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A young schizophrenic named Struther
When told of the death of his mother,

Said, ’Yes, it’s too bad,
But I can’t feel too sad.

After all, I still have each other.’ The Pan Book of Limericks

ABSTRACT. A. Joyal [J] has introduced the category D of the so-called finite disks,
and used it to define the concept of θ-category, a notion of weak ω-category. We introduce
the notion of an ω-graph being composable (meaning roughly that ’it has a unique
composite’), and call an ω-category simple if it is freely generated by a composable ω-
graph. The category S of simple ω-categories is a full subcategory of the category, with
strict ω-functors as morphisms, of all ω-categories. The category S is a key ingredient in
another concept of weak ω-category, called protocategory [MM1], [MZ]. We prove that
D and S are contravariantly equivalent, by a duality induced by a suitable schizophrenic
object living in both categories. In [MZ], this result is one of the tools used to show
that the concept of θ-category and that of protocategory are equivalent in a suitable
sense. We also prove that composable ω-graphs coincide with the ω-graphs of the form
T ∗ considered by M.Batanin [B], which were characterized by R. Street (as announced
in [S]) and called ‘globular cardinals’. Batanin’s construction, using globular cardinals,
of the free ω-category on a globular set plays an important role in our paper. We give
a self-contained presentation of Batanin’s construction that suits our purposes.
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1. Introduction

This paper is a contribution to recent studies aimed at clarifying the concept of weak
higher dimensional category.

In each of certain recent proposals of a precise notion of weak n-category, for n ≤
ω, a specific small category of ’shapes of cells’ (briefly, a shape-category) is introduced,
and a weak n-category is defined as a presheaf on the shape-category having certain
additional properties (let us emphasize: not as a presheaf with additional structure).
Thus, in particular, a weak n-category W of the given kind has cells of various shapes:
for an object A of the shape-category, the elements of the set W(A) are the cells of shape
A. The various arrows of the shape category are interpreted in W as face and degeneracy
operators, by extending the terminology used for simplicial sets.

In [BD], the opetopic weak n-categories (for finite n) are in fact defined without first
describing the shape-category, but the latter is implicit: it is the category of opetopes. In
[HMP], the shape-category is made explicit: it is the category of multitopes. In [MM2],
where the definition of multitopic ω-category is completed, and, also, the ambient struc-
ture comprising all multitopic ω-categories is clarified, the shape-category (the category
of multitopes) plays an active role.

In Joyal’s concept of θ-category [J], the shape-category is the opposite of a certain
category D, called the category of finite disks. Joyal denotes Dop by Θ, and calls it the
category of Batanin cells. Cellular sets are set-valued functors on D; a θ-category is
a cellular set satisfying certain conditions that are analogs of Daniel Kan’s horn-filling
conditions (see [K], and many later sources). In fact, the opposite of the (’non-augmented’)
simplicial category: the category ∆+ of non-empty finite linear orders is equivalent to a
full subcategory of D, and thus, every cellular set has, as a part, an underlying simplicial
set ’in it’. The underlying simplicial set of an ω-category satisfies the so-called restricted
Kan-condition [BV]. We may regard the passage from simplicial sets to cellular sets as
the result of extending the range of ’shapes of cells’ under consideration.

The concept of protocategory was arrived at, by the first author of this paper, inde-
pendently of Joyal’s work on θ-categories; however, the two concepts are closely related.
In the talk [MM1], the first author described only a certain part, the subcategory L, of
the shape-category for protocategories; the whole shape-category will be spelled out in
[MZ]. The description of L will bring us to one of the two main concepts treated in this
paper: simple categories.

By an ω-graph, we mean the same as, for instance, [B] means by a globular set.
Consider Sωgr, the following category-sketch (graph with composition relations; category-
presentation could be another name):

-d

G1 G0
-

c

-d

G2
-

c

-d

Gn Gn−1
-

c

. . .. . .
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subject to d ◦ d = d ◦ c and c ◦ d = c ◦ c, (of course, the various d’s and c’s have suitable
subscripts distinguishing them; and the ’globular’ identities are understood as all the
meaningful ones of the forms given). A model of Sωgr (a graph-map, that is, diagram on
Sωgr, obeying the identities) is an ω-graph.

The category of small ω-graphs, with morphism all the natural transformations (of
diagrams), is denoted by ωGr.

It is well-known how to present the notion of ω-category equationally over ωGr.
Writing ωCat for the category, with ordinary ω-functors as morphisms, of all small ω-
categories, we have the forgetful functor ωCat −→ ωGr, and its left adjoint [−] : ωGr −→
ωCat; for an ω-graph G, [G] is freely generated by G.

It is easy to see that if m : G→ H is a monomorphism of ω-graphs, then the induced
arrow [m] : [G] → [H] is also a monomorphism.

Let G be an ω-graph. Let us call an element (cell) a of [G] maximal if it is proper, that
is, not an identity cell, and if the only monomorphisms m : H → G for which a belongs
to the image of [m] are isomorphisms. Intuitively, an element is maximal if it is proper,
and the whole graph G is needed to generate it. We call G composable if [G] has a unique
maximal element; in that case, the maximal element may be called the composite of the
graph.

