L™~ I,.
The inequality y(a) <™ I, is impossible as I, 1 * =1 v(a). v(a) <* I, is impossible
since I, is an empty loop and v(a) is not. Finally, I, <* 7(a) is impossible as
(v(a), —, —) is aloop in [X], and cannot contain any empty loops. So we have shown
that I, <™ y(a). As yy(a) € 6(y) and y € T~*, we have y(a) <~ y and y £~ v(a).
As y € T~ and 7(a) € T*, by Lemma 4.3, we cannot have y <~ y(a). So we must
have either v(a) <t y or y(a) <~ y. If v(a) <t y then clearly v(a) <t ~(b). If
l. <~ v(a) <™ y then having I, <* ~(b) >T y we can easily verify, as before in (8),
that we must have v(a) <t ~(b).

Case 4. Asl, <" yand | y = Evy)— 1 7v(a), we have v(a) <~ I,. As
vy(a) = v(l;), we also have y(a) L* I, or y(a) L~ I,. It is easy to see that the only
inequality that does not lead to a contradiction in I, <™ v(a). So we have

Ly < vyla) <" ly, 1y <) >T 1. 9)

From (9) we get, as before from (8), that v(a) <t v(b).

Globularity. Let us fix a face a = (a,L,U) € [X]>2. As different a-cuts are
parallel, i.e. they have the same domains and codomains, to verify Globularity
condition in [X] we don’t need know in fact the very cut over a for which we check
the condition. It is enough to know that it is a cut over a. So in the following @
will be treated as a cut over a, for which we don’t bother to specify exactly which
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one it is. In the following v and ¢ when applied to cuts are meant in [X] and when
applied to faces are meant in 7.
v-globularity. If a € [X]° then we have
’Y’Y(d) = (77(0')7 =1 V(G)) = 7(1(77(a)7—,T'y(a))) = 75((1)

Now assume that a € [X]7¢. We need to verify the following three conditions:

(i) yv(a) € vé(a);
(ii) yy(a) & 56~ (a);
(iii) 76(a) C yy(a) U 56> (a).
Ad (i). We have (o(a), | a,~) € 6(a) and then using Lemma 5.2.2.(a) we have

yy(a) = (vy(a), =, T v(a)) = (vola), =, T y(a)) = v(o(a), | a,—)

Ad (ii). Suppose that z € §(a) and u € d(z) so that (z,| a,—) € §~(a) and

(ual« €, _) € 557}\(a) If u 7£ PYFY(G) then Clearly (UML €L, _) 7& (’Y’Y(a‘)v _7T ’Y(G)) If
u = yy(a) then z € 6*(a) and by characterization of loops in [X], Lemma 5.1, there

isle Siff(a) such that | <* z. Then I <* y(a). So |,y = Z 1 €1 v(a) and hence

(@) = (v¥(a), =, T7(a)) # (u, |, —) € 6(x, | a,—).
Ad (iii). Let x € 6(a) so that

Y(z, ] a, =) = (v(z), =, T 2) # (vy(a), =, T v(a)) = yy(a).

Then either v(x) # yy(a) or v(x) = yy(a) and there is | € Eé(a) so that x <~ [ and
v(a) £~ 1. This implies that the face

yo = min{y € §(a) : y(x) € §(y) and either y € T~ or ElleSX( : 1<t y}
~ vy(x

is well defined, i.e. the set over which the minimum is taken is not empty. Then we

have (y(bl a, _) € 57)\(&) and (’Y(x)v _aT .CC) = (7($)7l Yo, _) € 557}\(&)
d-globularity. We consider separately two cases y(a) € [X]¢ and v(a) € [X]°.
In the former case we need to verify two conditions

(i) 68(a) C 8 (a);
(i) yyy(a) = yy6°(a).
Ad (i). Let € (a) and u € §(z) so that (u, | z,—) € 66(a). As T is an ordered

face structure, 66(a) € 40~*(a) and hence u € ¥6~*(a). Thus there is a y € §*(a)
such that v(y) = uw. From this follows that the face

y1 = max{y € 6(a) : y(y) = u, y <~ x and either y € T~ or Ellegx( : 1<ty
~ Yy(z

is well defined. Then we have (y1, | a,—) € (&) and, using Lemma 5.2.2.(b), we
get
Yy, la, =)= (), — Ty) = (u, | z,—).
This shows (7).
Ad (ii). First note that if v(a) € [X]°¢ then v(a) € X© and hence §°(a) # 0. So
d¢(a) # 0, as well. Thus we need to show that yyd%(a) C yyy(a).
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Fix (z,| a,—) € 6°(a) and [ € 57Xw(a)'

y(z) <~ it yy(a) <L (10)

It is enough to show that

Clearly x € 6°(a). By Lemma 5.2.1 yy(a) L~ 1. Since [ € £ and v(z) < vy(a) we
have [ L™~ ~(x).

Thus (yy(a) <™~ land | <~ ~(z)) or (y(z) <~ [ and | <~ y7v(a)) then vy(z) L~
v7(a) and this is a contradiction. Therefore (10) holds. This shows (7i) and end up
the case y(a) € [X]°.

In case y(a) € [X]~° we need to verify the following four conditions

(i) 68(a) C 6v(a) Uyd—(a);
(ii) 6~(a) C 65(a);

(iii) 6v(a) Nyd~A(a) = 0;
(iv) yy6=(a) € 06v(a).

Ad (i). Fix z € 6(a) and u € §(z) so that (u,| z,—) € 656(a). Assume that
(u,| x,—) & 6y(a). Then either u & 6y(a) or u € §vy(a) and there is | € £X such
that [ <~ x and [ £~ vy(a). Then, by Lemma 5.2.2.(c), the face

y2 = max{y € §(a) : 7(y) = u, and either y € T~ or Jieex 1 <ty
is well defined. Clearly, (y2, ] a,—) € 6~*(a). By Lemma 5.2.2.(b), we have

(uvl Zz, _) = (U, =1 y2) = 7(3/27 1 a, _) € 75((1)

Ad (ii). Fix u € 07(a) so that (u,| vy(z),—) € oy(a). If a € X* then §(a) =
L(u,7(z),—) and hence (u, | vy(x),—) € dd(a). So suppose that a € X~°. Then the
face

y3 = min{y € 5(a) :uedy)}

is well defined. By Lemma 5.2.2.(c), we have

(U,l 7(a)7 _) = (U,l Y3, _) € 55((1)

Ad (iii). Let uw € dv(a) so that (u,] v(a),—) € dv(a). We shall show that
if (u,| y(a),—) € ~v6(a) then (u,| v(a),—) € [X]*. So fix z € 6(a) such that
(u, ] a,—) =~(z,1 a,—) = (v(2),—,1 2). As v(z) = u € dy(a), z is a loop. If we
were to have | € &, such that [ <* z then [ <* ~(a) and hence [ €|, v(a) and
I €7 z. Thus

(U’?l 7(a)7 _) 7é (7(z)7 I T Z)

contrary to the assumption.
Ad (iv). Let x € 6°(a) so that (x, | a,—) € 6°(a). We shall show that

¥z, T a, =) = (yy(z), = T v(x)) € 05v(a). (11)

Note that as 7" is an ordered face structure, we have yy(x) € vyd°(a) C 06v(a).
First we claim that for any ¢ € dy(a) we have t T ~v(z). Fix t € dy(a). As
y(x) € y0Ma), using v0~* N dy(a) = O we get that v(z) £+ t. Now suppose
contrary, that ¢ <t ~(z). Thus there is a flat upper path t,z1,...,z,,v(x), with
r > 1. As v(x) is a loop and z is an empty domain face, by Path Lemma, we
have z; <T x for i = 1,...,n. In particular, there is a flat upper path in T,
Z1,01,...,0m, 2. As z € T° and x1 € T™¢, for some 1 < jo < m, we have t € t(aj,).
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Thus ¢ € §v(a)Ne(aj,). Hence by Lemma 4.8, we have y(a) <t v(aj,) <™ y(as) = .
But x € 6(a) and we get a contradiction with strictness. This ends the proof of the
claim.

Now let u = yy(z). Using the claim it is easy to see that one of the following

conditions holds:

(¢) u=77y(a) and gy(a) <~ 7(z);

(b) u € 6yy(a) and with s; = min{s € évy(a) : u € i(s)} we have y(z) <~ s1;
(c) there are sg,s1 € 6y(a) such that v(so) =u € §(s1) and sp <™ y(z) <™ s1.

In each case we shall show (11).
Ad (a). Using Lemma 5.2.2.(a), we have

(ua _7T Qp)/(a» §+ (u7 _a T 7('%'» §+ (u7 ) T 77(a)) §+ (ua _7T Q’Y(a'))

Thus yy(z, | a, =) = (u, =, T ey(a)) € 76v(a).
Ad (b). Using Lemma 5.2.1 and 5.2.2.(c), we have

(u, L yy(a), =) <F (u, | s1,=) <F (u, L y(2), =) <7 (u, L y7(a), -)

Thus ’YFY(:B? \L a, _> = (u7 l 51, _) € 657(6’)
Ad (¢). Let s; be as above in (¢) and sp maximal such as in (c¢), i.e.

so = max{s € dv(a) : v(s) = u, s <~ y(z)}.

Suppose T so #1 v(z). Then there is [ € &, such that s9 <~ | <~ y(x). Then
by Lemma 5.2.2.(b) there is t € dy(a) such that [ <™ ¢t and so <™ t <~ s1. We
shall show that the existence of such a t leads to a contradiction. Note that ¢ is
a loop and that v(t) = u. By the claim proven above it follows that ¢ YT ~(z).
So, by pencil linearity, we should have ¢ L~ ~(z). But if y(x) <~ ¢ then by
transitivity we get [ <~ t and we get a contradiction with disjointness. On the
other hand, it ¢t <™ ~(x) then, as other cases are easily excluded, we have that
sp <™ t. But this contradicts the choice of s9. Thus T sg =T v(x) holds and we have
yy(z, | a,—) = (u,—, T so0) € yoy(a). This ends (iv) and 1.

Ad 2. By 1. it is enough to show that if f : S — T is a monotone morphism
such that f(S) = X then there is a monotone isomorphism ¢ : S — [X] making the
triangle

S g

[X]
f\ /]/X
T

commutes. We put, for a € S

gla) = (f(a),—, 1 f(a)) if a € S~ —~(S™*) such that a = v(a),
(f(a),0,-) such that a & v(S~).

Note that if a € v(S~*) then there is a unique o € S~ —~(S~*) such that a = v(a).
This shows that g is a well defined function. As monotone morphisms preserves and
reflects <™ (in particular f and vx does) it follows that g preserves <™.

Before we verify the other properties of g let us make one observation. Fix x € X
and let

Ymin =min{y’ € S: f(y) =2}, Ymax = max{y € 5: f(y) = 2}
< <
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and Ymin, 11, - - - 5 Ik, Ymax be a flat upper S — v(S~*)-path from ymin t0 Ymax. Then

EX = {fli) hr<izk-
With this description it is easy to see that g preserves both v and 4. Fix a € S>1.
Then if b € S~ — 4(S~*) and v(b) = v(a) we have

9(v(a) = (f(1(a)), =T f(b)) = (v(f(a)), =, T f(a)) = ~(f(a)).

If y(a) & v(S™*) we can show that g(y(a) = (y(f(a)) in a similar way.
If a € S7¢ then we have

9(6(a) = {(f (@), =1 F(b)

):
U{(f(2),0,-) sz € 8(a), & 4(S7)} =
={(f (fﬂ), fla),=) s x € d(a)} = d(g(a)).
If a € S¢ we clearly have g(d(a) = d(g(a)), as well.
It remains to show that g is a bijection. Suppose g is not one-to-one. Let a,b € S
such that g(a) = ¢g(b) and a # b. In particular f(a) = f(b). By Lemma 4.25 we can
assume that there is a € S* — v(S~) such that a = §(a) and y(a) = b. Then

9(a) = (f(a), Lo, Ua) = (f(b), Ly, Up) = g(b).

But U, 3 f(«) & Up, and we get a contradiction, i.e. g is one-to-one.

To see that ¢ is onto fix (a,L,U) € [X]. First assume that L # (. Then
let « = maxc~(L) € X and let &/ = min_+{a” € S : f(a”) = a}. Clearly
o € S~ —(S™*). Then

9(v(@)) = (f(v(a")), =1 &) = (a, L, U).
If L = () then with b = min_+{¥ : f(b') = a} we have

g(b) = (f(b)’(b’_) = (avaU)

in this case (a,L,U) is in the image of g, as well. Thus g is onto and hence a
bijection.

Ad 3. If £¥X is empty there is exactly one cut (x, (), () over any face z € X. So
vy is an embedding in that case. If there is I € £X then (y(1), | 1, =) # (v(1),—, T 1)
and vx(y(1),] l,—) =vx(y(),—,11), i.e. vx is not an embedding.

Ad 4. First note that for any k € w, [X]; — 6((X];2)) = {(a,—,0) : a €
X — 5(Xk_j‘1)}. In particular, we have size([X])r = |X — o( k_i‘1| Now fix a and
k so that a € T, — X, a is a face of the maximal dimension not in X. Then
Ti+1 = Xk+1 and hence a & §( k+1) so we have

¥(b) =z €6(a), be ST — (S}

a € Th = 8(T3) = T — 8(X2) O X = 8(X}) #a

Thus
size(T) = |Tx — 6(Tr )| > | Xk — 6(X; 00| = size([X].

As size(T); = size([X];, for | > k, we have size(T') > size([X]). O

Even if the equivalence classes of objects of the comma category oF's | T' corre-
sponds to the elements of the poset Convex((T) of convex subsets of T' we are not
saying that oFs | T" and Convex((T') are equivalent as categories. In fact, if X C Y
are convex subsets of T', it does not mean that there is a morphism from [X] to [Y]
over T as following example shows.

Example 1. Let X C Y be convex subsets of an ordered face structure T as
shown on the diagram below.
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N N

Clearly X C Y. And the stretching of X and Y gives
[X]:

(37@7_)417’(37{1'}7_)42’(87{3}72}7_)
and
Y]
(5,0, =) —Z— (s, {z}, =) —L— (s, {z,y}, =) —2— (s, {z,, 2}, ~)

respectively. Clearly there is no map from [X] to [Y] over T.

Moreover is such a comparison map exists it does not need to be unique, as the
following example shows.

Example 2.

X Y: T:

Clearly X C Y. The stretching of Y gives

[Y]: (5,0, —) —L— (s, {z}, )

Thus from [X] = X to [Y] there are two monotone morphisms and both of them
commutes over T'.

6 Quotients of positive face structures

Positive face structures can be thought of as ordered face structures without empty-
domain faces. If we collapse to ’identity’ some domains of some unary faces which
are not codomains of any other face in a positive face structure we obtain an ordered
face structures which is not necessarily positive. In this section we shall describe
this construction of a quotient of a positive face structure and prove its properties.
In the next section we shall show that, we can obtain any ordered face structure in
this way.

Let T, S be ordered (or positive) face structures. We say that f: T — S is a
collapsing morphism if f = {fy : Ty — Sk Uls,_,}x € w, f preserves <~, v and 0
i.e. for k >0, a,b € S, we have

1. if a <~ band f(a), f(b) € T} then f(a) <™ f(b)

2. f(v(a)) =~(f(a)) and f(6(a)) =1 6(f(a)).

The kernel of the morphism f is the set of faces ker(f) = f~1(1s).
Example.
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Zo r_ b y
C/(il Ox‘bl aj
x1 y1 48 o
0 ap ‘U ﬂ

a
where f is given by: z; — x, y; = y, ap — a, a1 — 1y, b; = b, c — 1, a — 1y,
B — B. We have ker(f){c,a,a1}.

Remark. The collapsing morphisms do not compose. If a map f: X — Y sends
atol, and amap g:Y — Z sends a to 1, then go f should send « to 17, but we
don’t consider such faces in ordered face structures.

Let T be a positive face structure, T" unary faces in T. A set J C T" is an ideal
iff

1. Jn~(T)

2. JN8T)

0;
0

~Jes, 18 the least equivalence relation on T}, containing ~f7k+1; for x,2' € Ty we

have z ~; o’ iff there is a € Jj11 such that x = §(a) and y(a) = 2’. The kernel
of any collapsing morphism is an ideal.
We define an ordered hypergraph T} s the quotient of T' by the ideal J:

1. T/ng = (Tk - jk)/NJk-H’

2.v7 Tgkr — Tz 07 Tyghr — Tygp il ),

T if 6(a ,
Yo(la) =0 @), &5(a) = { ?{}f £e 5T (@) 7 othirzvigse.j

for [a] € T) 7 jy1,
3. [z] <T/7k (2] i @ <o o/, for [2],[2'] € Ty 4.

We define g7 : T — T/ 7 by

47(a) = { Ly ifaed,

[a] otherwise.
In the remaining part of the section we are going to prove

Theorem 6.1 Let T' be a positive face structure, J C T is an ideal. Then T, is
an ordered face structure and qgz is a collapsing morphism with kernel J .

Before we prove this theorem we need some Lemmas.
The class L7 of J-loops in T, is defined as the least set X C 7' such that

if « € T and §(a) C J U X then v(a) € X.

Note that L7 N J = 0.
The following three lemmas concerns positive face structures and their quotients.

Lemma 6.2 Let T be a positive face structure, J C T" is an ideal. Then

1. If a € T then the following are equivalent:

(a) 7(a) € T";
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(b) 6(a) € T;
(c) there is v € 6y(a) and a 6“(a)-path from v to yy(a).

2. Ly C T

3. Ifa<tbandbecT" thena € T".

Proof. 2. and 3. follows from 1. We shall prove 1.
Fix a € T. Let 9 = max<~(d(a)). From globularity we have

d7(a) = d6(a) — (vé(a) —y7(a)) and (yd(a) —y7(a)) € d6(a)

Recall that if 2,y € §(a) then é(x) Nd(y) = 0. Using these observations, we get

|67(a)| = 168(a)] = 7d(a) = yy(@)l = J [6(=)] = |¥(8(a) — 20)| =

z€é(a)

= U B@l - (@~ =1+ | (o)1)
z€d(a) z€d(a)

This shows that the set d(a) is a singleton if and only if for x € §(a) the sets (x)
are singletons. This shows that (a) is equivalent to (b).

Clearly, (b) implies (c¢). We shall show the converse. Let v € dy(a) and
v, x1,...,2k,yY(a) be an upper §*(a)-path from v to yy(a). We shall show that
0(a) = {z1,...,2r}. Suppose contrary, that there y € 6(a) — {x1,...,zx}. Let
Y = Y0,Y1,-- -, Yr,7Y(a) be an upper é(a)-path to yy(a). Hence v(y,) = v(zx) and
then y, = zg. Let v = min{i : y; & {x1,...,2%}}. Then ' < r and y,r 41 = z;
for some j. If j = 1 then y(y,») = v € §(z1) C 07y(a). But then v € dy(a) Nyd(a),
which contradicts globularity. If j > 1 then, as z; € T", we have v(y,/) = v(z;-1).
But, as y,/, ;1 € 6(a) we must have y,» = x;_; contrary to the choice of 7. Thus
d(a) ={z1,...,2r} and (c) implies (b) as well. O

The following lemma describes some basic properties T/ 7.

Lemma 6.3 Let T be a positive face structure, J C T" is an ideal, a,z,y € T — J.
Then

1. [x]~, = [yl~, iff x =y or there is an upper J-path from x to y or from y to
x.

