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Abstract

We give a 3-categorical, purely formal argument explaining why on the category
of Kleisli algebras for a lax monoidal monad, and dually on the category of Eilenberg-
Moore algebras for an oplax monoidal monad, we always have a natural monoidal
structures. The key observation is that the 2-category of lax monoidal monads in
any 2-category D with finite products is isomorphic to the 2-category of monoidal
objects with oplax morphisms in the 2-category of monads with lax morphisms in D.
We explain at the end of the paper that a similar phenomenon occurs in many other
situations.

1 Introduction

It is well known (cf. [Day] p. 30), that the category of Kleisli algebras for a monoidal
monad carries a monoidal structure. Dually, the category of Eilenberg-Moore algebras
for an opmonoidal monad carries a monoidal structure, as well. Theorem 7.2 of [Mo],
considerably improved this result and then Theorem 2.9 of [McC] (cf. [Ch]) gives a still
stronger formulation putting this result into 2-categorical context. Theorem 2.9 of [McC]
says that the 2-category of monoidal categories, oplax morphisms, and monoidal natural
transformations admits Eilenberg-Moore objects. The main goal of this paper is to put
those considerations into 3-categorical context. We show that in fact any 2-category
Monop(D) of monoidal objects, oplax 1-morphisms, and monoidal 2-cells constructed in
any 2-category D with finite products and admitting Eilenberg-Moore objects, admits
itself Eilenberg-Moore objects. As we are more interested in lax monoidal monads, we will
be dealing with them and Kleisli objects. We will be also only pointing out what it implies
in the dual case of oplax monoidal monads and Eilenberg-Moore objects. The proof of
the main Theorem 4.1 is simple and purely formal based on the observation, Lemma 3.1,
that the 2-categorical structures of monoidal objects and of monads commute, if taken
with appropriate 1-cells. The name ‘Formal Category Theory’ for such kind of study was
suggested by S. MacLane. It was first developed in [Gray] and later in many other places
as in [St] for monads.

The author’s main motivation for this paper is the study of structures like signatures,
signatures with amalgamations, symmetric signatures, polynomial and analytic functors
(cf. [Z]) and references there. Each of these structures carries a monoidal structure,
giving rise to other algebraic structures via construction of the category of monoids. Many
authors used such monoids as a tool to define the set of opetopes, the category of opetopes,
∗This is the version of September 10, 2011 with corrections after the referee report.
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and/or the category of opetopic sets see e.g. [BD], [HMP], [Le] [C] [KJBM], [Z], [SZ]. These
notions are basic in the opetopic approach to the higher dimensional categories. Here we
separate the case where the existence of monoidal structure on some of the structures
mentioned above is simple for a very general reason.

Due to the fact that the symmetrization monad on multisorted signatures is not only
monoidal, but it also has some additional properties, good monoidal structures exist not
only on Kleisli categories like categories of signatures with amalgamation, and of poly-
nomial functors, but also on the categories of Eilenberg-Moore algebras like categories of
symmetric signatures and of analytic functors. The study of the monoidal monads with
these additional properties is deferred to another paper.

In that sense this paper is meant to be a contribution to 2-category theory that will
help to develop weak higher-dimensional category theory. Particulary, the goal is to under-
stand better the relations between seemingly different approaches pursed by the mentioned
authors.

The anonymous referee pointed out that this study can be also placed in a more general
context involving monoidal objects in a monoidal bicategory and suggested references to
such context, including [CLS].

The paper is organized as follows. For the sake of completeness, in Section 2, we
describe in detail why the 2-categorical definition of the Kleisli objects (cf. [St]), gives all
the data we expect and that it agrees with the usual Kleisli category when considered in 2-
category of categories Cat. To appreciate the construction even more, we organize the data
so constructed into various cells in 4-category 3CAT of 3-categories, 3-functors, pseudo
3-natural transformations, pseudo 3-modifications, and perturbations. In particular, we
show how real life situations may lead to perturbations. In Section 3, we spell the definition
of a monoidal category in a 2-category with finite products of 0-cells. Moreover, we state
key technical result (Lemma 3.1), explaining in what sense the monoidal and the monad
structures commute. Using this fact, we prove, in Section 4, Theorem 4.1 concerning the
existence of Kleisli objects in 2-categories of monoidal objects in 2-categories with finite
products. We also present this result in an even more abstract form, Theorem 4.3, as a
certain lifting property. In Section 5, we state these result in the dual case concerning
oplax monoidal monads and Eilenberg-Moore objects. Finally, in Section 6, we show that
such results also holds, if we replace monoidal objects by braided or symmetric monoidal
objects or even by either monads or comonads, proviso we keep the ’laxness’ of these
structures opposite to the ’laxness’ of the monads involved in the definition of either the
Kleisli or the Eilenberg-Moore objects.