(Some remarks. It is easy to see that the proper arrows in any ω-category of the form
[G] form a sub-ω-graph of [G]: in other words, the domain and the codomain of a proper
cell is proper. Moreover, the generating ω-graph G is uniquely recoverable from [G] as
consisting of those proper cells that are indecomposable in the sense that they are not
composites of two proper cells.)

The graphs

• •-

• •-

? ?

� �
A
A

�
��
•

are not composable; for the first as G, [G] has no maximal element, for the second, [G] has
infinitely many. (As we will see, this is the general situation: there are either 0, or exactly
1, or else infinitely many maximal elements.) The examples that the reader would think
are composable, in an intuitive sense, are indeed such, as experimentation shows. Indeed,
the definition is a rigorous formulation of the idea of having a well-defined composite, the
latter being the unique maximal element. Note that the definition immediately implies
that a composable ω-graph is finite.

An ω-category is simple if it is of the form [G] for a composable ω-graph. The category
S is defined as the full subcategory of ωCat on the simple ω-categories as objects.

The category L, mentioned above as part of the shape-category for protocategories,
is the skeleton of the subcategory of S with the same objects as S, but with only the
monomorphisms as arrows. L has the distinguishing property of being one-way: the
endo-monoids of all the objects are trivial. This still holds for the full shape-category for
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protocategories, and indeed, this is a basic fact about it, making the specification of the
concept of protocategory to be one in FOLDS (First Order Logic with Dependent Sorts);
see [MM3], [MZ]. We are not going to have to do anything with FOLDS here; however,
let us remark that the ’one-way’ condition on the shape-category amounts to the fact
that, speaking in reference to the second paragraph of this Introduction, the cells of a
protocategory do not have degeneracy operators on them, only face operators. Note that
S is not a one-way category, and the concept of θ-category is not specified within FOLDS.

As a part of our work, we give an explicit combinatorial description of the composable
ω-graphs. More precisely, we introduce the combinatorial concept of ‘simple’ ω-graph,
and prove that ‘composable’ coincides with ‘simple’. The concept of ‘simple’ ω-graph is
due to R. Street [S], where he called the concept ‘globular cardinal’. Our description of
the notion differs only inessentially from his.

Let G be an ω-graph. We call two cells a and b in G parallel if either they are both of
dimension 0, or d(a) = d(b) and c(a) = c(b). By hom(a, b), we mean the set of all cells e
for which d(e) = a and c(e) = b. Let us fix the parallel cells a and b, and define the binary
relation F = Fa,b on the set hom(a, b) by saying that eFf (‘f follows e’) holds iff there
is g (of dimension exactly 1 higher than e and f) such that d(g) = e and c(e) = f . The
ω-graph G is called simple if for any parallel pair (a, b) the transitive closure of F = Fa,b is
an irreflexive total order R on hom(a, b), and eFf iff f is the immediate successor of e in
R: eRf and there is no h such that eRhRf . We will prove that an ω-graph is composable
iff it is simple. Let us remark here that the interesting direction of this equivalence is that
‘composable’ implies ‘simple’; the other direction is easy.

Here is an example of a simple ω-graph:

• •-

-

-

⇓ ⇒− ⇓ ⇒− ⇓

⇓
•- •

-

-

-

-

⇓

⇓ ⇒− ⇓

⇓

Note that the 1-dimensional simple (composable) ω-graphs are the chains of arrows.
A disk, according to [J], is a sequence

· · · Dn-p
D1 D0-p

Dn−1-p . . .

of sets and functions, with D0 being a singleton, together with, for any n ∈ ω and x ∈ Dn

a specified interval structure, that is, a (nonempty) linear order with a bottom and a top
element, on the set p−1(x), subject to the following condition: for any n ∈ ω, and for the
functions
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� tn

Dn+1 Dn

�
bn

�tn−1

Dn−1

�
bn−1

assigning to x the top and bottom elements in p−1(x), for x in Dn−1 or Dn, we have that
the set

Equ(tn, bn) = {x ∈ Dn : tn(x) = bn(x)}

equals the set Im(tn−1) ∪ Im(bn−1) (here, D−1 is understood to be the empty set).
Thus, in a disk, in dimension 0, we have exactly one element. In each positive di-

mension n = 1, 2, . . ., we have a bundle of intervals over the previous level, i.e., a disjoint
union of intervals, each interval being mapped by the projection to a single element on
the previous level. An element x in dimension n > 0 is singular, that is, an endpoint
of an interval in the bundle, if and only if the fiber p−1(x), an interval in the bundle in
dimension n+ 1, is a singleton.