2. The functions v,7 and 6,7 are well defined.
3. [a] € T7 7 if and only if 0(a) C J.
4. la] € T/)‘J if and only if a € L 7.

Proof. Ad 1. It is enough to note that it a,b € J then a,b € T" — (T) and
therefore if y(a) = v(b) or §(a) N §(b) # O then a = b.

Ad 2. Since for a € T, the value /7 [a] and d/7la] depend only on v(a) and
d(a) (and not on a itself) it is enough to show that if a ~; b then y(a) = v(b) and
d(a) =d(b).

So assume that there is @ € T such that ¢ = §(a) and (o) = b. Since T is
a positive face structures y(a) N d(a) = . Thus using globularity (in positive face
structures), we have

7(b) = 1y(@) = vé(a) = dd(a) = y(a) = 6(a) = y(a)
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and
§(b) = 67(a) = 66(a) — vd(a) = 6(a) — v(a) = 6(a)
as required.

Ad 3. This follows immediately from the definition of 9,7 ([a]).
Ad 4. We argue by induction on the height ht(a). The inductive assumption is:

Ind,,: for a € T — J such that ht(a) = n we have: a € L7 iff [a] € T/’\j.

We can assume that a € T", as each of the conditions a € L7 and [a] € T/AJ
implies it.

If ht(a) = 0 then neither a € L7 nor [a] € T/>‘J. Hence Indy holds.

Assume that ht(a) = 1. Let a € T — ~(T) such that v(a) = a.

Suppose that a € L7. Then §(a) C J. Hence d(a) ~7 y(a) and [a] € T/’\J.

On the other hand, if [a] € T/)‘j, then [y(a)] = v,7([a]) = §,7(la]) = [6(a)]. So
there is a J-path from d(a) to y(a). As ht(a) = 1 this must be a §(a)-path. Since
it is a T"-path, we have §(a) C J. Thus a = y(«) € L7.

Finally, assume that ht(a) =n > 1. Let « € T — (7T) such that y(a) = a. As
a €T" sod(a) CT" Let ay,...,ar be the lower path containing all elements of
o(a).

First suppose that a € L7. Then §(a) C L7 U J. If a; € J then, by def
d(ai) ~g v(a;). If a; € Ly then, as ht(a;) < n, by induction hypothesis [a;] is
a loop. But this means that d(a;) = [y(a;)] and in this case again we have that
d(a;) ~7 v(a;). By transitivity of ~7 we have §(a) = d(a1) ~7 v(ax) = v(a), ie.
[a] is a loop in T}z, as required.

Now suppose that [a] € T/)‘J. Thus there is an upper J-path
0(a),by,...,bm,v(a). We claim that there are numbers 0 = mg < m; < ma <
... < mg = m such that

(i) either m; =m;—; +1 and a; = by,, € J

(ii) or bm, ,+1,--.,bm, is a path from d6(a;) to v(a;) (i.e. 6(a;) € §(bm,_,+1) and
(ai) = 7(bm,))-

Having the above claim it follows that either a; € J or [a;] € T}, fori=1,...,k.
As ht(a;) < n, by inductive hypothesis this means that a; € L;yUJ, fori =1,... k,
ie. §(a) € L7 UJ. So by definition of L7, a = y(a) € L7, as required.

It remains to prove the claim. Suppose contrary, that the claim is not true.
Let 1 < 49 < k be the least number for which it does not hold, i.e. we have
mo, M1, ..., mj,—1 satisfying (i) or (ii). In particular, either io = 1 or v(bp,, ,) =
Y(@ip-1) = d(ai,). So 6(bm, ) = 6(ai,). As (i) does not hold a;, # by, . Since
bing, € T —(T), bm;, < ajy. As (ii) does not hold, by Path lemma (for positive
face structures), b; <™ a;,, for i = miy—1 + 1,...,m and v(ag) = y(bm) # v(ai,)-
Again by Path lemma, the upper path 6(a;,), bnig 1415+ - bm, v(ay) can be extended
to an upper path reaching v(a;,):

(5(@7;0), bmi071+17 DRI bm, ,Y(ak)7 Cly...yCp, W(Gio)

But this means that we have both a;, <= aj and a;, <™ aj. This contradicts the
disjointness and ends the proof of the claim and the Lemma. O
The following lemma describes some relations between pathes in 7" and 7/ 7.

Lemma 6.4 Let T be a positive face structure, J C T" is an ideal. x,y,a € T — 7.
Then
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1. If a & v(T) then [z]~, € 6(la]~,) iff there are y € 6(a) — T and a J-path
(possibly empty) from x to y.

2. Ifay,...,ay is a flat path in T —~(T) then < [aj]~, : 1 <i < k,a; & TULy >
is a flat path in T;; — ’y/j(T/_J)‘).

3. Assume ay,...,ap € T — (JULyg). Then [a1]~,,...,[ar]~, is a flat path in
T)7 — ’y/J(T/}A) iff for 1 < j <k there there is a J-path bj1,...,bj;, so that

ai,bi1,...,010,,a2,021, ... ,02,,a3, .. ap—1,bk—11, -, be—1,,_, Qk
is a path in T
4. la]~, €T)g — ’y(T/_j)‘) iff there is ' € T —~(T) such that o’ ~7 a.

5. (]~ <117 ylo, iff @ <TF y and the upper (T — ~(T))-path from x to y is
not a J-path.

Proof. 1. follows easily from pencil linearity of positive face structures, 2. is
easy and 3. is a consequence of 1.

Ad 4. =: Let ¢’ = min_r+([a]), i.e. @ is the least element of [a]. Suppose
that o’ € y(T), i.e. there is a € T such that y(«) = /. Clearly, we can assume
that o ¢ y(T). If « € J C T" then 6(a) ~7 a’ and §(a) <T o, contrary to the
choice of a/. If a ¢ J then v,7([a]) = [a] and by assumption [a] € T/>‘J. But
then by description of the loops is 77, a € (7)), contrary to the choice of a. The
contradiction shows that a’ & «(T'), as required.

<: Suppose a € T — (T'). We need to show that [a] € T) 7 — 'y(T/})‘).

Suppose contrary, that there is a« € T'— (J U L7) such that v, 7([a]) = a. Since
a & v(T) there is an upper J-path a,aq, ..., ag,v(«). Since ap € J C T —~(T) and
a & J, by pencil linearity in positive face structures, we have that a;, <* a. By Path
Lemma, (since a ¢ vy(T')) either a € §(«) or there is i < k such that y(o;) € ().
Using the characterization of loops in T 7 we get in either case that [a] is a loop in
T)z,1e. a € Ly contrary to the assumption.

Ad 5. The ’if’ part is obvious. We shall show the ’only if’ part. The essential
argument consists of showing that in case the path from [z] to [y] has length 1 the
conclusion hold. Then use induction.

So assume that [z], [a], [y] is an upper path in T/, with [a] € T/_j’\. Thus we have
a2’ € §(a) — J so that one of the following four cases holds. There are J-pathes

1. from z to 2’ and from ~(a) to y;
2. from z to 2’ and from y to y(a);
3. from 2’ to z and from ~v(a) to y;
4. from 2’ to x and from y to v(a).

In case 1. the conclusion follows immediately. The case 4. is most involved of 2., 3.,
and 4. and we will deal with this case only.

Let 2/,b1,...,bg,x and y,c1,...,¢,v(a) be (non-empty) J-pathes. We have
' € 6(b1)Nd(a). As by € J and a ¢ J we have by <t a. As [a] € T/, and

[T
bi,...,bx is a J-path we have v(b;) # v(a), for i = 1,...,k. By Path Lemma,
we have a (non-empty) upper T' — ~(T')-path z,b},...,b;,7v(a). As [a] is not a loop

f,...,b) is not a J-path. Since vy(c,) = (b)) and both ¢1,..., ¢, and bf,. .., b are
T — ~v(T)-pathes, it follows that one is the end-part of the other. As the former is a
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J-path and the latter is not, ci, ..., ¢, is the end },...,b;. Thus we have an upper
path z,b),...,b_,,y which is not a J-path, as required. O

Proof of Theorem 6.1. We shall check that T satisfies all the conditions of the
definition of an ordered face structure.

Local discreteness, Strictness, and Loop-filling are obvious from the Lemmas
above.

Globularity. First we shall spell the definitions of the sets involved. For a €

T>9 — J, we have

Y777 ([a]) = [vv(a)]

[yv(a)] if 6(a) € T,
§17v7([a]) = ¢ 1paa(a)] if 5y(a) C T,
{[z] : @ € y(a) — T} otherwise.
_ ) Db(a)] if 6(a) C T,
V17977 (lel) = { {v[z(x)] cx €0(a) —J} otherwise.
[yv(a)] if 5(a) C T,

8,70,7([a]) = ¢ {lu] : pu€é(z) =T, x €d(a) = T}U
Uy 1 0(x) €T, v €6(a) = T} otherwise.

(1)) = { ! =
/T {lz] :xz €d(a) — (LsUT)} otherwise.

N O if §(a) C 7,
7/‘75/9([@) - { {Iy(@)]:x€d(a) — (LyUT)} otherwise.

6/35/}\([@) =< {[u]: Fpuedlx) =T, x€d(a) - (LyUT)}U
My :0(z) €T, v €6(a) = T} otherwise.

Thus if 6(a) C J it is easy to see that globularity holds. So we assume that
d(a) Z TJ.
v-globularity. We shall show:

L [yy(a)] € v/479,7([a])
2. [1y(a)] & 6,70, 7([a])
3. 178/7([a]) = ()] € 8,70, ([a))

Ad 1. Let zg,x1,...,2zr be a lower d(a)-path such that v(xx) = yy(a), ©o € J
and z; € J, for i > 0 (k is possibly equal 0). Such a sequence exists since 6(a) € J
and is unique since z; € T, for ¢ > 0. Then

[vv(a)] = [v(w0)] € v/79,7([al),

as required.
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Ad 2. Suppose contrary, that there is x € d(a) — (L7 U J) (i.e. [z] is not a
loop) and u € §(z) — J such that [u] = [yy(a)]. Let u,z = xo,21,...,zk, yY(a)
be the upper d(a)-path from u to yy(a). Since u ~7 yy(a) and u < yvy(a) there
is an upper J-path w,yo,...,y;,7y(a). As o € J and u € §(z9) N §(yo), by
pencil linearity, we have y9 <™ xg9. By Path Lemma, there is 0 < i < [ such,
that v(y;) = v(zo). Hence using the characterization of the loops in Tz, [z] is
a loop contrary to our assumption. From this contradiction if follows that indeed
(@) & 876 [a]).

Ad 3. Fix x € 0(a) —J. Then [y(z)] € v,70,7([a]). Let o,...,zx be the
d(a)-path such that zg ¢ L7 U J and x; € L7 U T for i > 0. Clearly z; € T" if
i > 0 and possibly k = 0. Then v, 7([z0]) = 7,77/7([a]). So an arbitrary element
of v,76,7([a]) — [yy(a)] is of form [y(x)] for x € 6(a) — (T U{zo}). Then we have a
lower §(a)-path z = y1,...,y; = xo with [ > 1. Put

V= max({l": {yo, ..y} € (L7 UT)}U{1})

Asaxo &€ L7UJ, wehave 1 <" <l,and ypy1 € L7 UJ, ie. [yry1] € 5/}\([a])
Clearly, v(yr) € 6(yr+1) — J and hence

(@) = [v(w)] € 6,567 7([al),

which ends the proof of y-globularity.
0-globularity. We have there different cases:

Id(a)CJT,
IT §(a) € J and év(a) C T,
ITI §(a) € J and 67y(a) € J.

Case 1, as we already mentioned, is obvious.
Case IT: 6(a) € J and d6v(a) C J.

In this case we have:
815717 ([a]) = 1pr(ay

5/76/7([al) = {[u] : Bucsey g w € 5(2) = THU {Lpyiay () € T, @ € 6(a) — T}
and ‘
50,57 ([a]) = {[(@)] s @ € 8(a) — (L7 U T)}.

Let u € 0(z) —J and = € §(a) — J. As dv(a) C J and u € J, by globularity
(of positive face structures), u € vd(a). Thus there is yg € §(a) such, that y(yo) =
u. Since 6(J)NJ = 0 and dy(a) C J there is a d(a)-path yg,...,yo such that
Yk € (T ULyg) and yp_1,...,90 S (JULy), k > 0. Then [yx] € 6*([a]) and
75 ([y]) = [u). Thus {[u] : 3pes(a)-gu € (2) = T} C 750,75 ([a))-

It remains to show that

1. thereis x € 6(a) — J, 6(x) C T,

2. for any such x, we have 11, (z)] = Liyyy(a)-

Ad 1. The existence of such x follows easily from Path Lemma.

Ad 2. Suppose x € §(a) — T, 6(x) C J. As T N~(T) = 0, by globularity, we
have that 6(z) C 6y(a). Hence yy(z) € v0(z) C vd7y(a), and then there is an upper
dy(a)-path (possibly empty) from yy(z) to yyy(a). But éy(a) C J, so this is a
J-path and this means that vy(z) ~7 vyy(a), i.e. [yy(x)] = [yy7(a)], as required.

Case III: §(a) € J and dy(a) € J. This is the only case, where we do not have
equality but =1 only. We need to verify:
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—_

- 07775 ([a]) € 678,5([al);

[\

- 87777 ([a)) N6, ([a)) = 0;

w

- 8178)7((a)) = 8517 ([a) € 7787 ()

S

- 701705 7(lal) € 6,70,77)7([al)-

Ad 1. We have 6,77v,7([a]) = {[u] : v € éy(a) — T}.
So, let u € dv(a) — J and w,x1,...,zE,yy(a) be a §(a)-path, k& > 1. There is
1 <1 < ksuch that x; € J, for i < [, and ; ¢ J. Such [ exists, since 6(a) Z J.

Let
I ifl=1,
] v(z—1) otherwise.

Then [u] = [v]. Moreover, v € §(z141) — T, 7141 € 0(a) — J, i.e. [v] € 0,70,7([a]),
as required.

Ad 2. Suppose contrary that there is v € dy(a) —J and z € §(a) — (L7 U T) so
that [u] = [1(2)] € 7,787 ([a)).

Thus we have a J-path u,z1,...,zg,v(z). As dy(a) Nyd(a) =0, u # y(x) and
k > 1. Since v(z) = y(z), 7 € J and = € J, by pencil linearity z; <™ x. We
have that 0(z;) N d(x) = 0 for 1 <[ < k, since otherwise [z] would be a loop. Let
Yls- - Yr, L1, - .-, Tk be a continuation of the path yi,...,y,,x1,...,x through u
(i.e. ¥(yr) = u) such that there is v € §(y1) N d(z). Since = € §(a), v € §d(a). So
there is v" € §y(a) such that v" <* v. But then v' <™ u and v, u € §y(a), which is
impossible. Thus 2. holds, as well.

Ad 3. Let u € §(x) — J and = € §(a) — J, i.e. [u] € 6,70,7([a]) and suppose
that [u] € 6,77, 7([a]). Let zo,...,7;,u be a §(a)-path, I > 0, such that z1,...,2; C
(LgUJ), and 79 € (L7 U J). Such a path exists since [u] € 6,77,7([a]). Then
[0] € 5/}\([a]) and hence [u] = [y(x)] € 7/557§([a]), as required.

Ad 4. We have

5/J57J([a]) = {1['\/7(9[:)} HEVIS 5(&) -J, 5(35) - j}

Fix x € d(a) — J such that 6(z) € J. We need to show that v, 77, 7([z]) =

(@) € 6,76,777([da])-
We have yy(z) € 7v6(a) € yyv(a) U d67(a). If yy(x) = yyy(a) then, using
~-globularity of positive face structures, we have

V()] = [vyyv(a)] =v,5v577(al) € v,70,577(al) € 0,570,777 ([a])

and 4. holds.
So now assume that yy(x) € d&0v(a). Thus there is an upper dv(a)-
path yy(x),u1, ..., uk,yyy(a). If it is a J-path then [yy(z)] = [yy7(a)] €

0,760,777 ([a]). If it is not a J-path, then let ig = min{s’ : uy ¢ J} and

. vy (x) if ip =1,
| Y(uijy—1) otherwise.

Then wi,...,uj,—1 is a J-path and yy(z) ~7 t € 0(u;) — J. Thus [yy(z)] €
/7 ([uip]). But uiy € 0v(a) — T, so [ui] € 6,77, 7([a]) and then
()] € 6,570,575 (lal) € 0,76,577([a]),

as required. This ends the proof of globularity of T} ;.

46



Disjointness. From the description of the orders we get immediately L7/7F
N1T7~=0. Ifa,b € T—J and [a] <™ [b] the by definition a <™~ b. So we have a
lower T'— ~(T)-path a = ag, .. .,ar = b. Let by, ..., b be the path (possibly empty)
obtained from ay,...,a;—1 by dropping elements that belong to L7 U J. Then
[al, [b1], - - -, [bi], [b] is a lower flat path in T, ;. Hence [a] <™ [b] implies [a] < [b].

Now assume that 6,7 ([a]) N6, 7([b]) = 0 and [a] <~ [b]. We need to show that
[a] <™ [b].

So we have a lower flat path [a] = [ao],...,[ax] = [b] in T}z, with & > 1.
There are some cases to be considered. We will deal with the one which is most
involved: k = 2, there are z € §(a1) — J, y € d(az) — J there are upper J-pathes
Z,b1,...,0,7v(ag), and y,c1,...,cr,y(ay).

As [al] is not a loop b; <™ ay, for i <1 and ¢; < ay, for i < r. Moreover
they are T'— v(T')-pathes. It is easy to see that if we continue the path by,...,b; as
T — ~(T')-path we shall get to ¢y, ..., ¢ (note that J-faces are unary). Thus there
isa path by,...,0;,dy,...,ds,c1,...,¢r, with s > 0. Then ag, ds,...,ds, as is a lower
path showing that a = ap <™ ag =, i.e. [a] <™ [b], as required. This ends the proof
of disjointness.

Pencil linearity. Let [a],[b] € T)z, and [a] # [b]. First assume that 6,7 ([a]) N
0,7([b]) # 0. Thus we have three cases to consider:

I v,7(la]) = v,7([b]),
IT v, 7([a]) € 6,7([b]),
IIT 6,7([a]) N &,7([0]) # 0.

Case I. Possibly changing the roles of a and b there is a J-path
~v(a),a1,...,ak,v(b). If y(a) € 6(b) or there is i < k such that v(a;) € 0(b) then
a <7~ b and hence [a] <T/7°7 [b]. If it is not the case, that is y(a) & §(b) and for
all i < k v(a;) € §(b) then by Path Lemma there is y € §(b) and an upper path
y,b1,...,b,a,a1,...,ax,v() and a < b. Therefore [a] <™ [b].

Case II. In this case we have z € §(b) — J and a J-path v(a),as,...,a,x or
T,ai,...,ag v(a). In the former case we have a <”*~ b and hence [a] <T/7>~ [b]. In
the later case either there is 1 <4 < k such that v(b) = v(a;) and then v, ([b]) =
7,7 (la]), i.e. this case is reduced to I or, by Path Lemma, we have that a; <* b,
for 1 <i < k. Let ag,a1,...,q;,b be an upper path in 7. As y(ag) # ~(b) there is
1 < j < such that y(ay) € t(a;). Since y(ai) = vy(a) we have that y(a) € t(a;)
and then a <™ y(a;) <t y(aq) = b, ie. [a] <T [b].