I would like to thank Stanis law Szawiel for the useful discussions.

2 The Kleisli and Eilenberg-Moore objects

The content of this section is well known, possibly with some minor exception. We spell
the definitions in detail as we will be referring to them later.

In this section D is an arbitrary 2-category. Recall that a monad in D consists of an
object C of D, a 1-endocell S : C → C, two 2-cells η : 1C → S and µ : S2 → S so that
µ ◦ ηS = 1S = µ ◦ S(η) and µ ◦ (µS) = µ ◦ S(µ).

2.1 The Kleisli objects

An oplax morphism of monads is a pair (F, τ) : (C,S, η, µ) → (C′,S ′, η′, µ′) such that
F : C → C′ is a 1-cell and τ : FS → S ′F is a 2-cell so that the diagram
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S ′F S ′2F�
µ′F

FS FS2�F (µ)

?
τ

?
S ′(τ) ◦ τS

��
�*

HHHjη′F

F (η)

F

commutes. The composition of two composable oplax morphisms of monads is given by
(F ′, τ ′) ◦ (F, τ) = (F ′ ◦ F, τ ′F ◦ F ′(τ)). A transformation σ : (F, τ) → (F ′, τ ′) of two
(parallel) oplax morphisms of monads is a 2-cell σ : F → F ′ making the square

S ′F S ′F ′-
S′(σ)

FS F ′S-σS

?
τ

?
τ ′

commute. This defines the 2-category Mndop(D) of monads in D with oplax morphisms
and transformations of oplax morphisms. Mndop is a 3-endofunctor on the 3-category
of 2-categories 2Cat. On 1- 2- 3-cells Mndop is defined in the obvious way. We have
an embedding 2-functor ιop,D : D →Mndop(D) sending an object C of D to the identity
monad on C. We often abbreviate ιop,D to ιop. ιop has always a right 2-adjoint |−| = |−|D
sending a monad to its underlying category. If ιop has a left 2-adjoint K = KD we say (cf.
[St]), that D admits Kleisli objects.

Mndop(D) D�
ιop -
| − |

-K

If H : D → D′ is a 2-functor between two 2-categories that admit Kleisli objects, then
we say that H preserves Kleisli objects if the canonical 2-natural transformation in the
square

D D′-
H

Mndop(D) Mndop(D′)-
Mndop(H)

?

KD
?

KD′

is a 2-natural isomorphism. If the forgetful 1-cell | − | : Mnd(D) → D preserves Kleisli
objects we say that Mnd(D) has standard Kleisli objects.

2.2 The Eilenberg-Moore objects

A lax morphism of monads is a pair (F, τ) : (C,S, η, µ)→ (C′,S ′, η′, µ′) such that F : C →
C′ is a 1-cell and τ : S ′F → FS is a 2-cell so that the diagram

FS FS2�
F (µ)

S ′F S ′2F�
µ′F

?
τ

?
τS ◦ S ′(τ)

�
��*

HHHjF (η)

η′F

F

commutes. The composition of two composable lax morphisms of monads is given by
(F ′, τ ′) ◦ (F, τ) = (F ′ ◦ F, F ′(τ) ◦ τ ′F ). A transformation σ : (F, τ) → (F ′, τ ′) of two
(parallel) lax morphisms of monads is a 2-cell σ : F → F ′ making the square
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FS F ′S-
σS

S ′F S ′F ′-S′(σ)

?
τ

?
τ ′

commute. This defines the 2-category Mnd(D) of monads in D with lax morphisms
and transformations of lax morphisms. Mnd is a 3-endofunctor on the 3-category of 2-
categories 2Cat. We have an embedding 2-functor ιD : D →Mnd(D) sending an object
C of D to the identity monad on C. We often abbreviate ιD to ι. It has always a left 2-
adjoint | − | = | − |D sending a monad to its underlying category. If ι has a right 2-adjoint
EM = EMD we say (cf. [St]), that D admits Eilenberg-Moore objects or EM objects.