Case III. Possibly changing the roles of a and b there are x € d(a) — J a
y € 6(b)—J and J-path z,ay,...,a,y. If there is 1 <4 < k such that y(a;) = ( )
then a <~ b and hence [a] <™ [b]. If for all i« < n we have 7y(a;) # v(a) then, by
Path Lemma, b <™ a and hence [b] < [a].

Next let assume that [a] € T7 7, [b] € T) 7 and 7,77, 7([a]) € ¢;7([b]). Thus there
are z,y € §(b) — (J U L7) such that v, 7v,7(la]) = v,7([z]) € 0,7([y]). Hence there
is u € §(y) — J such that v(z) ~7 u. If we were to have a J-path u,z; ..., xg, v(x)
then, as u € §(b) by Path Lemma, either there is 1 < i < k such that v(z;) = v(y)
or y(zx) # v(y) and z, <* y. In the former case [y] would be a loop in the later, we
would have z <t y and z,y € §(b). As none of the above is possible, it follows that
we cannot have a J-path from u to v(x). Hence we have a J-path y(z),x1 ..., 2k, u

Claim. Exactly one of the following conditions holds:

(i) there is a J-path (possibly empty) from yy(a) to vy(x);

(ii) there is a J-path (possibly empty) from u to dy(a);
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(iii) d(a) C{z1,..., 2k}

Clearly no two of the above three conditions can hold simultaneously. We assume
that (i) and (ii) does not hold and we shall prove (iii). We can assume that k& > 1.
As 0(a) C J and {z1,...,2} C J, it is enough to show:

(a) thereis 1 <i <k such that vy(z;) = yy(a);
(b) either y(x) € dy(a) or there is 1 < j < 4 such that y(z;) = dy(a);

Ad (a). Suppose that (a) does not hold. Then, as (i) does not hold, we have
an upper J-path u,z1,...,2;,vy(a), with I > k. As 2; € J and ~y(a) ¢ J, we have
x; < v(a). So by Path Lemma, either v(z;,) € dv(a), for some k < ig < [ or
u € t(a). In the former case we get (ii) contrary to the supposition. In the later
case, on one hand, as u € §(y) Nw(a), we have that y < y(a). Thus y(y) <T yv(a).
On the other hand, if we were to have k < iy < [ such that y(z;,) = v(y) then,
as r; € J, we would have that [y] is a loop. Hence, by Path Lemma x; <t y,
fori =k+1,...,1, and vy(a) = v(x;) # v(y). But then, again by Path Lemma,
yy(a) < v(y). Therefore we get a contradiction once more. This ends the proof of
(a).

Ad (b). As we have established (a), let us fix 1 < i; < k such that y(z;,) =
v7v(a). Suppose that (b) does not hold. Then {z1,...,z;, } C d(a) and y(x) € t(a).
Thus z <™ ~(a). Let y1,...,Yr, T1,...,x; be the lower J-path consisting of all the
faces in 6(a). Clearly, §(y1) = 6v(a), y(yr) = y(z) and y, <* z. If we were to have
1 <4 < r such that §(y;) Nd(z) # O then the face [x] would be a loop contrary to the
supposition. Thus, by Path Lemma, y; <™ x, for i = 1,...,r and there is v € §(x)
such that v <™ §(y1) = dv(a) (both §(y1) and dv(a) are singletons). On the other
hand, as z <™ v(a), we have, by Path Lemma, a lower path 21,...,zs = x, with
s>1,and w € 6(z1) Nd7y(a). Then, for w' = y(z5-1) € §(z) (or w' =w if s = 1) we
have §v(a) <t w’. Thus v,w’ € 6(z) and v <t §vy(a) <* w’. But this is impossible
by Proposition 5.1 of [Z]. This ends the proof of (b) and of the Claim.

Having the Claim, it is easy to see, that in case (i) 7(a) < z and in case (ii)
v(a) <y. Thus in both cases we have [a] <™ [b].

Finally assume that (iii) holds. Thus z <~ 7y(a) and yy(a) <t y7y(b). From the
later and [Z], we have that either v(a) <= v(b) or v(a) <* v(b). If y(a) <~ 7(b) then
using the former and transitivity of <~ we would have z <~ (b). But x <™ ~(b)
and this contradicts disjointness. Thus vy(a) <™ ~(b). Then, again by [Z], we have
that either a <~ b or a <™ b, as required.

The fact that g7 is a collapsing morphism with the kernel 7 is left for the reader.
This ends the proof of the theorem. O

Proposition 6.5 Let T be a positive face structure, and I be an ideal in T'. Then
size(T)7) = size(T).

Proof. We have a quotient morphism ¢ : ' — T 7 such that, for a € T'— 7, we have
q(a) = [a] 7. We shall show that, for any k € w, the restriction of this function

G : Te = 8(Ter1) — (Ty7)k = 8,7 ((T))k41)
is a bijection. This is clearly sufficient to establish 2. To see that g is one-to-one,
note that for a,a’ € Ty — §(Tj+1), by Lemma 6.3.1, we have a £ 7 d.
We shall verify that g is onto. Fix [a]7 € (T)7)r — 5/j((T/t7/\)k+1) such that
a € T —J is <T-maximal in its class [a]7. Suppose that a € 6(Tyy1), and fix
a € Tkr1 — Y(Tjy2) such that a € 6(a). Then if a € J, a is not <'-maximal in
its class. If a € 7, then [a]s € T/}’\ and [a]7 € §/7([a]7). In either case we get a

contradiction. Thus there is no a € Ty such that a € §(«), and g, is onto indeed.
a
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Positive covers

Recall that the kernel of a collapsing morphism ¢ : Y — X is the set ker(q) =
¢ '(1x) C Y. In more concrete terms, as g preserves codomains, we have ker(q) =
{aeY :q(a) =1y}

We say that a collapsing morphism ¢ : Y — X is a (positive) cover iff there is an
ideal J in Y, and a monotone isomorphism h : Y/ 7 — X such that the triangle

Y

SN

X
Y/g—

comimutes.

Proposition 6.6 Let g : Y — X be a collapsing morphism and J an ideal in'Y,
and py : Y — Y/ 7 a positive cover.

1. ker(q) is an ideal iff ker(q) C Y™".
2. q:Y — X is a positive cover iff q is onto and ker(q) is an ideal.

3. If ker(py) C ker(q) then there is a unique collapsing morphismr :Y/7 — X
making the triangle
Y
// \ﬂ
X

P
Y/

commutes.

Proof. Ad 1. Any ideal in Y is contained in Y*. Thus we need to show that if
ker(q) C Y* then ker(q) Ny(Y) =0 = ker(q) N d(ker(q)).
Suppose there is a € ker(q) Ny(Y). Let a € Y such that v(a) = a. Then

Lyg(a)) = 9(a) = g(v(a)) = (¢(a)) € X

and we get a contradiction. Thus ker(¢) Nvy(Y) = 0.
Now suppose that a € ker(q) Nd(ker(q)). Fix a € ker(q) such that a € 6(a). As
ker(q) C Y* we have a = §(«). So we have

Ly(g(a)) = 9(a) = q(6(a)) = d(q(a)) = 6(1y(g(a))) = Y(e(a)) € X

and we get a contradiction again.

Ad 2. Clearly the conditions are necessary. To see that they are sufficient
it is enough to note that they imply that the map h : Yjerq) — X such that
h(la]) = q(a), for a € Y — J is an isomorphism in oF's.

Ad 3. We put r([y]) = q(y), for y € Y — J. Since ker(ps) C ker(q), r is well
defined. As .

Y fyeY -J,

()]

we have ¢ = r o py. It remains to verify that r preserves ~, §, and <™.
Fix y,y/ € Y — J. We have

[yl <77 Y]y <Oy gly) <Y a(y) i r(ly]) <O (W)

i.e. r preserves <.
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Now fix y € Y51 — J. We have

i.e. r preserves 7.
To see that r preserves § we consider two cases: §(y) C J and 0(y) € J. If
d(y) € J then we have

r(6([y]) = (1) = L)) = Lty = 400()) =1 6(q(y)) = 6(r([y]))
and if 6(y) € J we have

r(6([y]) =r({[u] ;v €d(y) = T}) ={q(u) :u€dly) =T} =
=1 {q(u) :u e d(y)} =q((y)) =1 6(q(y)) = 6(r([y)).

Thus in both cases § is preserved. O

7 Positive covers of ordered face structures

In this section we describe a kind of inverse construction to the quotient construction
from previous section. We shall show that any ordered face structure S can be
covered by a positive one ST. We begin with some notation and the construction.
Then we shall prove few technical lemmas. Using these lemmas we shall describe
the properties of the construction, in particular that ST is a positive face structure
and that gg : ST — S is a quotient morphism. Finally, we will make some farther
comments about this construction.

The construction of ST

S an ordered face structure fixed for the whole section. The construction of ST is
based on cuts, but this time we consider the cuts of initial faces in S not, as in
section 5, of empty loops. We use essentially the same notation for both cuts of
empty loops and cuts of initial faces. But, as we never use these different cuts in
the same context so there is no risk to mix them.

Recall from section 3, that 7 = Z% = S° — (S~ is the set of initial faces in
S,and Z, =I5 = {a € T: 6(a) = 1,} is the set of nitial faces based on x. I, is a
linearly ordered by < (we have, for a,b € Z,, that a < b iff y(a) <™ v(b)). An x-cut
is a triple (x, L,U) such that LUU =7, and fora € L and g € U, a < 5. C(Z,) is
the set of all z-cuts. C(Zx) = C(Z%) = U{C(Z,) : x € X}, where X C S, is the set
of all X-cuts, i.e. all z-cuts with z € X.

If (z,L,U) is a x-cut then L determines U and vice versa (L = ZX — U and
U = IX — L). Therefore we sometimes denote this cut by describing only the
lower cut (z, L, —) lower description of the cut or only the upper cut (z, —, U) upper
description of the cut, whichever is easier to define.

For a € S and = € §(a). We define the following sets:

Ta :{aezfy(a) ra <" y(a)}, lea ={a €, vy(a) < a}

and cuts (y(a), —, T a) and (z, |, a, —). In order to save the space we drop subscript
x in the notation |, a inside z-cuts, i.e. we often write (x, | a,—) instead of (z, |,
a,—). Clearly, (z,—,1b) = (z,|lpa,—)iff |, aUTb=7Z, and |, anTb=10.
We describe below the positive hypergraph ST. The set of faces of dimension k
is
S} = C(Zs,) UTj1,
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where 7, is another copy of the set Z;,; whose elements have bars on it, i.e.
Tky1 ={a: a € Ty11}. Thus the faces of each dimension are of two disjoint kinds:
cuts and bars. The domains and codomains in St we define separately for bars and
cuts. Fix k > 0. For @ € Z;, 1 we have

V@) = (r(a), = 1),  §'@) = (y(a), | 7(a), ),
for (a,L,U) € C(Z,), with a € S we have

ya, L,U) = (v(a),—, 1 a), 6'(a,L,U) =T o U{(x,] a,—):z € d(a)}.
We have a map qg : ST — S such that

qS(Z):{ a if z=(a,L,U) € C(Z,),

1'y'y(o<) fz=ael.

i.e. it sends a-cuts to a, and any bar @ to an empty-face 1,,(q)-
Ezample. The positive cover of the ordered face structure T as below

;ul

VN

4) T2 L1
Jaz x3

is the following positive face structure 7'
Tt
(w1, {as}, {a1, a0}) (u1,{as, a1,a0},0)

(u1,0,{as,a1,a0}) (u1,{as, a1},{ao})

as

las a1 . a0
u2 - > a1 {ag ——— Up
X T4 X
5 U,ag T3 > T > 0
3

As before we use the convention that the empty cut in T, say (x5, 0, 0), is identified
with the corresponding face in T, x5 in this case. All bullets e denote cuts and they
are linked by a line to the descriptions of the cuts they denote.

An ideal 7 in an ordered face structure S is an unary ideal ifft Z C §(S*). The
following is a kind of inverse of the Theorem 6.1.

Theorem 7.1 Let S be an ordered face structure. Then St is a positive face struc-

ture, T is an unary ideal in ST, qg : St — S is a positive cover with the kernel
T.

Some technical lemmas

Since the Lemmas stated below are very technical we will comments on them. Lem-
mas 7.2, 7.3, 7.4 are there to be used in the proofs of Lemmas 7.6, 7.7, 7.8. Lemma
7.4 is a suplement to the pencil linearity axiom and it says intuitively that if some
faces are incident then some (other) faces are comparable. Lemmas 7.6, 7.7, 7.8
concern 6d(x)-cuts. They express cuts determined by some faces in terms of cuts
determined by some other faces. Lemma 7.6, is about the cuts determined by ~(z),
Lemma 7.7, is about the cuts determined by a faces t € §(z), and Lemma 7.8, is
about the cuts determined by a faces in y(Z<').
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Lemma 7.2 Let S be an ordered face structure z,a € S. If a € T and v <™ ~(a)
then x = y(a)

Proof. Suppose = <t «y(a). Let z,a1,...,ax,v(a) be an upper (S — v(S™*))-path,
k> 1. As v(a) = v(az) and a,a;, € S — S™), we have a = aj. But this is a
contradiction, as @ € S° and a € S7¢. O

Lemma 7.3 Let S be an ordered face structure t,t' € S, z € Ly, t <~ t', y(t) €
8(t'). Then either t <™ ~(z) or v(z) <™ t'.

Proof. Suppose contrary that ¢t £~ ~(z) £~ t'. Then, as t <™~ ¢/, we also have
t' £~ ~v(z) £~ t. Sot Lt y(z) LT . Thus, by Lemma 7.2, we have v(z) <* ¢,t'.
Hence, by Lemma 4.17, t L™ ¢’ and we get a contradiction. O

Lemma 7.4 Let S be an ordered face structure w,x,y,z € S, z € Ly, y € I§+x.

1. Let x € S7¢, yy(z) = u. If o(z) <™ v(2) then either = < x or y(x) <~ v(z).
2. Let x € 8%, vy(z) = u. If y(y) <™ v(2) then either z <* x or vy(z) <~ v(2).

3. Letx € S, u e dy(z), t =inf{t' € 0(x) : ue dt)}. Ifv(z) <™ t then
either z <* x or v(z) <~ ~v(z).

4. Let x € 8¢, u e dy(x). If v(z) <™ v(y) then either z <t x or v(z) <™ y(z).

Proof. We use notation as above in the statement of Lemma. Recall that if z € Z
then for no face 2’ we have either 2/ <~ z or 2/ <* 2.

Ad 1. As yy(x) = yy(2) we have either y(z) L* v(z) or y(z) L™~ v(z). In the
later case, as assumption y(z) <™~ 7y(z) immediately leads to contradiction, we get
v(z) <~ v(2). In the former case we have either 2 <™ x or z <~ z. The later of
these to is impossible, as we would have v(z) < t <™ p(z) and hence v(z) < o(x)
contrary to the supposition. Thus we get either z <™ z or y(z) <~ v(z).

Ad 2. In this case again we have yy(z) = yy(z) and hence either v(z) LT v(2)
or v(z) L™ v(z). In the later case we again easily get that y(z) <™ v(z). In the
former case, as z <~ x € £ is impossible, we get z < x. Thus again, we get that
either 2 < x or v(z) <™ 7(2).

Ad 3. As yy(z) = dy(x) we have either y(z) LT v(2) or y(z) L~ 4(2). In the
later case we easily get (otherwise vy(z) <™ t) that v(z) <™ ~(z). In the former
case, as z € Z, we get that either 2 <* z or z <~ 2. We shall show that z <™ x
is impossible. Suppose contrary, then there is ¢’ € 6(z) such that vy(z) <t ¢/. If
we were to have y(z) = t/ then, by definition of ¢, we would have ¢t <™ t' = ~(z2).
Thus (z) <* t' and there is a flat upper path v(z),21,..., 2k, t', with & > 1. If
u & O(t') then, as u = yv(z), there is 1 < ¢ < k such that u € ¢(z;). Hence
t <t y(z) <T y(zx) = t' and we get a contradiction with local discreteness. If
u € O(t') then, using the definition of ¢, we easily get that t <™ /. As y(z) <™t we
get v(z) <™ t' contrary to the definition of #’. Thus the assumption z <™ z leads to
a contradiction.

Ad 4. As yy(z) = dy(x) we have either y(z) LT v(2) or y(z) L~ v(2). In the
later case we easily get that y(z) <™ y(z). In the former case, as z,z € £ we cannot
have z L™~ z. As, x <T 2 € 7 is also impossible, we have z <™ x in that case. Thus
we get either z <t z or y(z) <™ y(x). O

The above Lemma had four parts with first two and second two having the same
conclusions. The following Lemma contains in fact four statement with essentially
the same conclusion. This is why we state it in a bit unusual form to emphasize it.
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Lemma 7.5 Let S be an ordered face structure u,z,z € S, z € T, u € 05(x).
Moreover, assume that one the following four conditions

1.t € 0(x), () = u € 6(t"),
2.y eIy ¢ €d(x), v(y) =t, ued(t"),
3. tebz),y €eI="" ~(t) =u, y(y") =t",

+
4oy, €IS, y(y) =t y(y") =",

holds. If t <™ ~(z) <™ " then either = <* x or there is t' € 6(x) such that
t<~t' <™t y(z) <Pt and y(t') = u.

Proof. We use notation as above in the statement of Lemma. Note that if
v(z) <t ' and ¢’ € S* then v(t') = u.

First we shall show that any of the above four assumptions imply the claim:
either z <™ x or 2 <™ x. Note that vy(z) € 05(z). If yy(2) € t(x) then the claim
follows immediately from pencil linearity. If vy(z) € 6~v(z) then by pencil linearity
we get that either y(z) LT y(z) or v(2) L™ v(z). In the former case we get, again
by pencil linearity, the claim. In the later case, as t <™ y(z) <™ t”, we get either
t L~ y(z) or t” L~ v(x), i.e. a contradiction, as t,t” <t v(x) under each of the
four assumptions above. Thus we have the claim.

Now it remains to show that each of the following four assumptions imply that
if z <™ x then there is ¢’ € §*(z) such that t <~ ¢/ <™~ ", 4(z) <T . As all the
arguments are very similar we shall show this for the assumption 1.

Assume z <~ z. Then there is ¢’ € §(z) such that y(z) <T ¢’. We need to show
that t <™ ¢/ <™~ ¢, and t' € S

If v(z) = t’ we are done. So assume that y(z) <* ¢’ and then we have a flat upper
path v(z),21,...,2k,t', with k > 1. If yy(2) = u & 0(t') then there is 1 < i < k
that u € 1(2;). So t,t" <t ~v(2;) <T v(2x) = t' and we get a contradiction with local
discreetness. Thus u € 6(¢') and we have ¢t L~ ' L~ ¢”. If we were to have ¢’ <™ ¢
then we would have ' <™ ~(z) and if we were to have t” <™ ¢’ then we would have
v(z) <~ t'. Thus we must have t <~ t' <™ t”. Therefore there are v’ € §(¢') and
u” € §(t") such that u = y(t) <t o/ <t y(¢') <t . As u,u” € 6(t") and u <T "
we have v = u”. Hence ~(t') € §(t'), ie. t' € S*. O

Lemma 7.6 Let S be an ordered face structure u,x € S, u € 57(:5) We put
o . :
toup = sup({(@)} UN(ZZ,5)),  tir = inf({t € 6(x) s u € 6(1)} UA(T5 ).
The elements teup, tint are well defined and

L (VV(m)aivT ’Y(l‘)) = (’}/’}/(I),*,T 75sup)7
2. (uvl 7<x)7_) = (u, | tinfv_)'

Proof. Ad 1. We consider two cases depending on whether tg,, = o(z) or tey, =
supN('y(I%Z))). Fix 2 € T, ().

Case tgyp = 0(z). Assume y(z) <~ v(2). As o(z) <T v(z), we have g(z) < 7(2).
But if we were to have o(z) <* 7(z) we would have y(x) LT v(z). Thus, as yo(z) =
v7y(2), we have p(z) <™~ v(z). To see the converse, assume that o(x) <™~ v(z). So
by Lemma 7.4.1 we have that either v(z) <~ ~(z) or z <t z. But z <™ x would
contradict the choice of tg,. Thus vy(z) <™ 7y(z), and hence the equation 1. holds
in this case.
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<t . <+
L) Fix ysup € I 0

that y(z) <~ v(2). As ¥(Ysup) <" 7(x) we have Y(Ysup) < ¥(2). But ¥(Ysup) A
Y(2), 80 Y(Ysup) <~ 7(2). For converse, assume that v(ysup) <~ v(2). If x € S7°
then o(x) <™ v(ysup) and again by Lemma 7.4.1 we have that either y(z) <™ (%) or
z <t x. If x € S° then by Lemma 7.4.2 we get once more that either v(z) <~ (z)
or z <t z. But z <™ 2 would contradict the choice of tsyp. Thus y(x) <™ v(z), and
hence the equation 1. holds in this case as well.

Ad 2. We consider again two cases depending on the set ;,¢ is in. Fix z € Z,,.

Case tie = info({t € 0(z) : u € §(t)}). Assume v(z) <™ tinr. Then by Lemma
7.4.3 we have that either y(z) <~ v(z) or z <™ 2. But 2 <* x would contradict the
choice of tin¢. Thus vy(z) <™ v(x). To see the converse, assume that v(z) <™ ~(z).
But then as other cases are easily excluded we must have v(z) <™ ti¢ , and hence
the equation 2. holds in this case.

Case tipr = ian('y(Iu§+$)). Fix yinr € IE” such that tins = Y(Yinf). Assume
that (2) < A(z). As 2(yine) () € T5 ™ we have 2(gint) L~ 7(2). A (gint) <~
v(2) leads immediately to a contradiction we have v(z) <~ ~(yint). To see the
converse assume that y(z) <™ y(yin). If z € S7° then by definition of ys,p, we have
Y(Ysup) <~ inf{t' € §(x) : u € §(t')} and again by Lemma 7.4.3 we have that either
v(z) <~ v(x) or z < z. If z € S° then by Lemma 7.4.4 we get once more that
either y(z) <™ v(z) or z <t z. But z < z would contradict the choice of t,s.
Thus v(z) <~ v(z), and hence the equation 2. holds in this case as well. O

Case tsup = sup. (7( such that tsup = 7(Ysup). Assume

Lemma 7.7 Let S be an ordered face structure u,t,z € S, u € §(t) and t € §(z).
We put

tsup = sup({t' € 8(x) ¢ <™ 1, 9(t) =up Uy € Z5 7 1 9(y) < 1)),

g = inf({t' € 3(x) 1 ¢ <~ 3 U({y € T3 11 < 7(1)}):

The elements tsp, tint are not necessarily well defined, due to the fact that these set
might be empty, but we have

3. (U,l t, _) - { (u’ l ,Y(x)’ _) Zf tsup is ’Lmdeﬁned7

(u,—, T tsup)  otherwise.

) (v(x), = T y(2))  if ting is undefined,
4. (’Y(t)v B T t) - { (’Y(t), l tinfs _) otherwise.

Proof. Ad 3. First note that if ¢, is undefined then ¢ is ¢i,¢ from Lemma 7.6. Thus
the equation 3. holds in this case by Lemma 7.6.2. If ¢4, is defined then we consider
two cases depending on the set tg,p, is in. However in either case, by Lemma 7.3, we
have that |, tU T tsup = Zy-

Case tep = sup({t' € o(z) : t' <~ t, y(t') = u}). Suppose there is z € Z, such
that tsup <™ 7v(2) <™ t. Then, as the assumption 1. of Lemma 7.5 holds, we have
that either z <* x or there is ¢ € 0*(z) such that ty, <™t/ <™ t, v(z) <* ¢’ and
v(t') = u. Both cases contradict the choice tgyp. Thus |, tN T tsyp = 0, and hence
(u,] t,—) = (u,—, 7 tsup) i.e. the equation 3. holds in this case.

Case tsup = sup(v({y € I="7 s y(y) <™ t}). Fix Ysup € Z="" such that
Y(Ysup) = tsup. Suppose there is z € 7, such that y(ysup) <~ 7(2) <~ t. Then,
as the assumption 2. of Lemma 7.5 holds, we have that either z <™ x or there is
t' € 6*(z) such that Y(ysup) <~ t' <~ t, y(2) <t ¢ and (¢) = u. Both cases
contradict the choice ysup. Thus |, tN T ¥(ysup) = 0, i.e. the equation 3. holds in
this case, as well.
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Ad 4. First note that if #;,¢ is undefined then ¢ is tg,p from Lemma 7.6. Thus
the equation 4. holds in this case by Lemma 7.6.1. If ¢;,5 is defined then we consider
two cases depending on the set ¢, is in. However in either case, by Lemma 7.3, we
have that l'y(t) tintU Tt = I'y(t)'

Case tins = info({t' € &(x) : t <~ t'}). Suppose there is z € T, such that
t <™ y(z) <~ ting. Then, as the assumption 1. of Lemma 7.5 holds, we have that
either z <t x or there is # € 0*(z) such that t <™~ #' <™ ty¢, v(2) <T ¢ and
(') = ~(t). Both cases contradict the choice tj,¢. Thus Ly ttN Tt = (0, and
hence (y(t), —,Tt) = (v(t), | tint, —), i.e. the equation 4. holds in this case.

Case tiyr = info(v({y € If(:)x st <™ v(y)})). Fix yms € I,Yg(;)x such that
¥(Yint) = ting. Suppose there is z € Z,, such that ¢ <™ v(z) <~ ¥(¥inf). Then, as the
assumption 3. of Lemma 7.5 holds, we have that either z <* x or there is t' € 6*(z)
such that v(ysup) <™ t' <™ t, v(z) <t ' and v(¢') = y(t). Both cases contradict the
choice yinr. Thus L) tN | y(Yint) = (), i.e. the equation 4. holds in this case, as
well. O

Lemma 7.8 Let S be an ordered face structure y,xz € S, y € IWS;(Z). Then yy(y) €
06(x). We put

tsup = sup({t € 8(x) : £ <~ ()} Uy({y' € Z5 0 () <~ 1)),

g = inf({t € 3(2) - (y) <~ U € 55 v(y) <~ 1)}

The elements toup,ting are not necessarily well defined, due to the fact that these set
might be empty, but we have

| (v(w), L y(x), =) if teup is undefined,
. (@), Lv(y), -) —{ (Y1(5), =11 toss) e e

) (@), = T v(2))  if ting is undefined,
6. (VW) = 1T7(y) = { (v (), | tint, —) otherwise.

Proof. Ad 5. First note that if ts,;, is undefined then, with v = yy(y), y is yint from
(the proof of ) Lemma 7.6. Thus the equation 5. holds in this case by Lemma 7.6.2.
If typ is defined then we consider two cases depending on the set tq,p, is in. However
in either case, by Lemma 7.3, we have that | ) 7(¥)U T tsup = Zy(y)-

Case tep = sup_({t € 8(z) : t <™ y(y)}). Suppose there is z € T, (y) such that
tsup <~ Y(2) <~ v(y). Then, as the assumption 3. of Lemma 7.5 holds, we have
that either z <* x or there is ¢ € *(z) such that tg, <™t/ <™ t, v(z) <* ¢’ and
v(t') = vy(y). Both cases contradict the choice tgup. Thus |y Y(¥)N T teuwp = 0,
i.e. the equation 5. holds in this case.

+ N . +
Case typ = sup.(Y({y' € IWSV(Z) (') < v(y)})). Fix ysup € I%(Z) such that

Y(Ysup) = tsup- Suppose there is z € .., such that vy(ysup) <~ v(2) <~ (y).
Then, as the assumption 4. of Lemma 7.5 holds, we have that either z <™ x or

there is t' € 0*(x) such that y(ysup) <™ ' <™ t, y(2) <T ' and y(t') = vy(y). Both
cases contradict the choice ysup. Thus |y ()N T Y(Ysup) = 0, ie. the equation
5. holds in this case, as well.

Ad 6. First note that if ¢, is undefined then, yy(y) = vy(z) and y is ysyp from
(the proof of) Lemma 7.6. Thus the equation 6. holds in this case by Lemma 7.6.1.
If i is defined then consider two cases depending on the set t;,¢ is in. However in

either case, by Lemma 7.3, we have that |, tinfU T v(y) = Ty (y)-
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Case tins = inf({t € §(z) : v(y) <™ t}). Suppose there is z € Z,+(y) such that
v(y) <~ v(z) <~ ting. Then, as the assumption 2. of Lemma 7.5 holds, we have
that either z <t x or there is ' € §*(z) such that t <™ ¢ <™ tinr, () < ¢’ and
v(t') = vy(y). Both cases contradict the choice tins. Thus | ¢ tineN T y(y) = 0,
hence (vy(y), —, T v(v)) = (vy(v), | ting, —), i-e. the equation 6. holds in this case.

Case tinr = info(v({y' € I%JE;) cy(y) <~ v(Y)})). Fix g € IWS;(;) such that
Y(Yint) = tint.- Suppose there is z € 7,y such that v(y) <~ v(z) <~ ¥(Yint). Then,
as the assumption 4. of Lemma 7.5 holds, we have that either z <™ z or there is
t' € 6*(x) such that v(y) <™ t' <™ y(yit), 7(2) <T ' and v(t') = vy(y). Both cases
contradict the choice y,r. Thus Tw(y) tN | Y(ying) = 0, i.e. the equation 6. holds in
this case, as well. O

The Proof

Proof of Theorem 7.1. Fix an ordered face structure S. Clearly for a € Z, 6T (a) # 0.
Suppose that (x,L,U) is a cut in S’,Z, with k > 0. Then either §(z) # 0 or é(z) =0
and then by Lemma 4.3 we have that there is y € Z<'*. In either case 61 (z, L, U) #
(). Thus ST is a positive hypergraph. We shall check that ST satisfies all four positive
face structure axioms.

Globularity. We need to verify globularity for both kinds of faces in ST: bars
and cuts. First we shall check globularity for bars. Fix a € Z. We have

Y @) = (yv(a), = 1 yv(a)) = +16" (@),

syt (@) = I @ u{(t, L yy(@),—) : t € dyy(a)} = 6167 (@)
We need to show that
v (@) ¢ 5" (@).
Suppose contrary that 4TyT(@) € §Tyf(@). Then, as v17f(@) is a cut, we would

have yyy(a) € 0yy(a), i.e. yy(a) is a loop. Thus by Lemma 4.3 there is a € Z.+(q)
such that v(a) < yy(«). But then T yy(«) Z a €| vy(«) and hence

(Yrv(@), = Tyv(a) # (vyv(a), L yy(a), —),

which means that v'yf(@) ¢ 6'yf(@) after all. From this the globularity for bars
follow easily.

Now we shall check globularity for cuts. Fix a cut (z,L,U) in S,Z, with & > 1.
The sets involved in the globularity equations are sums of some sets. We shall spell
these sets below giving names to their summands. We have

Yyl (@, L,U) = (vy(z), —, T v(z)) = ¥,
6t (2, L,U) = Z=@ U {(u, | v(x), =) s u € dy(z)} = Z1 U Zy,
Vot (@, LU) = {(7(y), = 1 7)) 1 y € =T} U{(4(t), =, T t) st € 6(a)} = Z3U Z4

018t (@, L,U) = {(y3(), L 1(y), =) 1y € T= "} U{5: s € IT='", t € b(x)}U
U{(u, | t,—) :t€d(x), uedt)} =Zs U ZsgU Z7

In order to verify ~y-globularity, i.e.
YAt (@, L,U) = 416" (2, L,U) = 616" (2, L, U),

we shall show:
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(B) ¢ ¢ 616 (2, L, U),
(C) A16T (2, L,U) — 2 C 8167 (z, L, U).

Ad A. By Lemma 7.6 (7y(x)-cuts) either z € S7¢ and ¢ = (yo(x),—, 1 o(z)) € Z4
or there is y €€ I%ng) such that ¢ = (vy(y),—,T v(y)) € Zs. In either case
v et (2, L,U).

Ad B. As 9 is not a bar, we have ¢ ¢ Zg.

Suppose ¢ € Zs. Then there is y € IVS;(;?) such that (vy(y), ] v(y),—) = .
So y €1 v(z), ie. y(x) <~ v(y). But y <t z, so y(y) <t y(x) and we have a
contradiction with the disjointness. Thus ¢ & Z5.

Suppose now that 1 € Z;. So there is ¢ € §(z) such that vy(z) € §(t) and
(yy(x), | t,—) = 1. As t € §(x) we have y(t) <T yy(z). So t is a loop. Then, by
Lemma 4.3, there is y € Z.(,) such that v(y) <tt Asy € S, we have y <™ «,
and hence ’Y(y) SJF 7('%') Thus y gl'y'y(x) t and y gT 7(1‘)7 Le. (’Y’Y(x)vl 2 _) 7& (0
after all. Thus ¢ ¢ Zs and hence ¢ ¢ §767(z, L, U).

Ad C. Fix ¢ € 416t (x, L, U), such that £ # 1. If & € Zy then there is t € §(z)
such that £ = (y(t), —, T t). We shall use Lemma 7.7 (t-cuts). As & # ¢

tng = inf({t' € 6(x) 1t <~ Y} U({y € T3, £ <~ (W)}

is well defined and then & = (y(t), | tinf, —). Now, if tine = inf ({¢’ € 6(z) : t <~ t'})
then £ € Z7 and if s = inf o (v({y € If(;x 1t <™ ~(y)})) then & € Zs.

If £ € Z3 then there is y € T='7, so that & = (v (y),—, 1T v(y)). We shall use
Lemma 7.8 (v(y)-cuts). As & # 1 then

g = inf ({t € 0(z) - 1(y) <~ FU{y € 55 - 1(w) <~ 1W)})

is well defined and € = (yy(y), | tins, —). Again, if tinr = inf. ({t € d(x) : y(y) <~ t})
then £ € Z7 and if tj,r = inf (y({y € IVSJ(Z) :v(y) <~ ~(y')})) then £ € Zs. Thus
C. holds. This ends verification of y-globularity for ST.

Now we shall check §-globularity for ST, i.e.

6ty (z, L,U) = 676" (2, L,U) — 416" (z, L, U).

Both sides of this equation contains both bars and cuts. We show equalities for
them separately.

First we shall show the equality for bars. We need to show that Zg = Z;. Clearly,
Zg C Zy. We shall verify that Z; C Zg. Let t € Z1, ie. t € Z and t < ~(z). As
t € T and ZN~(S™) = () we have that either t = y(x) = 6(x) or ¢t # v(z). In the
former case clearly £ € Zg. In the later case there is an upper (S — v(S~*))-path
t,x1,...,2,v(r) with k& > 1. By pencil linearity x;, <t z. Ast € Z C S —y(S™?)
by Second Path Lemma, either ¢ € §(z) or there is 1 <1 < k such that v(x;) € ().
In either case there is s € 6(x) (s =t or s = y(x;)) such that t <t s, i.e. T € Zg.
Thus the d-globularity for bars holds.

Now we will show the J-globularity for cuts. Clearly, it is enough to restrict
ourself to cuts over 0(5(37) as other cuts cannot appear in the equation. Moreover,
by Lemma 4.7 (atlas), we have 85(x) = oy(x) Uyd*(z). As in 6Tyf(x, L,U) can
appear only cuts over (57(m) we will split our proof farther by considering these two
case separately. Let u € 06(35) By Xu_cuts we mean u-cuts in the set X. To end
the proof of d-globularity we need to show:
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(1) if u € v6~ M) then 676T (2, L, U)y_cuss € 7161 (2, L, U),

(IT) if u € d(x) then the cut ¥, = (u, | y(z), —) is the only u-cut in 64T (z, L, U).
Moreover we have:

(Ay) Y € 6161 (2, L,U),
(CU) 5t ot (l‘, L, U)u—cuts — 1y C ’YT(ST(ZE, L, U)

Note the similarity of the conditions (A), (B), (C) with (Ay), (Bu), (Cu).
Ad L Fix u € y0~ () and t,, € 0~*(x) such that y(t,) = u. Let ¢ = (u, L/, U’) €
616t (x, L, U). We put

L )t if o € Z7 and t € §(x) such that L' =], t,
| () ifpe Zs, and y € Z§+x such that L' =], v(y).

Thus ¢ = (u, | t,, —). Put
toup = sup({t’ € 3(z) : ¥/ < t, 1(t') = Ur({y € I3 i v(y) < 1)),

Ast, € {t' € 6(z) : ! <™ t,, ¥(t') = u} # O the face tgp is well defined. Then,
by Lemmas 7.7 and 7.8 we have that ¢ = (u, —, T teuwp) € 717 (z, L, U).

Ad TI. The fact that ), is the only u-cut in §'yf(x, L,U) is obvious from our
description of this set as sum Z; U Zs.

Ad A, Let tine = info({t € §(z) 1w € 6()YUN(ZS)). I {t € () : u € 6(t)} =
() then z € S¢ and hence, by Lemma 4.3, Iu§+ # (). Thus ti,¢ is well defined. By
Lemma 7.6, we have 10, = (u, | tint, —) € 8767 (z, L, U), as required.

Ad B,. Suppose i, € Z3. Then there is y € Iugu such that ¥, = (u, —, T v(y)).
As y <t 2z we have y(y) <t y(x). Thus v(y) £~ v(z). This means that y €], vy(z).
Clearly y €7 v(y). Thus ¢, = (u, | v(z),—) # (u,—, T v(y)), after all. This shows
that 1, & Zs.

Suppose now that 1, € Z4. So there is t € §(z) such that ¢, = (u,—,1 t).
As ~(t) = u € dy(x), t is a loop. Then, by Lemma 4.3, there is y € Z, such that
v(y) < t and, by transitivity of <™, v(y) < y(x). Thus y €7 t and y €|, v(x).
Then ¢, = (u, | y(x),—) # (u,—, T t). So ¢ & Z4, and hence o & 167 (z, L, U).

Ad C,. Fix ¢ = (u,L,U’) € 6161(x, L,U), such that £ # ¢,. If £ € Z; then
there is t € 0(z) such that u € 6(t) and € = (u, | t,—). We shall use Lemma 7.7
(t-cuts). As £ # 1y, the face

tsup = sup({t' € 8(z) : ' <™ t, 9(t) = u} Un({y € 5" 9 (y) <™ 1)),

is well defined and then £ = (u, —, T tsup). Now, if ey, = sup ({t’ € é(z) : ¢/ <~
t, (') = u}) then &€ € Z4 and if typ = sup_(Y({y € Z='* : 4(y) <™ t})) then
& € Zs.