D Mnd(D)-
ι�

EM

� | − |

The notions of preservation of EM objects and of standard EM objects are defined in the
same way as in the case of Kleisli objects.

2.3 Some 3-categories and 3-functors

2Cat is the 3-category of 2-categories, i.e. with 2-categories as 0-cells, 2-functors as 1-cells,
2-natural transformations as 2-cells, and 2-modifications as 3-cells.

By a 2-category with finite products, we will always mean a 2-category with finite
products of 0-cells. Let 2Cat× be the sub-3-category of 2Cat full on 2-transformations
and 2-modifications, whose 0-cells are 2-categories with finite products, and 1-cells are
2-functors preserving finite products.

Let 2Catk be the sub-3-category of 2Cat full on 2-transformations and 2-modifications,
whose 0-cells are 2-categories that admit Kleisli objects, and 1-cells are 2-functors preserv-
ing Kleisli objects.

Let 2Catem be the sub-3-category of 2Cat full on 2-transformations and 2-
modifications, whose 0-cells are 2-categories that admit EM objects, and 1-cells are 2-
functors preserving EM objects.

These properties can be combined together. For example 2Catkem× is the sub-3-
category of 2Cat full on 2-transformations and 2-modifications, that admit all the men-
tioned constructions. We require that Kleisli objects commute with finite products when
they are both assumed to exist. Note that, as both EM objects and finite products are
weighted limits they always commute.

As we already mentioned, we have 3-functors

Mnd,Mndop : 2Cat −→ 2Cat

and these 3-functors restrict to 3-functors on some sub-3-categories like 2Cat×, 2Catk×
with the codomian restricted in a suitable way. Thus we also have for example

Mnd : 2Cat× −→ 2Cat× Mndop : 2Catk× −→ 2Cat

To see this, note that in the 2-category D with finite products, the product of the monads
(C,S, η, µ) and (C ′,S ′, η′, µ′) is, the monad (C × C ′,S × S ′, (η, η′), (µ, µ′)).
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2.4 The 2-categorical description of the Kleisli objects

We describe below the above 3-categorical definition of the Kleisli objects in 2-categorical
terms.

Thus we have 2-adjunctions K a ιop a | − |. Let us fix a monad (C,S, η, µ) in D. We
will often abbreviate it to S. The unit of the adjunction ιop a | − | on C is the identity
1C : C → |ιop(C)|. The counit of this adjunction on S is (1C , η) : ιop|S| → S.

The unit of the 2-adjunction K a ιop on S is the morphism adjoint to 1K(S)

K(S) K(S)-
1K(S)

a
S ιopK(S) = 1CS-

(FS , κ)
Thus CS is a 0-cell in D, FS : C → CS is a 1-cell in D, and κ : FS ◦ S → FS is a 2-cell in D
so that in the diagram

FS ◦ S2 FS ◦ S-
FS(µ)

-κS
FS

-κ
�

FS(η)
we have κ◦FS = 1FS and κ◦FS(µ) = κ◦ (κFS ). In such circumstances we say that (FS , κ)
subcoequalizes the monad S. The counit of this adjunction on C is 1C : C = Kιop(C)→ C.

One can check directly that (S, µ) : S → ιop(|S|) = 1C is an oplax morphism of monads.
By adjunction

S ιop|S|-(S, µ)

a
K(S) |S|-

US
we get the 1-cell US . Using twice the adjunction K a ιop we obtain

S ιopK(S)-(FS , κ)
ιop|S|-

ιop(US)

a
K(S) K(S)-

1K(S) |S|-US

a
S ιop|S|-(S, µ)

and by the uniqueness of adjoints, we get (S, µ) = ιop(US) ◦ (FS , κ) = (USFS , US(κ)).
We shall explain that FS a US in D as 1-cells in D. The unit of the adjunction FS a US

in D is η. In order to define ε, the counit of this adjunction, we proceed as follows. First
note that we have equalities of oplax morphism of monads from S to ιopK(S) = 1CS :

(FS ◦ S, FS(µ)) = ιop(|FS , κ|) ◦ (S, µ) = ιop(FS) ◦ ιop(US) ◦ (FS , κ)