If £ € Zs then there is y € Z<'®, so that £ = (u, | v(y), —). We shall use Lemma

7.8 (v(y)-cuts).
As & # 1), the face

tsup = sup({t € () : £ <~ 1)} U{Y € I35 (W) < W)},

is well defined and € = (u, —, T teup). Again, if tg, = sup,({t € d(z) : t <~ v(y)})
then £ € Zy and if tqp = sup (v({y' € IWS;(Z) :v(y) <~ v(y)})) then £ € Zs. Thus
Cy. holds. This ends verification of -globularity for ST.
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Orders in St. Before we verify the remaining axioms of positive face structures
we shall describe the order in ST. Let (z,L,U),(y,L',U’) € C(Zs,) be two cuts in
S,Z and a,b € Tp1 so that @, b are two bars in S,Z.

For k > 0, the upper order <t in S,Z can be characterized as follows (<7 is the
upper order in S):

1. (cut,cut): (z,L,U) < (y, L', U’) iff either z <T y or x = y and L ¢ L';

a <t (y, L, U') iff y(a) <T y;

(

2. (bar,cut
3. (
(

):
cut,bar): (z,L,U) <VF b never holds true;
):

4. @ <©* b never holds true.

bar,bar

For k > 1, the lower order <"~ in S,Z can be characterized as follows (<™ is the
lower order in S):

1. (cut,cut): (z,L,U) <= (y, L', U") iff x <™ y;

2. (bar,cut): @ <b~ (y, L', U") iff v(a) <™ y;

(
( )

3. (cut,bar): (z,L,U) <V~ biff z <~ ~(b);
( )

4. (bar,bar): @ <~ biff y(a) <™ y(b).

Strictness. The strictness is obvious from the above description of <. Note
that all faces in Sg are cuts. So <t on Sg is a linear order since <7V is.

Disjointness. With the description of <"+ and <~ above the disjointness is a
matter of a simple check using disjointness of <™ and <™.

Pencil linearity. Let @, b be two different bars in ST and (x, L,U), (y, L,U) be
two different cuts in ST. To show ~-linearity we need to consider three cases:

1. v(x, L,U) =~(y, L', U"),
2. v(@) = y(z, L,U),
3. y(@) = ~(b).

Ad 1. We have (v(x),—,
L' L. Thus z LT y. If 2 # y and v(z) = v(y) then either z LT y or L™ y. In
case x L1 y we have (x, L,U) LT (y,L,U). We shall show that z 1~ y is impossible.
Suppose <~ y. As y(z) = y(y), it follows that y is a loop. Let ¢ € Z(,) be an
initial face such that v(c) <* y. Then x <~ ~(c) and y £~ 7(a), i.e. Tz #] y,
contrary to the supposition. Thus x L~ y cannot hold true.

Ad 2. We have (yy(a),—,T 7(a)) = (v(x),— 1 z). As yy(a) = (=),
we have either vy(a) = z or y(a) Lt z or v(a) L~ z. If y(a) <T =z then
a <t (y(a),0,—) <* (z,L,U). The other conditions are impossible. The condition
x <t ~v(a) is impossible by Lemma 7.2, and the condition y(a) L™~ z is impossible
as it is easily seen that we were to have Tz #7 v(a).

Ad 3. We shall show that this case, i.e. (yy(a),—,T v(a)) = (vy(b),—,T (b))
is impossible. As a,b € Z,(q) then y(a) L~ v(b). Suppose y(a) <~ v(b). Then
b€ v(a) and b & v(b). So we cannot have T v(a)) =7 v(b). This ends the proof of
v-linearity.

Finally, to verify é-linearity we need to consider the following four cases:

Tz)=(v(y),—,Ty). If z =y then either L G L or
an
+

1. z€d(z, L,U)N(y, L', U"),
2. (t, L",U") € §(x, L,U) Ny, L', U"),
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3. 8(a) € 8z, L, U),

4. 5@a) = 5(b).

Ad 1. In this case we have z <* z and z <* y. Thus by Lemma 4.17, z LT y
or x = y. In both cases (z,L,U) LT (y,L',U").

Ad 2. In this case t € §(z)Nd(y) and (¢, L",U") = (t,| z,—) = (¢, ] y,—). Thus
either x L1 y or z L™ y. In the former case we have (x,L,U) LT (y,L',U"). We
shall show that the later case is impossible. Suppose <~ . Then 2 € S* and hence
there is a € Z such that y(a) <T z. Soa € (|t y— ¢ z) and (¢, | x,—) # (¢, | y,—)
contrary to the supposition.

Ad 3. In this case yy(a) € 0(x) and (yy(a), | v(a),—) = (vy(a),| x,—). Thus
either v(a) LT = or y(a) L™ z. If v(a) < z then @ < (2, L,U). The remaining
cases are impossible. x <T «(a) is impossible by Lemma 7.2, and if we were to have
y(a) L™ z we would have |, v(a) #lyy(a) 2

Ad 4. We shall show that this case (yy(a),| v(a),—) = (yy(b),] ~(b),—) is
impossible. As a,b € I, we have y(a) L~ 7(b). Say vy(a) <~ 7(b). Then
a €| v(b)— | y(a) and §(a) # §(b) after all. This ends the proof of d-linearity.

The fact that ¢ : ST — S is a positive cover with the kernel Z. O

The theorem below show that if we take a positive cover of a quotient by an unary
ideal then we get the ordered face structure back. Thus it shows that if we deal with
unary ideals only the construction of taking quotient of a positive face structure and
taking a positive cover of an ordered face structure are mutually inverse.

8 k-domains and k-codomains of ordered face structures

For any k € w, we introduce two operations
d® c¢® : Ob(oFs) — Ob(oF's},)

of the k-th domain and the k-th codomain.
For a given ordered face structure T' the we shall define d®)T and ¢®T via
convex subhypergraphs d®T and ¢®T of T. Then we shall put

dPOT = d®T], BT =[P

The operations d®) X and ¢*) X are defined for any convex subset of any ordered
face structure T. We put, for [ € w,

0 if >k,
dPX) = X —v(XD) ifl=k,
X ifl <k,
and
0 if 1>k,

Xp—0(X ) ifl=k,

Xp—1 — U(Xpr) Hl=k—1,

X ifl <k-—1.

Ezample. Here is an example of an ordered face structure 1" and its 1-domain and
1-codomain:

() X), =

T dVT s cT

° ZE (870)7{'%})7'(87{%}7@)

L=
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The following is a more involved example. With ordered face structure S as below

S o2
W N\

its 1-domain is

ds

T2
51— > 5

82
x%‘ \f?
83
the convex subset of S defining 1-codomain is

s
6

§3 ——— > S1 S0

and finally the 1-codomain of §S' is

s3 —20 st "1 (s0,0{20}) — 2 (50.{z0}.0)

We have

Lemma 8.1 Let T be an ordered face structure, X a convex subset in T. The
subhypergraphs d®) X and ¢®X of T are convex. Moreover, for X = T, £ANT g
empty, i.e. there are no empty loops in dRT (hence dRT = d(k)T) and all empty
loops in T have dimension k.

Proof. The fact that d® X and ¢®) X are convex sets is an easy consequence
Lemmas 4.11 and 4.16. £47T is empty by loop-filling. The empty loops in ger
have dimension k£ by globularity. O

Thus the ordered face structures d®7T and ¢¥)T are well defined. We denote
Yy by dgic ) and U, kyp by cg]f ). Thus we have defined a diagram in oF's:

T
k k
ap” e
d®T ckT

Ezxample. Let X C Y be convex subsets of an ordered face structure 7" as shown
on the diagram below.
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X: Y : T:

A B G

Clearly X CY. And ‘Ehei stretching of X and Y gives
X]|:

(87 Q)v _) — (87 {x}a _) —E (87 {Ia Z}v _)

and vl

(S’Q’_) (5’{1‘}7_) (Sa {x,y},—)
respectively. Clearly there is no natural map from [X] to [Y].
This shows that there might be no natural comparison map between stretchings
even if one of the convex subset is contained in the other. The Lemma below says
that however in some important cases we do have such comparison maps.

(‘97 {xvyv Z}v _)

Lemma 8.2 Let T be an ordered face structure, X a convex subset in T. The
embeddings AW X — X and (X — X induce monotone morphisms d()];) :
[d® X] — [X] and cg?) . [¢®) X] — [X] so that the triangles

T

dg'; ¥

(k
A\

commute, where f and g are monotone zsomorphzsms.

Proof. The morphisms v send cuts over a face to that face. The commutation

of the upper triangles comes to the observation (see below) that both d( ) and cg];)

sends cuts over a to cuts over a for any a in d® X and ¢®) X respectlvely
Next we deal with the left lower triangle

a®
[d®) X] —5— [X]

)
f dix)

d®[X]
In dimensions [ < k, we have [X]; = [d®) X]; = d®)[X]; and

fr =@ = (@) = idpy),
In dimension k, we have
AW X = {(a,0,65)  a € X =7}
[d(k)X]k = {(a7®7@) ta € Xk - fy(Xk_—i\l)}

and
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(a,0,0) > (a,0,&

(a,0,&X)

From the description it is clear that both triangles commute and that f is an iso.

Now we shall describe the lower right triangle
(%)

In this case we need to look at the cells of both dimensions k and & — 1. In lower
dimensions this triangle is, as in the previous case, the triangle of identities. To
describe the above diagram, we shall describe the diagram

X (k) x —L— [P X]

|k

[X] WX +—— [P [X]]
As the horizontal arrows in the left hand square are inclusions we need to describe

only the right hand square. In dimension k, we have

(X)) = X — 6(X)

€ Xy = {(a,0,0) € C(657%) s a € Xi — 8(X\))
WX = [X] = 0(1X]5 ) = {(a, = 0) € C(ES) s a € Xy, — (X))}
WX = [Tk = {((a,—.0),0,0) € C(E, 1)) : (a,—.0) € P [X],}

and the commutation of the square is

a~———(a,0,0)

(a,0,0) ~—

So the diagram in dimension & commutes and g, is a leeCtIOIl.
In dimension k£ — 1 we have

(X )1 = X1 — o(Xps1)
[e®) X]p_y = {(z, Lo, Up) € C(E"X) 1z € Xppoy — 1 Xpsr)}
P [X 1 = {(z,L1,U1) € C(EX) : there is no a € X, such that
Sabes() V(@) =z € 8(b), (a, |, =), (b, | o, =) € [X]7
and (+(a), -1 @) = (&, L1, Uh) = (2,1 b, —)}
Xy =[xy =
= {((m,Ll,Ul),LQ,UQ) S C(g(ilz[f(]]ﬂ) (x Ll,Ul) S C [ ]k 1}

and the commutation of the square is
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x - | (z, Lo, Up)

J |

(,L1,U1) ~— ((x, L1,U1), Ly, Us)

where the bijective correspondence between cuts (z, Lo, Up) in C(Sg(k)x ) and the
cuts of cuts ((z, L1,Uy), Ly, Uz) in [¢®[X]]4_1 is described below.

First we introduce a piece of notation. We denote the faces ajn, aour € X A
5(Xj‘1) such that y(ai,) = « € 6(aout). Such faces do not need to exists but if they
do they are unique. We have

Lo={le &% . (1,—,0) € Ly or Jpep,a <t 1},

Up={le&™X(1,—,0) € Uy or Jpep, a <T 1},
Li={ac 5:;:)( : Jrerga <t 1 or a;y, exists and a <T a;, },

Uy={ac Sf tJiev, a <t 1 or apy exists and a <™ Qouts }
(k) x
Ly={(,—0) ¢ 5(;7_[)“]) ‘1€ Lo},
() x
Uy ={(1,—,0) € &, 1) : 1 € Up}.
It is a matter of a check to see that this correspondence is bijective and that g is

indeed an iso. Note that in this notation the map cg?) : [¢®X] — [X] is given by

(x, Lo, Uy) — (z, L1, Un).
O

Proposition 8.3 Let ¢ : S — T be a positive cover, T = ker(q) be an ideal in T
determining this cover. Then we have positive covers d¥)(q) : d® S — d®T and
c(k)(q) ¢S — BT, with kernels TN d® S and T N c®) S, respectively, making
both squares

g (k)
ARG — S g g
d®(q) q c®(q)
d®T T~ cWT

dgc ) cr
commute.

Proof. To see that d(¥)q exists, we shall show that if a € S}, and ¢(a) € ’y(Tk;)‘l) then
a € v(Sk+1). So pick a € Tk_fl such that v(a) = ¢g(a). As ¢ is a cover, there is
B € Sk11 such that ¢(8) = a. Hence there is a Z-path from a to vy(a) or from ~y(a)
to a. In the latter case a € y(Skg+1) and we are done. So assume that there is an
upper Z-path a, a1, ..., an,v(8). As q(B) is not a loop and gq(a;) = 1,5, we have
a; <t B and a € «(S). In particular, we have a € y(Sky1), as required.

Similarly we can show that we have a hypergraph morphism ¢’ as in the diagram

S chs
q q \ ya q
T T <5 [T




making the square commutes. We shall show that ¢’ can be lifted to c®g:cksg —
[c®)T]. As the only empty loops in ¢*)T have dimension k we need to define the
function

(®g)p—1 : Sp—1 — t(Sk1) — U{C(Sg‘;’(k)T) 22 € Tpqy — o(Thy1)}

only. For z € S;_1 — ¢(Sk+1), we put

Ly @00 if ¢ () €lg_,,

®) ) @0 &Lt =0,
(€ @i-1(w) (x,] a,0) aqe Sk — 0(Sk+1) and x € 6(a),
(2,0,1b) b€ Sk —06(Sk+1) and x = 7(b).

As for any x € Si_1 — ¢(Sg41) if ¢ (x) € Ty—1 and & (?((;T # ) then either there is a
unique a € Sk — 0(Skg4+1) such that = € d(a) or there is a unique b € S — §(Sk+1)
such that = v(b), (c¢!¥q)x_; is well defined. The remaining details are left for the
reader. O

In particular, from this Proposition and Theorem 7.1, we have

Corollary 8.4 Let S be an ordered face structure, qs : ST — S it’s positive cover,
with kernel I, as defined in section 7. Then, dim(T) < dim(S), TN c(S) =T<, 2
and

oSNz, ,=cs,  d(sh)z=ds.

n—2

The globularity equations for ordered face structures can be deduced from the
above Proposition.

Proposition 8.5 Let S be an ordered face structure k,l € w, k <1 < dim(S). Then

the diagram

q® cl

d(l>S chg
q® \ o®)

d® s

d®) g ckg
commautes.
Proof. Having Theorem 7.1 and Proposition 8.3 we see that the above diagram

commutes as a consequence of the same diagram being commutative for the positive
face structure. O

9 k-tensor squares of ordered face structures

Let S and T be ordered face structures such that c¢*)S = d*)T. In that case we
define the k-tensor S ®; T of S and T and the k-tensor square in oF's

S s S@pT

(k)

K
Cg T




The local part of S ®; T is defined so that the square

8] —F—— IS @ T|
c(Sk) kT
k
‘C( )S‘ d(k) T
is a pushout in 1F's, so the faces of S ®y T are as in the following table:
dim chs d®T Se,T
>k 0 0 S+ 1
k Sy — 5(51;43\1) Ty — ’Y(Tk_+>\1) Sk +( k;—}—l) Ty + 5(Sk+1)
k—1 C(Sk—1 — t(Sk+1)) Ty 1 Sk_1
Il<k-1 S T; Sy

By the assumption the first and the second columns are equal and the third describes
the faces of S ®; T'. To simplify the description of S ®; T, we assume that

Sk — 5(Sk+1) Ty — 'Y(Tk+1) Sk N T,
and we introduce the notation for the function
[—] = (Cfgk))k—l (WS 1 =Th1 — Sp_1.

that sends t-cuts in S, (with ¢ € Si_1, i.e. elements of Ti_1) to t. All the components
of the maps kg : S — S ® T and kp : T — S ®; T are inclusions except for
(k7)g—1 which is [—-]. The domain and codomain maps in S ® T, denoted v® and
6% for short, are obvious except for k-faces in (T, +1) If t € y(T), 4:\1) we put:

() = [y (@), 5(t) = {[u] : w € 67 (1)}
To finish off the definition of S ®j T, it is enough to define <®5~, for I > 1. For
[ <k, <S&Dh~ jg <5~ and <D~ g St~ 4 T~ for | > k + 1. Thus, it
remains to define the orders <(3®xDe~ and <(S@kDk+1~ The order <(S@kTr+1~
is defined for a,b € (S @k T)kr1 = Sk+1 + Trr1 we put

either a,b € Sy and a <Sk+1™ b,
a <Dkt~ piff { or a,b € Tyq and a <Ts+1~ b,
ora€ Siy1, b€ Tiy1 and a <S®T= p,

ie. it is <%~ on Spy1, <D™ on is Tjyq, and moreover if the faces comes from
different parts and are <*®*T'~ related, then faces from S comes before the faces
from T'. The last clause of this definition is the only reason S ®; T is not a pushout
in oFs, in general. It may cause a face a from S to be <~-smaller than a face
b from T even if there is no ~-relation between a and b, whatsoever. By Lemma
4.28, to define the order <(5®T)e~ it is enough to say that it agrees with <7+~ on
the set (S ®x T)r — 6((S T),;_i‘l) = (T — 5(T,;:‘1)). However we give below the
full, but more involved, definition of the order <(S®1)&:~  We have (S @ T =
Sk + V(Tkﬂ) T + 5(Sk+1) We define <51k~ to be <5~ on Sy, and to be
<"~ on Tyy1. The essential case is if = € (5(Sk+1) and y € 'y(TkH) In that case
there is a unique &’ € Sy NT}, that z <* 2/. We put & <®De~ 4 iff o/ <Te™~ 4 and
y <Dk~ g iff y <D~ 2/ and y <Dk~ . In other words for z,y € (SQkT)k,
we have:

either z,y € S and z <%~ y,

or z,y € T and z <1~ y,
z <O D~ g iff { orax e (5(5,;4_1) Y€ ’y(Tk__H) and J,eg,n7,  <¥F z and 2 <T y,

orz € 7(Tk+1) y € 5(Sk+1) and z <5k y

and J,c5,n7, ¢ < Tt 2 and z <5~

66



Ezamples. Before we prove some properties of the above construction let us look
at some examples of k-tensors:

s LeguT T

S S S
z Y

In this case the only relation that is not coming from the fact that S ®q 7T is a
pushout locally is x <™ y. We have that x comes before y as in ’case of doubt’ faces
from S comes before those from T'.
The next example is a bit more involved. For the ordered face structures
o ——— 0

ZONIS ot

Y2 1

we have ¢S = dMT

o T e Y2 g YL o Y o

and their 1-tensor S ®; T square is
[
/ Y \
[
YR
Yy,

ST

Yo

with a <™ b as the only additional data not following from the fact that S ®1 T is
a pushout locally.

Proposition 9.1 Let S and T be ordered face structures, k € w, and ¢S = d®T.
Then S ®i T is an ordered face structure, and the k-tensor square

S s, T

(k)

Y
Cg T

(k) g T
c
aly
commutes in oFs. Moreover the functor | — | : oFs — 1Fs sends the k-tensor

squares to pushouts.

Proof. The whole proof is a matter of a check. We shall discuss globularity leaving
the verification of other axioms of ordered face structure for the reader.

The globularity condition for faces in S ®j T for other faces than those in Ty
and Ty11 holds as a direct consequence of globularity for S and 7. A simple check
shows that in fact globularity for T}, is also a consequence of globularity for 7. Thus
we need to verify the globularity for a € Tyy1 C (S ®, T)py1. We will write ~ for 47
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and v® for y5®+T . For empty-domain faces the globularity is obvious so we assume
that a € T 7. Put

L={ac 'y“(Tkj:‘l) : there is a S* N T}, — path (possibly empty) from &(a) to ya}.

We have
S} + T} for 1>k,
(ST =4 Sp+L forl=k,
S for | < k.

We shall describe the sets involved in the globularity conditions:
0%(a) = 8(a), 6% a) =6 Ma) - L,

7%9%(a) = [yv(a)], %9 (a) = {[t] : t € 57(a)]},
190%(a) = {[v(z)] : # € 8(a)}, 0%6%(a) ={[t] : t € 36(a)]},
7909 Ma) = {[y(2)] : & € 8(a) — L}, 6%6%(a) = {[t] : res(a)-1 t € 6(2)]}.

By assumption on T we have vy(a) = vd(a) — 66 *(a). Thus to show the ~-
globularity ‘
"y®’y®(a) — ’Y®5®(a) _ 5®(5®’7)‘(a)

we need to show
1. 1®y%(a) & 626 (a)
2. 1%6%(a) € 7®7%(a) U %6%~(a).

Ad 1. Suppose 1. does not hold and fix face z € 6(a) — L, t € é(x) such that
there is an upper (S* N T)-path ¢,zq,..., 2k, vy(a) from t to yy(a). In particular,
this is Ty, — 'y(T,;_)‘ )-path. As x € Ty, we have xo <T x.As y(z) <T vvy(a), by Path
Lemma and the definition of L, we have that x € L, contrary to the assumption.

Ad 2. Fix z € §(a). Let y(z),x1,. ..,z yy(a) be the flat upper (T —v(Tkj:‘l))—
path. If this path is S*-path then [y(z)] = [yy(a)], if it is not then [yy(z)] €
6®6®~2(a), as required.

For §-globularity we consider only the case y(a) € T~¢. The other case is easy.
For empty-faces in 7" we have yv6%(a) C 0dv(a) and hence passing to equivalence
classes we also have y®7®8%<(a) C 025%+(a). Moreover as 6v(a) = 66(a) — 0~ (a)
holds in T to show 6®v®(a) = §®8(a) — v®6%*(a) we need to show again two
things

3. 6942 (a) N 26 Na) =0,
4. 6%6%(a) C %42 (a) Uy26® ()

Ad 3. Suppose contrary, that 3. does not hold. Fix ¢ € dv(a) such that [t] €
¥25%A(a). So there is x € 6*(a) — L and upper (Sp NTy)-path t,zy,. .., zx,v(x),
with k > 1. If t € 6(z) or y(z;) € §(z), for some i =1,...,k—1 then x € L, contrary
to the supposition. If ¢t € 6(x) and z; <t x, for some i = 1,...,k, then, by Lemma
4.8.1 and Path Lemma, y(a) <™ = € 6(a) which is again a contradiction. Thus 3.
holds.

Ad 4. Fix t € §(x) such that z € 6(a). Let x1,...,x,t be the maximal flat
upper (T — W(T,;_i_)‘l))—path ending at ¢t. By Path Lemma either there is t' € d(a)
such that ¢ € 6(zq) or ¢ = ~(z;), for some ¢ = 1,...,k — 1, or x; <t ~(a),
for some ¢ = 1,...,k, z; € T° and vy(z) € 06vy(a). In the former case, if the
path t/,zj,..., ok, t is an S*-path then [t] € 699 (a), if not then using again Path
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Lemma we get that [t] € 7¥20%*(a). In the later case we can also easily show that
[t] € ¥26%*(a), as required. O

The following propositions establish a connection between tensor squares of or-
dered faces structures and special pushouts of positive face structures.

Proposition 9.2 Let X and Y be positive face structures, k € w, c(k)(X) =
d®) (Y), and J an ideal in the special pushout® X + Y. The quotient by ideal
J of the special pushout being the top of the following cube

X al X +rY
C(V V{
e(X) — ¢ dv_y g
X/ gx———— |+ X +1Y)/7

K
cW(X)/ 74 —qw Yo

is a k-tensor square on the bottom of the following cube, where T, JY, and J*
are the ideals that arise by intersecting J with X, Y, and ck) (X), respectively. In
the cube all squares commutes, and all vertical maps are covers.

Proof. This is a matter of a simple check. O

Proposition 9.3 Let S and T be ordered face structures, k € w, and c®§ = d®T
and a positive cover p : (S @y T)} — S @), T with the kernel J. Then there are
covers St — S and Tt — T, such that the top square of the following cube

st R (S @ T)*
o9 /
(5 p ‘ a® - P
. S — p—» S®rT
(k) /;
c(k)(g) 1@ T

18 a special pushout in Fs+/1, and the bottom square is the quotient k-tensor square

of the top by the kernel J.

Proof. We denote (S ®;, T)* by P. We shall define the positive face structures S,
T* and the morphisms from then} in the diaugram]t

gt—5 . p Ty

as q ar

S RS ST RS T
S can be identified with a subset of S ®; T (via kg). We define S* as the inverse
image of S i.e. ST = ¢ 1(S +1g). St is a positive face structure as a convex subset
of a positive face structure P. ¢g is the restriction of ¢ to S*. It is onto since g is.
It is also easy to see that the kernel of gg is J N S*.
The description of faces of T% is more involved.

8By this we mean the pushouts, in the category of positive face structures Fs+/1, of a special
kind that have been described in [Z].
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—_

LT = ¢ (Tep Ulr,),
2. Tj = Py = 8(S},),

3. Tlil =B, — L(51:§+1),

4. Tikfl = Si<k71(: Pog-1).

gr is the restriction of ¢ to T%.
The verification that ¢p is a cover and ¢®)§% = d®)T*, which comes to verifica-
tion of two equalities

C(k)Si = q_l(Sk U 15k71) - 5(q_1(5k+1 U 1Sk+1)) =

=P — 5(SI£+1) — (T U 1Tk+1) = d(k)Tlir

W8] | =81 —uS},,) = Pe1 — (St ) =dPT |

is left for the reader. O

The following proposition describe explicitly the abstract properties of k-domain,
k-codomain, and k-tensor operations in oF's. For more abstract treatment of these
properties in terms of the notion of a graded tensor category see [Z1].

Proposition 9.4 The k-tensor operation oF's is functorial, compatible with the k-
domain and k-codomain operations, associative, and satisfy the middle exchange
law.

Proof. In the course of the proof I will explain precisely what I mean by this
statement in details. Roughly speaking, it means that the all local morphisms form
al objects of oF's into a single ordered faces structure S has a natural structure of an
w-category S*, with domains, codomains, and compositions in S* defined in terms
of k-domain, k-codomain, and k-tensor operations in oF's.

The operations will be defined the operations on the skeleton of oFs. If X and Y
are isomorphic ordered face structures there is a unique isomorphism between them
and in fact it is the only monotone morphism between them. We shall identify two
morphisms f: X — Y and f': X’ — Y’ in oFs iff there are isomorphisms making
the square

X4f>Y

x| |=

Xl f/ > Y/
commutes. As these identifications are harmless we shall work in oF's recalling the
identifications if needed.

To explain the functoriality of k-tensor we define the category oFs x oF's as
follows. The objects of oF's X oFs are pairs of ordered face structures (.5, S") such
that ¢S = d® S and whose maps are pairs of monotone morphisms (f, 1) -
(S,8") — (T, T") such that the diagram
(k) a®

B g ———

f{ lf” {f’

T/

c




commutes, where f” is the restriction of f’ to d®),S’. We have four functors
7%, 7!, 7, Q) : oFs x; oFs — oF's.

The three first functors are defined on objects as follows 7%(S,5") = S,
71(8,8) =5, 7(S,5") = c®S for (S,5") in oFs x; oFs, and on morphisms they
are defined in the obvious way. The functor ®y is defined on object and morphisms
in the obvious way but we need to verify that the local morphisms we get between
local pushouts are in fact monotone. This we leave for the reader. Moreover we
have four obvious natural transformations making the square

0
70 L Rk
o) ( %1
I e—— Q0 7l

commutes, in Nat(oFs xj, oF's, oFs).
By compatibility of k-tensor operation with the k-domain and k-codomain op-
erations, we mean that for any ordered face structure X the squares

X Lx X X Ly X
ay) a cgp‘ \cgy
d® x d®x ch X ch X

dF) x ch) X

are k-tensor squares. Moreover, for k > [, there are isomorphism making the trian-
gles

X (9} X' X (029)) X'
k k k k k
oy b ek
dPX @ dWX' o dP(X @ X') cPX @ X —ocW(X g X')

commute, and for k <, there are isomorphism making the triangles

X @ X' X @ X'
dPX —— dW (X &, X') WX —— W (X ® X')
commute.

The associativity isomorphisms come from the fact that for any ordered face
structure X, Y, Z such that c®¥ X = d®Y and c®Y = d® Z both objects

(X ®rY) ey Z, X @r (Yo Z)

are locally colimits of the diagram

B N

cky
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and the local isomorphism between them is in fact a monotone morphism. This
easily follows from Proposition 4.27.
Similarly, the interchange isomorphism between objects

(X Y)® (Z@p T), (X @ Z) ok (Y& 1)
where k < [, is defined as the local isomorphism between two colimits of the diagram
X Y
0] @
C c
X (®) (k) v
DX ~—— ¢ x Oy
ay al
VA T

which is in fact a monotone isomorphism. O

Remark. It may seem that the k-tensor operation is a bit arbitrary, as only part
the order <™ in the ordered face structure S®;.S’ is determined by the fact that it is a
pushout locally and that the embeddings k% : S — S®;5" and % : §' — S®;S are
monotone morphisms. If this structure determine uniquely the order <™ in S ®;, S’
(and hence the whole structure of S ®j, S’) then we shall call such a k-tensor locally
determined. Tt is not hard to see that the k-tensor S ®j S’ is locally determined iff
there are no ’free’ loops of dimension k -+ 1 over the same k-face z € ¢(¥) S that came

from both S and ', i.e. there are no I € Sp,; — 5(S,;i‘2) and I € S} — 5(5’;:_)5)

such that v(I) = v(I') (as usually in such cases we assume that ¢S = d¥§").
However if we ask for an operation which is both pushout locally and functorial (in
the sense explained above) then the k-tensor operation is the only possible one.

Proposition 9.5 The k-tensor operation is the unique functor ®j : oFs x;oFs —
oF's which is a pushout functor locally, i.e. the square
0
K

70 Rk
o [ [ o
T 4’(100 7

evaluated at any object of oFs X oF's is a pushout in 1Fs.

Proof. Assume that for any (X, X’) € oFs x; oFs the square

KX
X X @ X'
(k) x X!
C
alt)

is a pushout in 1F's. This condition determines the functor ®; uniquely on all the
objects (Y,Y”) of oFs x; oFs for which k-tensor Y ® Y is locally determined. How-
ever every object (X, X’) can be embedded in oF's x;, oFs into a locally determined
object (Y,Y”), i.e. we have morphism (f, f’) : (X,X’) — (Y,Y’) in oFs x oFs.
As the morphism f® f': X @ X’ — Y ®Y” is monotone the order <~ in X ® X’ is
uniquely determined by the order <™ in Y ® Y’ i.e. ®; is indeed the unique functor
satisfying the above requirements. O

Thus the above proposition says that ®j is the only operation which is at the
same time functorial and locally determined as a pushout.
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10 w-categories generated by local face structures

Now we shall describe an w-category T™ generated by an ordered face structure 7T,
i.e. we shall describe a functor

(=)" : oFs — wCat

however to prove some properties of (—)* it is more convenient to describe this
functor on a larger category 1F's, i.e. we shall describe in fact a functor

(=) :1Fs — wClat
We have forgetful functors, for n € w,
7, : oFs, — 1Fs

For a local face structure 7', and for n € w, the set T of n-cells of T is the set
of isomorphisms classes of objects of the comma category 7, | T.
For k < n, the domain and codomain operations in T*

dR) T (BT e

of the k-th domain and the k-th codomain are defined by composition. For an object
X of oFs, and acell x: X — T in T¥, we define

dk).T (z) = dgl;); z:d®X — T BT (x) = cg];); z:cPX —T
The identity operation
i .y — T
is an inclusion. The composition map
my kn - T:]j XT,: T; - T;

is given by the k-tensor, i.e. for two n-cells z : X — T, y:Y — T in T} such that
¢ — a0 th
X - YY Y €n
mnzkyn(x7 y) = I:x7 y]
where [z, y] is the unique map making the following diagram
T

= [z,9]

X X ®pY

W v

WX =dby ——5—Y
q®
Y
commutes. Note that [z,y]| exists and is unique since the forgetful functor | — | :

oFs — IFs sends X ®;, Y to a pushout. We often write z;,y for m,, j »(z,y).

Proposition 10.1 Let T be a local face structure. Then T™ is an w-category. In
fact, we have a functor (—)* : 1IFs — wClat.
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Proof. All the properties in question of T™ follows more or less in the same way
from the fact that oF's is a monoidal globular category and the the tensors in oF's
are pushouts locally. To see how it goes we shall check the associativity of the
compositions. So suppose we have local morphisms z : X — T,y : Y — T,
z: Z — T such that ¢®) (z) = d® (y) and ) (y) = d¥)(2), i.e. the diagram

T
NN
chx chy

commutes. Hence the two compositions of these cells are isomorphic via the canon-
ical (local) isomorphism of pushouts

X A

T

[z, 9], 2] [z, [y, 2]

(X @rY)@rZ —z~ X @ (Y ® 2)

But as we shown in Proposition 9.4 these isomorphisms are in fact monotone mor-
phisms. Thus the morphisms [[z,y], z] and [z, [y, z]] represent the same cell in T*.

The verification that T™ satisfy also the remaining condition of the definition
of the w-category is left for the reader. It should be also obvious that any local
morphism between local face structures f : S — T induces an w-functor f*:S* —
T* by composition. O

The k-truncation S<j of an ordered face structure S need not to be an ordered
face structure, however it gives rise to a local face structure of dimension k, i.e. for
k € w we have a truncation functor

try : oFs — 1F's,

sending (S, <%¥"™)xew to (S, <3 )aeSs1 <,y Where < is the restriction of <™ to (),
for a € S-51 <. Here 1Fs; denotes the full subcategory of 1Fs whose object have
dimension at most k. Clearly, we have a commuting square

oFs e 1F's;

(=) (=)

wCat kCat

tri
Thus we have a functor
(=)%k : oFs — kCat

which is defined as either of the above compositions. kCat is the category of k-
categories.

11 Principal and Normal ordered face structures

We recall few notions form section 3. Let N be an ordered face structure. N is k-
normal iff dim(N) < k and size(N); = 1, for [ < k. N is k-principal iff size(N); = 1,
for | < k. N is principal iff size(N); < 1, for [ < w. N is principal of dimension k
iff N is principal and dim(N) = k.

Notation for a k-normal N: {p}¥} = {p;} = N, — 6(Ni31), for [ < k.
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Lemma 11.1 Let P, Q, N, T be an ordered face structures, k € w, P, Q principal,
N k-normal.

1. If the map f: P — T is local then it is a monotone morphism.
2. If the map f: N — T is local then f is monotone iff fi preserves <™.

3. If dim(P) = dim(Q) and the maps f : P — T and g : Q@ — T are local such
that f(p*) = g(p?) then there is a unique monotone isomorphism h: P — Q
making the triangle

P

h . q
f\T/g

commutes, where pt, p® are the unique faces of dimension k in P and in Q,
respectively.

4. If dim(P) =n > dim(Q) then any monotone morphism x : QQ — P factorizes
either viadp : dP — P orcp : cP — P.

Proof. 1. and 2. follows immediately from Lemma 4.27. 4. follows easily from

Ad 3. Let dim(P) = dim(Q) = k. By 1. we need to construct a local isomor-
phism only. The argument is by induction on k. For & = 0 the claim is obvious. For
k > 0, we have by induction hypothesis the local morphism ' : ¢¢~ P — k-1 Q.
Then we note that the bijections f : §(p”) — o(f(pF)), g : §(P?) — 6(9(p?))
preserves order. As f(p?) = g(p¥) we get easily the local morphism h : P — Q.
O

Ezxample. Note that in Lemma 11.1.4 it is essential that @) is principal and not
any ordered face structure. In the example as below

P

S
dp o Ccp
Y=y
S { v S
dpr cP

T o

with morphism f : X — P sending z; to x and other cells to the same cell we clearly
cannot factor f via neither dp nor cp.

Lemma 11.2 Let T be an ordered face structure, I,k € w, Il < k, and o € T,. We
have

1. {a} is a convex set and [«] is a principal ordered face structure,
2. §(a) is a conver set and [§(a)] is a (k — 1)-normal ordered face structure,

3. Moreover, if k > 0, then
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Proof. We shall prove 1. The rest is left as an exercise.

The proof goes by induction of the dim(a) = k. If k = 0 then the thesis is
obvious. So assume that k > 0, the thesis holds for v(«) and we shall prove it for
a. If a € T UT® then < o > has faces as follows

dim faces

k o
k—1 V(@)
k=21 6v(a) Uyy(a)

and hence the thesis is obvious. So assume that o € T~*¢. Then < « > has faces

as follows
dim faces

k o
E—1 0(a) U~v(a)
k—2| §0~a)Uyy(a)
k—3] 66 y(a) Uryy()

For the faces of dimension k£ and k — 1 the thesis is obvious, for dimensions k — 3 and
lower the thesis holds by inductive assumption on y(a). We need to check that <+
and << agree on < @ >;_o. First note that by Lemma 4.2.3, if z € 66*(«) then
x <<®>* yy(a). So assume that z € 6(a) and y € §(b), a,b € d(a), x <5 y. Let
T,a1,...,a,,7y be a flat upper T — (T~)-path from z to y and z, by, . .., b, yy(c)
be a flat upper d(a)-path from z to yy(a). If y = y(by,) for some Iy < I, we
are done. So assume contrary. Then by Path Lemma, there is I; < [ such that
an <% by, v(an) =y # v(by,). Thus we have a flat upper path a,, 31,..., 5 by
and, as y # v(by, ), there is ro < r such that y € ¢(8,,). Hence §(b) Ne(Br,) # 0 and
by Lemma 4.8.1, b <T ~(b,,) < by,. But b,b;, € 6(a) and we get a contradiction
with discreetness. O

Let k € w, N be a k-normal ordered face structure. We define a (k + 1)-
hypergraph N°®, that contains two additional faces: prV ;1 of dimension k£ + 1, and

p,]CV * of dimension k. We shall drop superscripts if it does not lead to confusions.
We also put
Y(Pr+1) =Pk, V(Pk) = Pr—1,

N if Ny #0, O(Ng) — v(Ng) if Ny # 0,
) : 5(pk) = :
pr_, Otherwise. lps otherwise.

5(Pk+1) = {

Clearly, v(pr) and (py) are defined only if & > 0.

As N is k-normal, N1 = 0, so Ny cannot contain loops. Thus, if Ny # () then
d(Nk) — v(Ng) # 0 and §(pg) is well defined. This determines N*® uniquely. N® is
called the principal extension of N.

Examples. Here are some examples of 1-normal ordered face structures N and
their principal extensions N°:

Ne @E °« U e SN,

and some examples of 2-normal ordered face structures /N and their principal exten-
sions N*®:
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N SN
o W LT N

Clearly, e the ’empty’ l-normal, and ¢ — e is ’empty’ 2-normal ordered face
structure.

Proposition 11.3 Let N be a k-normal ordered face structure. Then
1. N°* is a principal ordered face structure of dimension k + 1.
2. We have d(N°®) =2 N, c(N°®) = (dN)*.