Note that the codomains of the morphisms are correct as ιop|ιopK(S)| = ιopK(S). The
above morphism is parallel to (S, µ). Since κ ◦ FS(µ) = κ ◦ κS it follows that

κ : (FS ◦ S, FS(µ))→ (FS , κ)

is a transformation of oplax morphisms of monads, i.e. a 2-cell in Mndop(D). The adjoint
correspondence of the 2-cells below defines the counit ε:

ιopK(S)-(FS , κ)
ιop|S|-

ιop(US)
-

ιop(FS)

-
(FS , κ)

S ιopK(S)κ ⇓

a
|S|-US -FS

ε ⇓
-

1K(S)

K(S) K(S)
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We note for the record that εFS = κ. Next, we verify the triangular equalities. We have

εFS ◦ FS(η) = κ ◦ FS(η) = 1FS

The last equality follows from the fact that (FS , κ) : S → 1CS is an oplax morphism of
monads, i.e. (FS , κ) subequalizes S.

To see the other triangular equality, we consider the following correspondences of 2-cells

K(S) |S|-US K(S)-FS |S|-US

ε ⇓

η ⇓

6

1KS

?

1|S|

a

S ιopK(S)-(FS , κ)
ιop|S|-

ιop(US)
ιopK(S)-

ιop(FS)
ιop|S|-

ιop(US)

κ = εFS ⇓

ιop(η) ⇓

6

(FS , κ)

?

ιop(1|S|)

=
-(S, µ)

S ιop|S|-

-
(S, µ)

ιop(ηS) ⇓

US(κ) ⇓
(S2,S(µ))

a
-US

-
US

K(S) |S|1US ⇓

The first and the last are adjoint correspondences. In the middle, we have equality of
2-cells. The last 2-cell is 1US since before last is

US(εFS ) ◦ ιop(ηS) = US(κ) ◦ ηS = µ ◦ ηS = 1(S,µ)

This ends the 2-categorical explanation why K ’produces’ the Kleisli object, if they exist.
The categorical explanation will be given in Subsection 2.6.

2.5 The 4-categorical perspective

We bring here some order to the data constructed above by describing it as some cells in
the 4-category 3Cat of (strict) 3-categories, 3-functors, pseudo-natural 3-transformations,
pseudo 3-modifications, and perturbations.

We need some notation to be used only in the remainder of this subsection. For a
monad S = (C,S, η, µ) in a 2-category D the unit η (and all other constructs derived from
the monad S) will be denoted with a subscript [D,S]. Thus we write C[D,S] for C, η[D,S]
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for the unit η, ε[D,S] for the counit ε of the adjunction FS a US , i.e. F[D,S] a U[D,S], and
so on.

We have a modification U :

-
Mndop

2Catk 2Cat
-

Emb

⇓ | − |K ⇓ >
U

The 3-functor Mndop is defined above, Emb is the obvious embedding 3-functor. | − | :
Mndop → Emb is a (strict) 3-transformation so that |−|D : Mndop(D)→ D is associating
to a monad S in D, its underlying category |S|D = C[D,S]. K : Mndop → Emb is a (pseudo)
3-transformation so that KD : Mndop(D)→ D is associating to a monad S in D its Kleisli
category KD(S). The component UD : KD → |− |D of the modification U : K → |− | at D
is a 2-transformation of 2-functors such that at the monad S it is U[D,S] : KD(S)→ |S|D,
i.e. the forgetful 1-cell in D from the Kleisli object for S to the underlying category of S.

We also have a modification F :

-
Mndop

2Catk 2Cat
-

Mndop

⇓ ιop ◦ KidMndop ⇓ >
F

ιop◦K : Mndop →Mndop is a (pseudo) 3-transformation so that ιop,D◦KD : Mndop(D)→
Mndop(D) is associating to a monad S in D the identity monad on KD(S), i.e. ιop,D ◦
KD(S) = 1KD(S).

The component FD : IdMndop(D) → ιop,D◦KD of the modification F : idMndop → ιop◦K
at D is a 2-transformation of 2-functors such that at the monad S it is (F[D,S], κ[D,S]) :
S → 1KD(S). In particular FS = F[D,S] = |(F[D,S], κ[D,S])| is the free Kleisli algebra 1-cell
in D from the underlying category of S to the Kleisli object for S.

Now if we compose the 3-transformation | − | with the 3-modification F we get a
3-modification

|F | : | − | −→ | − | ◦ ιop ◦ K = K

Thus we can compose the 3-modifications |F | and U both ways. The perturbation η (i.e.
a 4-cell in the 4-category 3Cat) from Id|−| to U ◦ |F | is described below. The following
diagram

-
Mndop

2Catk 2Cat

-
Emb

⇓

| − |

⇓

| − |

>
U ◦ |F |

>
Id|−|

∨η

describes all the faces of η. The component of the above diagram at a 2-category (with
Kleisli objects) D is
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Mndop(D)

D
?

| − |D

?

| − |D
>

UD ◦ |FD|

>
Id|−|D∨ηD

The component of the above diagram at a monad S in D is

-
1C[D,S]

C[D,S] C[D,S]
-

S

η[D,S] ⇓

This means that η is the collection of all the units of all Kleisli adjunctions FS a US of all
the monads S in all the 2-categories D that admit Kleisli objects.

Similarly, ε, defined below, is a perturbation from |F | ◦ U to IdK.

-
Mndop

2Catk 2Cat

-
Emb

⇓

K

⇓

K

>
IdK

>
|F | ◦ U

∨ε

The component of the above diagram at a 2-category (with Kleisli objects) D is

Mndop(D)

D
?

KD

?

KD
>

IdKD

>
|FD| ◦ UD

∨εD

The component of the above diagram at a monad S in D is

-
F[D,S] ◦ U[D,S]

KD(S) = (C[D,S])S (C[D,S])S = KD(S)
-

1(C[D,S])S

ε[D,S] ⇓

This means that ε is the collection of all the counits of all Kleisli adjunctions FS a US of
all the monads S in all the 2-categories D that admit Kleisli objects. Needless to say that
the perturbations η and ε satisfy the triangular equalities.
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2.6 The categorical description of the Kleisli objects

If D is Cat the 2-category of categories, then the Kleisli objects coincide with the usual
categories of Kleisli algebras. For a monad (C,S, η, µ) the category CS has the same
objects as C. A morphism in f : A → B in CS is a morphism in f : A → S(A) with
the usual identities, compositions, US , and FS . The component at X in C of the natural
transformation κ : FS ◦ S → FS is 1S(X).

If a 2-category D admits Kleisli objects we can ask whether the Kleisli 2-functor
K : Mndop(D)→ D preserves limits of a particular kind. We have

Lemma 2.1. The Kleisli 2-functor K : Mndop(Cat)→ Cat preserves products of 0-cells.

Proof. We will sketch the construction for binary products. Let (C,S, η, µ) and
(C′,S ′, η′, µ′) in Cat. Then their product in Mndop(Cat) is (C×C′,S×S ′, (η, η′), (µ, µ′)).
One can easily verify that the unique morphism

H : (C × C′)S×S′ −→ CS × C′S′

such that H ◦ FS×S′ = FS × FS′ and H(κS×S
′
) = (κS , κS

′
) is an isomorphism.

Remark. Note that, as the 2-functor EM : Mnd(Cat) → Cat is a right 2-adjoint it
preserves all limits.

3 Monoidal objects in 2-categories

Let D be a 2-category with finite products of 0-cells. In such a 2-category D, we can talk
about monoidal objects, (op)lax monoidal 1-cells, and monoidal 2-cells, as we talk about
monoidal categories, (op)lax monoidal functors, and monoidal natural transformations in
the 2-category Cat. A monoidal object in D consists of a 0-cell C, two 1-cells ⊗ : C×C −→
C, I : 1→ C, and three invertible 2-cells

α : ⊗ ◦ (1×⊗)⇒ ⊗ ◦ (⊗× 1) λ : ⊗ ◦ 〈I, 1C〉 ⇒ 1C ρ : ⊗ ◦ 〈1C , I〉 ⇒ 1C

making the pentagon

⊗〈α, 1〉 ◦ α1C×⊗×1C ◦ ⊗〈1, α〉 = α⊗×1C×1C ◦ α1C×1C×⊗

and the triangle
⊗〈%π1 , 1π2〉 ◦ α〈π1,I,π2〉 = ⊗〈1π1 , λπ2〉

commute, where 〈π1, I, π2〉 : C × C −→ C × C × C is the obvious morphism.
A lax monoidal morphism of monoidal objects