3. If N is a principal, then N = (dN)®.

Proof. Exercise. O

12 Decomposition of ordered face structures

As positive face structures are easier and we understand well their decompositions we
define decomposition of ordered face structures via positive ones. This will simplify
the proof of properties of the decompositions, as they will be easy consequences
of the analogous properties of decompositions of positive face structures. However
to get a better insight how the ordered face structures are decomposed we shall
characterize the decompositions using convex subsets and stretching empty loops.
We decompose along an Z-cut rather than a face.

NB. We write a instead of (a, L,U) if we don’t need to specify explicitly which
cut over a we consider.

The k-decomposition of X is any presentation of X as a k-tensor X = X1 ®; Xo
of two other ordered face structures. X is the lower part of the decomposition and
Xy is the upper part of the decomposition. The k-decomposition of X = X1 ®p Xo
is said to be proper iff size(X1), size(X2) < size(X).

Let X be an ordered faces structure, @ € X', 7 the kernel of the standard
positive cover ¢ : XT — X. We define the decomposition of X along @ as the bottom
square of the following cube

xtla .¢
/ /
p
c(k) XTla — e -, xtla
» Xi“ - ’ - X
c(®) /;
k a a
ck)(xla) 4 x1

where the top square is the decomposition of the positive face structure X' along a,
and the bottom square
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Xla - X
c® KA
(k) ( xla Ta
c\M(X+) 10 X
is obtained from the top square by dividing by J.
Lemma 12.1 We note for the record
d® (X14) = d® (X), c®) (x14) = k) (X),
c®(xlay = ) (xT1a), Xl g, X1t = X,

Proof. Exercise. O

Lemma 12.2 Let S, T be ordered face structures, k € w, and & = (a,L,U) €
(T} — «(T},,)). Then

1. a € Sd(T) iff there are o, 8 € Tjyy such that (v¥)(a), —, 1 v#+D(a)) <t a
and (Y®(8), =, 1 4*H(9)) £+ a.

2. Sd(T) = Sd(T).
3. size(T) = size(T").
4. if <®)(S) = dF)N(T) then, forl € w,

size(S); + size(T); ifl >k,

size(S @, T = { size(T); if l < k.

5. size(T) > 1 iff k < dim(T).
6. SA(T)k # 0 iff size(T )41 > 2.
7. T is principal iff Sd(T) is empty.

Proof. Easy. O

Before we shall establish the important properties of this decomposition we shall
show another way of constructing this decomposition. Let Y be a convex subset of
an ordered face structure X. We define two subhypergraphs Y¥@ and Y1 of X:

i {aeYi: (v¥(a), =, 17" (@) <t (o, L,U)} for I >k,
YW ={ (bevi:b<taor bg~(YiA)) for | =k
X for [ < k.

{aeY: (YW(), =1 7*(a)) £T (a,L,U)} forl >k,

v _ {beY:b£t a} forl =k
Lo Yk_l—L(YkU_fl) foril=FkF—-1
Y; forl <k —1.

Lemma 12.3 With the notation as above Y“a and Y% are convex subhypergraphs
of X, B (y¥a)y = qk) (Y1) Moreover EYY =0 and

0 otherwise.

gy _ { {a} ifa is a loop,
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Proof. Easy. O

Lemma 12.4 With the notation as above there are monotone isomorphisms h| and
hy making the triangles

la4>X4>Xla

M / \ ‘hT
(XY (XM
commute. /i;?
Proof By Lemma 5.3 it is enough to show that the image of the monotone morphism
: X% - X is XM and the image of the monotone morphism /1 c Xl X
is X ¥4 The remaining details are left for the reader. O
Note that, by the above Lemma X% is isomorphic to X% and if a is not a loop
in X, XM is isomorphic to X% However the ordered face structure X T_‘i is not that
complicated even if a is a loop. We shall describe it now. Thus X" = {a}. In
this case, up to isomorphism, the underlying hypergraph of X 1% can be describe as
follows. 5
le:{ Xﬁ; 1Ak 1,
(X[%) — @D U y@) " A(@) ) =k 1.

’me and 6X' are as in XM (and X) except for ’y,fjf and 5,5{; For ¢ € X,la we
put (v and § stands for vX and §%, respectively)

. V(e) it q(c) #(a),
7€) =§ (@) if y(e) = y(a) and ¢ <~ q,
v(a)™ otherwise.

, 5(c) if y(b) & 6(c),
55" (e) =4 (3(c) = {v(a)}) U{x(a)*} if y(a) € 3(c) and a <~
(0(c) = {v(a)}) U{y(a)"} otherwise.
The order <~ in X*% and X1 is uniquely determined by the fact that it is reflected
from X via mﬁ? and /{E?
Ezxamples. For the ordered face structure 7' as below

T

;ul

U

as

T4 332 931
Jaz xr3

and a cut U1 = (u1,{as}, {az,a1}) we have the following decomposition

Tl 11
u9 T» U1 Ul T» uQ
Uag‘lm v

and for the cut 4y = (z4,0,0) we have the following decomposition
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Tl%s T1%4

U2 - Ul 5~ Uo ug —— (u1,0,{z4}) Yoz _ Uaz (w1, {z4},0) B Zo
T wz3
4 ey
as

T4

The following Lemma establishes some properties of the double decompositions.
The double decomposition is meant in the sense of convex set decomposition, i.e.
when we write X119 we mean [X¥#14].

Lemma 12.5 Let X be an ordered face structure, a = (a,L,U),% = (z,L',U’) €
(Xt — (X)), k = dim(z) < dim(a) = m.

1. We have the following equations of ordered face structures:
xlala — ylalz  ylata _ xlals - xlala _ ylate  xlata _ ylals
i.e. x-decompositions and a-decompositions commute.
2. If & € Sd(X) then & € Sd,1a(X1%) N Sd,14(X19).
3. Moreover, we have the following equations concerning domains and codomains
P (xlrlay = k) xlatay — gik)(xTzlay — q(k)(x1elay
cm)(xlalay — qm)(xlatay  olm) xTelay — qOm) xTlay,

4. Finally, we have the following equations concerning compositions
xllag xlila _ xla  xlelag  xlata _ x1a
xlela g, xlala _ xla  xleta g yiata _ xla

Proof. We need to verify the above equations for arrows |} and f} instead of |
and 7. O

Lemma 12.6 Let T be ordered face structure, X convex subhypergraph of T, and
abeX,a=(a,L,U),b=(b,L',U") €Tt — (T, dim(a) = dim(b) = m.
1. We have the following equations of ordered face structures:
xlalb _ X”’w, x1atb — xtbta
i.e. the same direction a-decompositions and b-decompositions commute.

2. Assume a <t b. Then we have the following farther equations of ordered face
structures: 5 5 5 5 3
XTb —_ XT&Tb’ de — Xl&ib, leT(l _ XTZLU)‘

Moreover, if a,b € Sd(X) then & € Sdnu;(XU’) and b € Sd, 1a(X1%).
3. Assume a < b, for some l < m. Then XTBVI, Xmi’, are ordered face struc-

tures, and ) ) )
Xla Rm XTalb — le Rm XTbia

Moreover, if a,b € Sd(X) then either there is k such that | —1 < k < m and
(v®(a), =, T v**+V(a)) € Sd(X) or a € Sd_15(X™) and b € Sd,;1a(X19).

80



Proof. Easy. O
The following properties of ordered face structures are inherited from the corre-
sponding properties of positive face structures.

Lemma 12.7 Let T be ordered face structures of dimension n, | < n—1, a =
(a,L,U) € Sd(T);. Then
1. a € Sd(cT)N Sd(dT);

Proof. See the the corresponding properties of positive face structures in [Z]. O

Lemma 12.8 Let T, Ty, T, be ordered face structures, dim(Ty),dim(Ty) > k, such
that ¢®(T1) = d¥)N(T) and T = T} @1 Ty, and let Z = v((T1)kt1) — 6(T7 ) kt1)-
Then ) # Z C C(k)(Tl)k. For any face a € Z, the cut @ = (a,Zy N (11)k+2,Zq N
(T5)ga2) € Sd(T) and one of the following conditions holds:

1. either Ty = TV and Ty = T14;
2. ora € Sd(Ty)g, TV = T and T4 = T/% @, Ty;
3. ora € Sd(To)g, T'% = T}% and TY6 = Ty @4 Ty

Proof. See the the corresponding properties of positive face structures in [Z]. O

13 77 is a many-to-one computad

Proposition 13.1 Let T be an ordered face structure. Then T™ is a many-to-one
computad, whose indets correspond to the faces of T.

Proof. In fact, to be able to carry on the induction we need to prove more. Let
T be an ordered face structure, n € w.

Inductive Hypothesis for n. For any ordered face structure T', the n-truncation
TZ, of T* is a many-to-one computad whose n-indets are in the image of the em-
bedding v : T, — T}, sending a € T}, to the local morphism v, : [a] — T in
TZ,.

~ The proof proceeds by induction on n. The Inductive Hypothesis for n = 0,1 is
obvious.

So assume that the Inductive Hypothesis holds already for some n > 1. Suppose
that T' is an ordered face structure. We shall show that 72, ,; is a many-to-one
computad whose n + 1-indets are in the image of v : T}, 11 — T}, ;.

We need to verify that for any w-functor f : T2, — C to any w-category C,
and any function |f| : Tj,41 — Cp1 such that for a € Ty 41, and v, : [a] — T

de(|fl(a)) = f(d(va)),  cc(|fl(a)) = fle(va)),

there is a unique w-functor F': T2, ,; — C, such that

Fopi(va) = [fl(a),  Fen=f

as in the diagram
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T<y

We need some notation for decompositions of cells in T*. If p : X — T € T*
and @ is a cut in XT then ¢!% = gl ¢ : X1¢ — T and p!® = gl% o X0 T
We define F;, 1 as follows. For ¢ : X — T €T

’L'df(@) if dzm(X) < n,
Froti1(e) =14 |fl(a) if p =v,:[a] = T, for some a € T),41,
Froi1(0')y Fryr(01%)  if dim(X) =n+1, a € Sd(X);.

Clearly Fy = fi, for k < n. The above morphism, if well defined, clearly preserves
identities. We need to verify, for any ¢ : X — T in T}, the following three
conditions:

I F is well defined, ie. for a,b € Sd(X) we have Foi1(p'®)y Foy1(¢!?) =
Fri1 ()5 Frga (91?),

IT F preserves the domains and codomains i.e.we have F(dy) = d(F(y)) and
F(ep) = c(F(p),

IIT F preserves compositions i.e., we have F(cp) = F(¢1);x F(p2) whenever ¢; :
Xi—TeTy,  fori=1,2, c(k)(gpl) = d®) (), and ¢ = @131 2.

Assume that ¢ : X — T € Tj; , and for faces y : Y — T of T™ of size less than
size(X) the conditions [I], [II], [ITI] holds. We shall show that [I], [II], [III] hold
for ¢, as well. For X such that size(X)n4+1 = 0 all three conditions are obvious.

If X is principal of dimension n + 1, [I] is trivially true as Sd(X) = 0, [IIT] is
true as if ¢ = @1, 2, with X principal then either ¢ or @9 is an identity. So we
need to check [IT]. We have that X,,,1 = {m~} and ¢(m*X) = a € Ty41. By Lemma
11.1.3, there is a unique isomorphism 5 : [a] — X making the triangle

[p(m™))] X
Vom¥)N\,
T

commutes, i.e. V,(,x) and ¢ represent the same cell in 7™, and hence [IT] follows
immediately from the properties of f.

Now assume that X is not principal and dim(X) =n + 1.

Ad I. First we will consider two saddle cuts a, & € Sd(X) of different dimension
k = dim(x) < dim(a) = m. Using Lemma 12.5 we have

F(p'%) i F(01%) = ind. hyp. ITT
= (F(" )ik F(oM17))sm (F (01973 F(1417)) = MEL
= (F(&"™ )i F(01™))ss (F (0" 1) F(1917)) =
= (F(o" )i F(0M19))55 (F(0174%); m F (W“)) = ind. hyp. I11



Now we will consider two saddle cuts @, b € Sd(X) of the same dimension dim(a) =
dim(b) = m. We shall use Lemma 12.6. Assume that a <; b, for some [ < m. If
i = (y®(a),—, 1 7y*tV(a)) € Sd(X), for some k < m, then this case reduces to the
previous one for two pairs @, € Sd(X) and b,z € Sd(X). Otherwise a € Sd(XTi’),
a e S’al(XTi’)7 and we have

F(o'%): F(o!®) = ind. hyp IT1

= F(p" )5 (F (1) F(o1717) =
= (F(")ik (') F(p™"1%) = ind hyp I11

= F(p!, 18005 F(p1M18) =
= F(p" 00 F(o119) = ind hyp ITT

= (F(p")i5 F(o!M%))31 F(1118) =
= F(p) (P ) F(p1"1%) = ind hyp I11

F(p'): F(!?)

Finally, we consider the case a <t b. We have
F(o' % F('%) = ind. hyp ITT
=F (sow};k (F(p! ™) Py T"“’))

= (F(p™ )5 F(p1%) F(p'") = ind hyp 111

= F(p™);, F(p!?

\/

This shows that F'(p) is well defined.

Ad II. We shall show that the domains are preserved. The proof that, the
codomains are preserved, is similar.

The fact that if Sd(X) = 0 then F preserves domains and codomains follows
immediately from the assumption on f and |f| and Lemma 12.2. So assume that
Sd(X) # 0 and let a € Sd(X),. We use Lemma 12.7. We have to consider two
cases: k <n, and k =n. If kK <n then

Fo(d(p)) = Fa(d(e ) )ik Fa(d()1) =
= Fn(d< Gk Fr(d('%) = ind hyp 11
= d(Fny1 (¢ ));k d(Fot1(p'%) =
= d(Fpi1(p' ")k Fpia(01%) = ind hyp T
= d(Fn11(9))
If £k = n then
Fu(d(p) = Fu(d(p' %0 9!) =
= F,(d(¢'%)) = ind hyp IT
= d(Fr1(') = ind hyp IT
= d(FnJrl(SOw)%n Fn+1(<PTd)) = indhypl
= d(Fpt1(p))

Ad TIIT. Suppose that ¢ = ¢1; 2. We shall show that F' preserves this compo-
sition. If dim(X1) = k then ¢o = ¢, ¢1 = d*)(¢). We have

Foy1(p) = Fup1(p2) = 123()}6)(@2))% Foii(p2) =
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1
1%@3)% Fui1(p2) = Fay1(#1)ik Fat1(p2)

The case dim(X2) = k is similar. So now assume that dim(X1), dim(Xg) > k. We
shall use Lemma 12.8. Let us fix a face a € y((X1)ks1) — 6((X7Mes1), and a cut
a = (a,Za N (X1)k+2,Za N (X2)k42) € Sd(X).

If X; = X'% and X, = X% then we have

F(p) = F(p');, F(¢!%) = F(p1)ik Fp2).

If & € Sd(Ty), T4 = T% and T = T/ @, T

F(p) = F(¢' ") F(o!") = ind hyp 111
= F(p")5k (F (o] M)k F(2)) =
= (F(p1")i F(o]"))i F(p2) = ind hyp IT1
F(p1)51 F(p2)

If & € Sd(Ty)y, T1% = T)* and T4 = Ty @ T4*

F(p) = F( 18y F(p!'%) = ind hyp I11
= (F(e1)i F(03")s F ("))
= F(p1")i (F(ph")in F(93"))

F(p1)ik F(02

ind hyp II1

~—

So in any case the composition is preserved. This ends the proof of the Lemma.
O
For n € w, we have truncation functors

(—)ﬁ’" : oFs;p. — Comma;”/l, (—=)"" : oFsjpe — Compzl/1
such that, for S in oF's
S = (S, S, 1], 7)), ()" = 5%,

and for f:S — T in oFs;,. we have

£ = (fns (F<n)"); ()" = fen

Corollary 13.2 For every n € w, the functors (—)*" and (=)*" are well defined,

full, faithful, and they send all tensor squares to pushouts. Moreover, for S in oFs
— . n

we have S* = Stn,

Proof. The functor (—) : Comma,’ m/l__, Comp)" m/1 , which is an equivalence of
categories, is described in the Appendix.

Fullness and faithfulness of (=)™ is left for the reader. We shall show simulta-
neously that for every n € w, both functors (—)*" and (—)*" send n-truncations of
tensor squares to pushouts. For n = 0,1 this is obvious. So assume that n > 1 and
that (—)*" and (—)*" send n-truncations of k-tensor squares to pushouts. Let

S—— ST

|

ck g T
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be a tensor squares in oFs. The fact that the functor (—)#"*! sends this square to a
pushout in Comma?ﬁ can be verified in each dimension separately. In dimensions
lower or equal to n this follows from the fact that the functor (—)*™ sends n-
truncations of tensor squares to pushouts. In dimension n + 1 we need to check that
the square in Set

Snr1 — (S @k T)nt1

]

(c®)S)nt1 Tht1

is a pushout. But this easily follows from the the description of the tensor square
given earlier. So the whole square

Shntl (S @, TPt
C(k) Sﬁ,nJrl Tﬁ,nJrl

is a pushout in Comma:';ﬁ, ie. (=)"*! send (n + 1)-truncations of k-tensor

squares to pushouts. As (—)*"*! is a composition of (—)*"*! with an equivalence
of categories it send (n + 1)-truncations of k-tensor squares to pushouts, as well. O

Corollary 13.3 The functor
(=) : oFsjpe — Comp™/!

1s full and faithful and sends tensor squares to pushouts.

Proof. This follows from the previous Corollary and the fact that the functor (—)n
Comma”"/! — Comp™/! (see Appendix) is an equivalence of categories. O
Let P be a many-to-one computad, a a k-cell in P. A description of the cell a is
a pair
<Tyy1e:T; — P>

where T, is an ordered face structure and 7, is a computad map such that

Ta(idT,) = a.

14 The terminal many-to-one computad

In this section we shall describe the terminal many-to-one computad 7.

The set of n-cell 7,, consists of (isomorphisms classes of) ordered face structures
of dimension less than or equal to n. For n > 0, the operations of domain and
codomain d7,¢? : T, — T,_; are given, for S € 7,, by

S ifdim(S) <mn,
d(S) = { ds if dim(S) =n,

and

| 8 ifdim(S) <n,
o(9) = { cS if dim(S) = n.

and, for S, 5" € T,, such that ¢®)(S) = d¥)(S") the composition is just the k-tensor
of S and S’ as ordered face structures i.e. S @y S’

The identity id7 : 15,1 — 7, is the inclusion map.

The n-indets in 7 are the principal ordered n-face structures.
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Proposition 14.1 7 described above is the terminal many-to-one computad.

Proof. The fact that 7 is an w-category is easy. The fact that 7 is free with free
n-generators being principal n-face structures can be shown much like the freeness
of S* before. The fact that 7 is terminal follows from the following observation:

Observation. For every parallel pair of ordered face structures N and B (i.e.
dN = dB and cN = c¢B) such that N is normal and B is principal, there is a
unique (up to an iso) principal ordered face structure N*® such that dN®* = N and
cN*=B. O

Lemma 14.2 Let S be an ordered face structure and ! : S* — T the unique
computad map from S* to T. Then, for x : X — S € S} we have

(z) = X.

Proof. The proof is by induction on k € w and the size of X in S}. For k = 0,1
the lemma is obvious. Let £ > 1 and assume that lemma holds for ¢ < k.