(F,ϕ, ϕ̄) : (C,⊗, I, α, λ, %) −→ (C′,⊗′, I ′, α′, λ′, %′)

consists of a 1-cell and two 2-cells

F : C → C′, ϕ̄ : I ′ ⇒ F ◦ I, ϕ : ⊗′ ◦ (F × F )⇒ F ◦ ⊗

such that the following three diagrams
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⊗′ ◦ (F × F ) ◦ (1×⊗) ⊗′ ◦(F × F ) ◦ (⊗× 1)

⊗′ ◦ (1×⊗′) ◦ (F × F × F ) ⊗′ ◦(⊗′ × 1) ◦ (F × F × F )-
α′F×F×F

?

⊗′(1, ϕ)

?

⊗′(ϕ, 1)

F ◦ ⊗ ◦ (1×⊗) F ◦ ⊗ ◦ (⊗× 1)-
F (α)

?

ϕ(1×⊗)

?

ϕ(⊗×1)

⊗′ ◦ (F × F ) ◦ 〈1C , I〉 F ◦ ⊗ ◦ 〈1C , I〉-
ϕ〈1C ,I〉

⊗′ ◦ 〈1C , I ′〉 ◦ F F-
ρ′F

?

⊗′(1, ϕ̄)

6

F (ρ)

and

⊗′ ◦ (F × F ) ◦ 〈I, 1C〉 F ◦ ⊗ ◦ 〈I, 1C〉-
ϕ〈I,1C〉

⊗′ ◦ 〈I ′, 1C〉 ◦ F F-
λ′F

?

⊗′(ϕ̄, 1)

6

F (λ)

commute.
An oplax monoidal morphism of monoidal objects

(F,ϕ, ϕ̄) : (C,⊗, I, α, λ, %) −→ (C′,⊗′, I ′, α′, λ′, %′)

consists of a 1-cell and two 2-cells

F : C → C′, ϕ̄ : F ◦ I ⇒ I ′, ϕ : F ◦ ⊗ ⇒ ⊗′ ◦ (F × F )

(note the change of direction!) satisfying similar diagrams as those for lax monoidal
morphism.

A transformation of lax monoidal morphism

τ : (F,ϕ, ϕ̄)⇒ (F ′, ϕ′, ϕ̄′)

is a 2-cell τ : F → F ′ such that the diagrams

F ◦ ⊗ F ′ ◦ ⊗-
σ⊗

⊗′ ◦ (F × F ) ⊗′ ◦(F ′ × F ′)-⊗′(σ, σ)

?

ϕ
6

ϕ′

F ◦ I

F ′ ◦ I
?

σI
��

��
��1

PPPPPPq

I ′

ϕ̄

ϕ̄′
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commute. The transformations of oplax monoidal morphism are defined similarly.
Recall from 2.3 that 2Cat× is the 3-category of 2-categories with finite products. We

have 3-functors
Mon,Monop : 2Cat× −→ 2Cat×

Mon (Monop) sends a 2-category D with finite products to the 2-category Mon(D)
(Monop(D)) of monoidal objects, (op)lax monoidal morphism, and their transformations.
We also have 3-transformations

U : Mon⇒ Id, Uop : Monop ⇒ Id

whose components are forgetful functors forgetting the monoidal structure. Id is the
identity functor on 2Cat×.

The following theorem says that, in any 2-category D with finite products, monoidal
monads are ’the same things’ as monoidal categories in the 2-category of monads over D.
However there are subtleties concerning (op)laxness of 1-cells.

Lemma 3.1. The following diagrams of 3-functors

2Cat× 2Cat×-
Mon

2Cat× 2Cat×-Mon

?
Mndop

?
Mndop

2Cat× 2Cat×-
Monop

2Cat× 2Cat×-
Monop

?
Mnd

?
Mnd

commute up to natural 3-isomorphisms ξ and ξ′, respectively. Moreover, these isomor-
phisms are compatible with 3-transformations ι and U in the sense that the diagrams of
3-transformations

MndopMon

MonMndop
?

ξ
��

��
��
�1

PPPPPPPq

Mon

(ιop)Mon

Mon(ιop)

PPPPPPPq

��
��

��
�1

Mndop

Mndop(U)

UMndop

MndMonop

MonopMnd
?

ξ′
��

��
��
�1

PPPPPPPq

Monop

(ι)Monop

Monop(ι)

PPPPPPPq

��
��

��
�1

Mnd

Mnd(Uop)

(Uop)Mnd

commute.

Proof. For any 2-category D with products the cells in the 2-categories MonMndop(D),
MndopMon(D), MonopMnd(D), MndMonop(D) are tuples of cells from D satisfying
certain (equational) coherence conditions. An easy but long verification shows, for exam-
ple, that 0-cells of both MonMndop(D), MndopMon(D) are tuples of cells that differ
only by the cells order, but not the conditions they satisfy. Similarly for 1- and 2-cells.
The morphism ξ′ just permutes these tuples. One can easily check that this ’permutation
isomorphism’ is compatible with both ι and U , as stated in the theorem.

More explicitly, we can identify 0-cells of both MonMndop(D) and MndopMon(D)
as 11-tuples

(C,⊗, I, α, λ, %,S, ϕ, ϕ̄, η, µ)
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satisfying certain conditions that we explain below.
In both cases (C,S, η, µ) is a monad. Moreover, in MonMndop(D)

(⊗, ϕ) : (C × C,S × S, (η, η), (µ, µ)) −→ (C,S, η, µ)

(I, ϕ̄) : (C, 1, 1, 1) −→ (C,S, η, µ)

is an oplax morphisms of monads. This condition is equivalent to the condition that

η : (1C , 1, 1) −→ (S, ϕ, ϕ̄), µ : (S2,S(ϕ) ◦ ϕS×S ,S(ϕ̄) ◦ ϕ̄) −→ (S, ϕ, ϕ̄)

are monoidal transformations of lax monoidal morphisms. The later condition is required
for such tuple to be in MndopMon(D). Finally, the conditions that

α : (⊗ ◦ (1×⊗), ϕ1×⊗ ◦ ⊗(1, ϕ)) −→ (⊗ ◦ (⊗× 1), ϕ⊗×1 ◦ ⊗(ϕ, 1))

λ : (⊗ ◦ 〈I, 1C〉, ϕ〈I,1C〉 ◦ ⊗(ϕ̄, 1S)) −→ (1C , 1S)

% : (⊗ ◦ 〈1C , I〉, ϕ〈1C ,I〉 ◦ ⊗(1S , ϕ̄)) −→ (1C , 1S)

are transformations of oplax morphisms of monads, required for the tuple to be in
MonMndop(D) is equivalent to the condition that

(S, ϕ, ϕ̄) : (C,⊗, I, α, λ, %) −→ (C,⊗, I, α, λ, %)

is a lax monoidal morphisms. This is another condition required for the tuple to be in
MndopMon(D).

In that sense the conditions imposed on such 11-tuple to be either in MonMndop(D)
or MndopMon(D) are the same. The similar thing happen with 1− and 2-cells in those
2-categories. Thus they are isomorphic.

The remaining details are left for the reader.

Remark. This fact is a fragment of a much wider phenomena, deserving a serious
independent studies, that if we combine together two ’algebraic structures’ then they
cooperate well when one is taken with lax morphisms and the other with oplax morphisms
like MndopMnd ∼= MndMndop, MonopMon ∼= MonMonop.

4 The Kleisli objects in 2-categories of monoidal objects

In this section we give a 3-categorical proof of

Theorem 4.1. Let D be a 0-cell in 2Catk×, i.e. a 2-category with finite products that
admits Kleisli objects and such that Kleisli objects commute with finite products in D.
Then the 2-category Mon(D) admits Kleisli objects and they are standard.

Proof. Consider the following diagram in 4-category 3Cat:

2Cat× 2Cat-
Mndop

2Catk× 2Cat×
-Id

-
Mndop

ιop ⇓ ⇑ K

?

Id

?

Mon
U
⇐

?

Mon

?

Id

U
⇒

ξ
⇒

12



Using the above diagram we can form a diagram in the 3-category 3Cat(2Catk×, 2Cat)

Id Mndop-
ιop

Mon MonMndop� Mon(K)

?

U

?

UMndop

� K

-
Mon(ιop)

MndopMon

ξ

Mndop(U)

(ιop)Mon �
�

�
��	

���
����

�
�
��
��

���
���

���
���:

By Lemma 3.1 and the fact that U is a 3-natural transformation we see that that the
above diagram commutes. Evaluating this diagram at the 2-category D in 2Catk× we get
a commuting diagram of 2-categories and 2-functors

D Mndop(D)-
ιop,D

Mon(D) MonMndop(D)�Mon(KD)

?