If dim(X) =1 < k then, using the inductive hypothesis and the fact that ! is an
w-functor, we have

() =4 (10) =1

!l(l’

k
=1 =x

Suppose that dim(X) = k and X is principal. As ! is a computad map !i(z) is
an indet, i.e. it is principal, as well. We have, using again the inductive hypothesis
and the fact that ! is an w-functor,

d(ly(z)) =lp_1(dz) = dX

c(Ik(7)) =l—1(cx) = cX

As X is the only (up to a unique iso) ordered face structure with the domain dX
and the codomain cX, it follows that ! (z) = X, as required.

Finally, suppose that dim(X) = k, X is not principal, and for the ordered face
structures of size smaller than the size of X the lemma holds. Thus there are I € w
and a € Sd(X); so that

e(z) =l (218 219 =1 (21h) @yl (249 = X T8 @, X4 = X,

as required O

15 A description of the many-to-one computads

In this section we shall describe all the cells in many-to-one computads using ordered
face structures, in other words we shall describe in concrete terms the functor:

(=) : Comma”’/! — Comp”"/!

More precisely, the many-to-one computads of dimension 1 (and all computads
as well) are free computads over graphs and they are well understood. So suppose
that n > 1, and we are given an object of Comma™!, i.e. a quadruple (|P|,, P, d, )
such that

1. a many-to-one (n — 1)-computad P;
2. a set |P|, with two functions ¢ : |P|, — |P|n—1 and d : |P|, — P,—_1 such

that for « € |P|,, cc(x) = cd(z) and de(x) = dd(z).
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If the maps d and ¢ in the object (|P|n,P,d,c) are understood from the context we
can abbreviate notation to (|P|,,P).

For an ordered face structure S, we denote by S the object (Sy, (S<n)*, [6], [7])
in Comma”"!. In fact, we have an obvious functor

(=)b" : oFs;p, — Comma’™!

such that
S S = (S, (S<n)*, 6], 7))

Any many-to-one computad P can be restricted to its part in Comma;”/ 1 So we
have an obvious forgetful functor

m/1

(=)%" : Comp™/! — Comma”

such that
P 1= P = ([Pln, Pan, ds )

We shall describe the many-to-one n-computad P whose (n — 1)-truncation is P
and whose n-indets are |P|,, with the domains and codomains given by ¢ and d.
n-cells of P. An n-cell in P, is a(n equivalence class of) pair(s) (S, f) where

1. S is an ordered face structure, dim(S) < n;

2. f:S8%" — P& is a morphism in Commanm/l, ie.

|fln

Sn Pln

comimutes.

We identify two pairs (5, f), (S, f/) if there is a monotone isomorphism h : S —
S” such that the triangles of sets and of (n — 1)-computads

St (s s
Pl P

commute. Clearly, such an h, if exists, is unique. Even if formally cells in P,
are equivalence classes of triples we will work on triples themselves as if they were
cells understanding that equality between such cells is an isomorphism in the sense
defined above.

Domains and codomains in P. The domain and codomain functions

d® ®) P, — P,
are defined for an n-cell (S, f) as follows:

" [ if dim(S) < k,
d™ (S, f) { (d(k)S, d(k)f) otherwise.

where, for z € (d®) ), (and hence v, : [z] — d*)5),

(d® (@) = frlve) (@)
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(i.e. we take the cell v, : [2] — d®)S of S* then value of f on it, and then we

evaluate the map in Comma””/! on z the only element of [z];,), and

(d(k)f)<k = (d'é; f<n)<k-

(k) _J(50) if dim(S) < k,
(S, f) {(c(k)g,c(k)f) otherwise.

where, for z € (c¢®)S);, (and hence v, : [z] — c¢®)S),

(™ (@) = filve) (@)

and
(C(k)f)<k = (Cg; f<n)<k-

i.e. we calculate the k-th domain and k-th codomain of an n-cell (S, f) by taking
d® and c¢® of the domain S of the cell f, respectively, and by restricting the maps
f accordingly.

Identities in P. The identity function

i: fn—l — fn
is defined for an (n — 1)-cell ((S, f) in Pn_1, as follows:

. ) (S, f) ifdim(S)<n-—1,
i(5.f) _{ (S, f) if dim(S)=n-1

Note that f is the map Comp?j i which is the value of the functor @ on a map f

from Comma?f

as an n-cell.
Compositions in P. Suppose that (S?, f*) are n-cells for i = 0, 1, such that

}. So it is in fact defined as 'the same (n — 1)-cell” but considered

(S0, 1) = dM(S", 1),
Then their k-composition in Comma’™/" is defined as

(So,f());k (Sl,fl) — (SO Rk Sl, [f07fl])

ie.
0 ¢l
(S° @1 SM), Un: ~ Pl
1| | I d| |c
(S° @K Sy RS Pn-1
[ n—1» nfl]

This ends the description of the computad P.
Now let h : P — Q be a morphism in Comma’™, i.e. a function h, : |P|, —
|Q|,, and a (n — 1)-computad morphism Ay, : P<y, —> Q,, such that the square

b,

Pln ~ |Qln




commutes serially. We define
h:P—Q
by putting hy = hy, for k < n, and for (S, f) € P, we put

h(S,f)=(S,hof).

Embedding 7p : |P|, — P, is defined in the Proposition below.

Notation. Let x = (X, f : X¥" — P") be a cell in P,, as above, and & € Sd(X ).
Then by z1% = (X1¢ £14) and z'¢ = (X4, f1%) we denote the cells in P, that
are the obvious restrictions of z. Clearly, we have ¢ (21%) = d*®)(z1%) and that
x = z1%, 219 where k = dim(a).

The following Proposition contains several statements. We have put all of the
together since they have to be proved simultaneously, i.e. to prove them for n we
need to know all of them for n — 1.

Proposition 15.1 Letn € w. We have
1. Let P be an object of Comma;”/l. We define the function

as follows. Let x € |Pl,. As c(z) is an indet d(x) is a normal cell of dimension
n — 1. Thus there is a unique descriptions of the cells d(x) and c(x)

< Td(x)a Td(z) * T;(m) — P>, < Tc(x)7Tc(x) : T:(;g) — Pen >

with Ty, being (n—1)-normal ordered face structure and Tr(,) being principal
ordered face structure of dimension n— 1. Then we have a unique n-cell in P:

T =< Tj(x), |?:Jc|n : {1T5(E)} - |P|TL7 (?x)<n : (TJ(x))Zn — Pep >

(note: |T(;(z)|n = {1Tc;(x)}) such that
Taln(lre )=

d(z)

and, fory:Y — Tp € (Tg,)n

(Tc(:c))n—l(y/) if Y is principal
and y =y’ ¢y )
(Ta)n-1(y) = (Td(m))n—l(y”) if Y is principal

and y = y";d(rs ),
(Fo)no1 (W D)k (Fa)uo1 (1) if @ € SA(Y )y

and (Tz)<(n—1) = (Tdz)<(n—1)- We put np(x) = z.

Then P is a many-to-one computad with np the inclusion of n-indeterminates.
Moreover, any many-to-one n-computad Q is equivalent to a computad P, for

some P in Comma’/",

2. Let P be an object of Comma,”f/l, . P — T the unique morphism into the

terminal object T and f : S*™ — P a cell in P,. Then

L(f 2 SP" — P) = 8.

3. Let h: P — Q be an object of Commanm/l. Then h : P — Q is a computad
morphism.
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4. Let k <n, S be an ordered face structure of dimension at mostn, f: S* — P
a morphism in Compm/l andy:Y — S € S;. We have that

?k(y) = (f 0 y*)h7k(: fh’]’C o yﬁ’k Syhk pth)'

5. Let S be an ordered face structure of dimension n, P many-to-one computad,
g,h : 8% — P computad maps. Then

g=nh iff gn(lg) = hp(lg).

6. Let S be an ordered face structure of dimension at most n, P be an object in

Cornma?/l. Then we have a bijective correspondence

f:8%" — P € Comma™!
f:8* — P € Comp™/!

such that, f,(1s) = f, and for g : S* — P we have g = gn(1s).

7. The map B

KD HComp(S*,f) — P,
S

g:8" =P = ga(ls),

where coproduct is taken over all (up to iso) ordered face structures S of di-
mension at most n, is a bijection. In other words, any cell in P has a unique
description.

Proof. We prove all the statements simultaneously by induction on n. For
n = 0,1 all of them are easy.

Ad 1. We have to verify that P satisfy the laws of w-categories and that it is free
in the appropriate sense. Laws w-categories are left for the reader. We shall show
that P is free in the appropriate sense.

Let C be an w-category, g<n, : P<y — C<py an (n—1)-functor and g, : |P|, — Cp
a function so that the diagram

Pl In C,

d c d c

,Pnfl Jn_1 > Cnfl

commutes serially. We shall define an n-functor g : P — C extending g and g,. For
x = (X, f) € P, we put

Lo rofur(@) if dim(X) <n,
9,() =< gno fulmx) if dim(X) = n, X is principal, X,, = {mx}
(@) G (219) if dim(X) = n, a € Sd(S)s

We need to check that g is well defined, unique one that extends g, preserves domains,
codomains, compositions and identities.

All these calculations are similar, and they are very much like those in the proof
of Proposition 13.1. We shall check, assuming that we already know that g is well
defined, and preserves identities that compositions are preserved. So let z = (X, f),
x1 = (X1, f1), z2 = (Xa, f2) be cells in P,, such that x = x1;,29. Since g preserves
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identities, we can assume that dim(X1),dim(X;) > k. Let [ € w be minimal such
that Sd(X); # 0. We have two cases:
Case 1. If | < k, then by Decomposition 3.2.a we have a € Sd(T5);, and then

(x)

g(z'")u gz
“)

F((z15p 22) 1) G((2150 22)'Y) =
(5151 ik $£ B §($1 7k$2a) =

@@ g(=h) (Gt >,kg<x2 ) =
G\ g2t <a<£>z g(z5") =
( ),kg(@)

Case 2. If | = k then by Decomposition 3.2.a we have a € Sd(X;) and

The remaining things are similar.

Ad 2. Let ! : P — T be the unique computad map into the terminal object, S
an ordered face structure such that dim(S) =1<n, f: S¥" — P a cell in P,,.

If [ < n then by induction we have !,,(f) = S. If | = n and S is principal then
we have, by induction

L (d(f) : (dS)P" — P) = dS, L(e(f) : (eS)P" — P) = c&.

As f is an indet in P, !,,(f) is a principal ordered face structure. But the only (up
to an iso) principal ordered face structure B such that

dB = dS, dB =dS

is S itself. Thus, in this case, !, (f) = 5.
Now assume that [ = n, and S is not principal, and that for ordered face struc-
tures T' of smaller size than S the statement holds. Let a € Sd(S),. We have

'n(f) :!n(fTa;k fia) :!n(fTa)ﬂg !n(fla) = STa;k Sla =9

where f1% = fo (k1%)%" and f!* = fo (k'?)%" and x'® and k!® are the monotone

morphisms as in the following tensor squTare

Sla S
e
ckg Sla

Ad 3. The main thing is to show that h preserves compositions. This follows
from the fact that the functor

(=)*" : oFs — Comma"/!
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preserves special pushouts.

Ad 4. This is an immediate consequence of 3.

Ad 5. Let us fix ordered face structures S, Y, dim(S) = n, a € Sd(Y), and
fyg: 8" — P. Clearly, if f = g then f(lg) = g(1g). We shall prove the converse.
As

(ylaysk Yk

(cWylayik (ylaykk

/1 we have that for any y : Y — S € S}

is a pushout in Comma;n
fh,koyﬁ,k — gh,koyﬁ,k i fh,ko(yld)ﬁ,k — gb,ko(yw)ﬂ,k and fh,ko(de)li,k — gh,ko(ym)ﬁ,k

From this observation it is easy to see that if for some y : ¥ — S € S* we have
f(y) # g(y) then we can assume that this Y is principal. On the other hand, from the
above observation, the fact that both f and g are w-functors and that f(1g) = g(1g)
we can deduce that for any y : Y — S € S* with Y principal we have f(y) = g(y).
This together shows 5.

Ad 6. we shall use 5. Fix an ordered face structure S of dimension n and a

many-to-one computad P. For f : §&" — Pi" in Commaﬂ/1 we have

Fulls) = (fo (1s)P")A" = fo (15)"* = f.
On the other hand, for a computad map g : S* — P we have
9n(1s)(1s) = (9n(1s) 0 (15)P")"" =

= (97" 0 (15)"" o (1s)*")*" = (6" o (15)")*" = g(1s).

Thus by 5. we have g,(1g) = g.

Ad 7. It follows immediately from 6. O

The following Proposition says a bit more about descriptions than point 7. of
the previous one.

Proposition 15.2 Let P be a many-to-one computad, n € w, and a € P,. Let
T, =P(a) (where P : P — T is the unique morphism into the terminal many-
to-one computad). Then there is a unique computad map 74 : T} — P such that
(Ta)n(11,) = a. Moreover, we have:

1. for any a € P we have

Tda = d(Ta) = Tda = Ta © (d1,)", Te(a) = c(Tq) = Te(a) = Ta © (cr,)",

Ty = Ta

2. for any a,b € P such that ¢® (a) = d®) (b) we have

Taspb = [Ta> T) T;;k Tb* — P,
3. for any ordered face structure S, for any computad map f : S* — P,

Tra(ls) = [

4. for any ordered face structure S, any w-functor f : S* — P can be essentially
uniquely factorized as
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S* / P
fm\ /Tf(ls)
(

Tf 1s)

where f is an inner map (i.e. f(lg) = leS)) and (Ttg): Tr(1g)) is the
description of the cell f(1g).

Proof. Using the above description of the many-to-one computad P we have
that a : (Ta)ﬁ’" — Ph". We put 7, = a. By Proposition 15.1 point 6, we have
that (74)n(17,) = @n(17,) = a, as required. The uniqueness of (1y, 7,) follows from
Proposition 15.1 point 5. The remaining part is left for the reader. O
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16 Appendix

A definition of the many-to-one computads and the comma categories
The notion of a computad was introduced by Ross Street. We repeat this defini-
tion for a subcategory Comp™'! of the category of all computads Comp that have
indeterminates of a special shape, namely their codomains are again indeterminates.
We use this opportunity to introduce the notation used in the paper. In order to

define Comp™/! we define three sequences of categories Compnm/ L Commanm/ L
and Comma,,.

m/1
n
m/1
n

, Comma?/ ! and Comma,, are just Set,
— Comp”! is the identity.

n

1. For n = 0, the categories Comp
and the functor (—) : Comma

2. For n = 1, the categories Comma;”/ ! and Comma,, are the category of

graphs (i.e. 1l-graphs) and Comp?/ 1'is the category of free w-categories

over graphs with morphisms being the functors sending indets (=indetermi-
nates=generators) to indets.
3. Let n > 1. We define the following functor
@™ Comp”/! — Set
such that
oM (P) = {(a,b) : a € Py, b€ [P, d(a) = d(b), c(a) = c(b)}

ie. wn/ 1(77) consists of those parallel pairs (a,b) of n-cells of P such that
b is an indet. On morphisms w, is defined in the obvious way. We define

Comma?_ﬁ to be equal to the comma category Set | w:{l/l. So we have a
diagram
Commagﬁ
(_)Sn ‘ - ’n-i-l
o pd
Comp;, il - Set
Wn

4. For n > 1, we can define also a functor
w, : nCat — Set
such that
wn(C) = {(a,b) : a,b € Cy, d(a) =d(b), c(a) =c(b)}

i.e. wy(C) consists of all parallel pairs (a, b) of n-cells of the n-category C. We
define Comma,_; to be equal to the comma category Set | w,. We often de-
note objects of Comma,,1; as quadruples C' = (|C|,+1,C<p, d, ¢), where C<,,
is an n-category, |C|n+1 is a set and (d,c) : |C|py1 — wn(C<yp) is a func-
tion. Clearly, the category Comma;nﬁ is a full subcategory of Comma,, 1,
moreover we have a forgetful functor

Up+1 : (n+1)Cat — Comma,,
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such that for an (n + 1)-category A
Un+1(A) = (Ant1, A<n, d, ¢)

i.e. Uy forgets the structure of compositions and identities at the top level.
This functor has a left adjoint

Fn+1: Comma, 1 — (n+ 1)Cat

The category Fp+1(|Blnt1, B,d,c) is said to be a free extension of the n-
category B by the indets |B|,+1. The category of many-to-one (n + 1)-

computads Compzbﬁ is a subcategory of (n + 1)Cat whose objects are free

. . 1 . . 1
extensions of objects from Commanm_il. The morphisms in CompnmJ{1 are

(n + 1)-functors that sends indets to indets. Thus the functor F,,1 restricts
to an equivalence of categories

m/1 m/1

m/1
Fni{1 : Comma, | — Comp, |,

its essential inverse will be denoted by
e m/1 C m/1
| = ln+1 : Comp,|; — Comma,,|;.

Thus for an (n + 1)-computad P we have ||P|ln+1 = (|Pln+1, P<n, d, ¢).

. The category Compm/ 1is the category of such w-categories P, that for every
n € w, P<j, is a many-to-one n-computad, and whose morphisms are w-functors
sending indets to indets.

For n € w, we have functors

| = |n : Comp™! — Set
associating to computads their n-indets, i.e.

f1A— B |fln:[Aly — [Bln,

they all preserve colimits. Moreover we have a functor

| —1: Comp™! — Set
associating to computads all their indets, i.e.

f:A— B |f|:|A|— B,

where

Al =TT |-

new

It also preserves colimits and moreover it is is faithful.
. We have a truncation functor
(—)<n : wCat — nCat

such that
fIA—>BI—>f§k:A§k—>B§k

with k& € w, it preserves limits and colimits.

95



References

[HMP] C. Hermida, M. Makkai, J. Power, On weak higher dimensional categories,
I Parts 1,2,3, J. Pure and Applied Alg. 153 (2000), pp. 221-246, 157 (2001),
pp. 247-277, 166 (2002), pp. 83-104.

[J] A. Joyal, Disks, Duality and ©-categories. Preprint, (1997).

[M] M.Makkai, The multitopic omega-category of all multitopic omega-categories.
Preprint (1999).

[MZ] M. Makkai and M. Zawadowski, Disks and duality. TAC 8(7), 2001, pp.
114-243.

[Z] M. Zawadowski, On positive face structures and positive-to-one computads.
Preprint, 2006, pp. 1-77.

[Z1] M. Zawadowski, Multitopes are the same as principal ordered face structures.
Preprint, 2008, pp. 1-32.

96



Index

category
Hg, 10
IF's, 13
oF's, 12
Comma”/!, 94
Comp, 94
Comp”/!, 94
Comp;”/ 194
free extension of, 95
kCat, 74
1F'sy, 74
nF's, 14
pFs, 14
cell
description of a -, 85
convex subset, 23
cut, 29, 50
lower description of -, 50
upper description of -, 50

decomposition, 77
lower part of -, 77

proper, 77
upper part of -, 77
depth, 23

description of a cell, 85
disjointness, 12

face
-s based on x, 50
depth of -, 23
empty domain -, 11
height of -, 23
loop, 11
non-empty domain, 11
non-loop, 11
unary, 11
weight of -, 21
face structure
local -, 13
ordered, 12
n-, 14
normal -, 14
principal -, 14
free extension, 95

globularity, 12

height, 23
hypergraph, 9
convex sub-, 23, 29

97

morphism, 10

ideal, 40

unary -, 51
kernel, 39
linearity

pencil -, 12

local discreteness, 12
J-loop, 40
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