UD

?

UMndop(D)

� KD

-
Mon(ιop,D)

MndopMon(D)

ξD

Mndop(UD)

(ιop)Mon(D) �
�

�
��	

�
������

�
�
��
���

���
���

���
�:

As KD a ιop,D and the 3-functor Mon preserves 2-adjunctions, we have Mon(KD) a
Mon(ιop,D). Since ξD is an isomorphism we get that Mon(KD) ◦ ξD a ιop,Mon(D), i.e.
Mon(D) indeed admits Kleisli objects and that they are standard.

By Lemma 2.1 we get from the above theorem

Corollary 4.2. The 2-category Mon(Cat) admits standard Kleisli objects.

Note that Theorem 4.1 can be rephrased in a slightly more general form as a lifting
property.

Theorem 4.3. The 3-functor Mon and the 3-transformation U can be lifted to the 3-
functor Mon and the 3-transformation U with the 0-codomain 2Cat×k so that the dia-
gram of 3-categories, 3-functors, and 3-transformations commutes up to a canonical iso-
morphism

-Mon

-
Id

2Cat×k 2Cat×kU ⇓

-Mon

-
Id

2Cat× 2Cat×U ⇓
? ?
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Proof. From Theorem 4.1, we know that, if we apply the 3-functor Mon to a 2-category
D that has not only finite products but also Kleisli objects, then we will get Mon(D) that
also has finite products and Kleisli objects. We need also to verify that Mon applied to
a 2-functor F : D → D′ that preserves Kleisli objects also preserves Kleisli objects. This
can be proved using a similar argument as the one in Theorem 4.1. We leave it for the
reader.

5 The EM objects in 2-categories of monoidal objects

The dual statement of Theorem 4.1 is

Theorem 5.1. Let D be a 2-category with finite products admitting EM objects. Then the
2-category Monop(D) admits EM objects and they are standard.

Putting D to be Cat in the above Theorem, we obtain a result by I. Moerdijk [Mo] in
a sharper version of P. McCrudden [McC]

Corollary 5.2 (Moerdijk, McCrudden). The 2-category Monop(Cat) admits standard
EM objects.

6 Some other algebraic structures

If we replace the 3-functor Mon (Monop) by the 3-functor BMon (BMonop) of braided
monoidal objects with lax (oplax) monoidal morphisms and monoidal transformations or
3-functor SMon (SMonop) of symmetric monoidal objects with lax (oplax) monoidal
morphisms and monoidal transformations or 3-functor Cmd (Cmdop) of comonads with
lax (oplax) monoidal morphisms and transformations, or even 3-functor Mnd (Mndop),
we can repeat the whole reasoning again. In this way we obtain

Theorem 6.1. Let D be a 2-category that admits Kleisli objects. Then the 2-categories
Mnd(D) and Cmd(D) admit Kleisli object and they are standard.

Moreover, if D has finite products that commute with Kleisli objects, then the 2-
categories BMon(D), SMon(D) admit Kleisli objects and they are standard.

Theorem 6.2. Let D be a 2-category that admits EM objects. Then the 2-category
Mndop(D) and Cmdop(D) admit EM objects and they are standard.

Moreover, if D has finite products, then the 2-categories BMonop(D), SMonop(D)
admit EM objects and they are standard.

Remarks.

1. The above facts suggest that the results of this paper can be still generalized. One
way is to axiomatize the formal properties of the relation of 3-functors Mon, BMon,
SMon, Mnd(D), and Cmd(D) with respect to the 3-functor Mndop and the rela-
tion of 3-functors Monop, BMonop, SMonop, Mnd(D), and Cmd(D) with respect
to the 3-functor Mnd and get this way still more abstract statement. This would be
worth trying if some new natural examples were to be found, other than iterations
of the 3-functors listed above.

2. The other more specific generalization would be to show that ‘any’ algebraic 2-
categorical structure will do. The precise formulation what such algebraic structure
should be is still to be found. It is possible that the 2-categories of pseudo-algebras
with lax/oplax morphisms for pseudo-monads provide the right language to formu-
late this phenomenon in a more abstract form. The work of M. Hyland and his
coworkers [Hy] might be also of a help.
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