The inner nodes of a disk are the non-singular nodes. Note that the unique node in
D0 is inner. The planar tree ι(D) of the inner nodes of a disk D completely determines

the disk: any isomorphism ι(D)
∼=−→ ι(D′) can be uniquely extended to an isomorphism

D
∼=−→ D′. (In ι(D) the nodes over a given node have a specified linear order on them:

hence the adjective ”planar”.)
A disk is finite if it has finitely many inner nodes.
A morphism f : D → E maps Dn into En so that f is compatible with the projections,

and for any x the induced map f : p−1(x) → p−1(f(x)) preserves the interval structure:
it is order- (that is, ≤-) preserving, and maps end-points to end-points. D, the category
of finite disks, is thereby defined.

Here is an example of the first 3 bundles or 4 levels of a disk:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
AA @@ @@ �� �� �� �� ��
◦ ◦ • • ◦ ◦ ◦ ◦

Q
Q

HHH AA ����� �����
���

◦ • • ◦
HHH

@@ �����

•

showing inner nodes in black (•), singular ones in white (◦).
The main theorem of the paper is that Sop and D are equivalent categories.
The category I of finite strict intervals (non-empty finite linear orders with a first and

a last element, which are distinguished in the structure and preserved by the morphisms)
and the category ∆ of finite non-empty linear orders are dual to one another. The Stone-
type adjunction based on a schizophrenic object establishing this duality is described in
detail in section 2.7 (except that we deal with ∆+ instead of ∆ and the corresponding
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part of T instead of T ). This is the duality Joyal describes in section 1.1 of [J]. Also,
the same duality appears in [SGL], p. 455. Our treatment of this duality serves a purely
expository purpose. We display the ingredients of the schizophrenic object in detail to
make the generalization to the ω-dimensional case easier to follow.

In the remaining parts of the paper we show that the higher-dimensional analogs of
these notions are related to each other in a similar manner. On the way to this result
we study the structure of D, the category of finite disks, and that of S, the category
of simple ω-categories. Among other things, we define an internal disk D in S and an
internal ω-category C in D. In a sense, D is a transposition of C and this structure
is a schizophrenic object for those categories, defining via hom functors a Stone-type
adjunction which establishes an equivalence of the categories S and D, in a way similar
to the duality presented in section 2.7 for I and ∆. Although the full proof of this fact
is long, the correspondence between a particular simple ω-graph G and the internal tree
ι(D) of the disk D dual to the simple ω-category generated by G is easy to understand
in particular cases. For example, the simple ω-graph and the (planar) tree drawn below
correspond in this sense to each other.
An ω-graph:

• •-

-

-

⇓ ⇒−1 ⇓ ⇒−2 ⇓

⇓3

•-4 •

-

-

-

-

⇓5

⇓ ⇒−6 ⇓

⇓7

and the corresponding tree:

1 2 6
@@ ��

• 3 5 • 7
Q

Q �� @@ ��
• 4 •

HHH �
��

•

In the ω-graph above, we numbered those cells that are neither domains nor codomains
of other cells. The nodes of the tree correspond to those cells in the ω-graph that are not
codomains of any other cell. The leaves correspond the cells which are neither domains nor
codomains of any other cell in the ω-graph. To indicate the correspondence, we marked
the leaves and corresponding cells with the same numbers.

The correspondence indicated above between planar trees and simple ω-graphs is due
to M. Batanin [B]. The correspondence described here is the same as his mapping from
T to T ∗, for T a planar tree, and T ∗ the corresponding specific globular set given in [B].
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We use extensively the technical notion of a ud-vector, (‘up-and-down-vector’) a vector
~n = n0, n1, . . . , n2k of natural numbers in which elements with odd subscripts are smaller
than the neighboring elements with even ones. The ud-vectors completely characterize
both finite disks and simple ω-categories up to isomorphism, constituting a simple and
useful invariant for objects of both categories. Therefore, we are able to define and prove
many things concerning these categories by induction on ud-vectors. A finite disk with a
given invariant corresponds via duality to a simple ω-category with the same invariant.

We note that there are other ways, cosidered in the literature, to use finite sequences
of natural numbers to describe the same combinatorial objects, cf. [L], [Ma].

To form an idea how the ud-vector associated with a tree is formed, consider the
example of a tree given above. Now, the ud-vector is 3, 2, 3, 1, 2, 0, 1, 0, 2, 1, 3, 1, 2. This
is a sequence of (non-negative) integers; we start numbering the positions with 0. In the
seven even positions, we find the heights of the seven leaves, in the order from left to
right. In each odd position, we find the height where the leaves corresponding to the
neighboring even positions ‘meet’.

Let us comment on the connections of our work to other people’s work.
It goes without saying that one of the starting points for the present paper is A.Joyal’s

preprint [J], produced in September 1997. In addition, Joyal conjectured the exact state-
ment of our main result, the equivalence of Sop and D, with the small difference that in
his version of S, the ingredient ‘composable ω-graph’ is replaced by ‘globular cardinal’
(which, as we said, we proved to be equivalent concepts). We learned about this fact from
an e-mail message by Joyal on June 23, 1999, when our work had been completed, and a
version of the present paper had been written, and was ready for electronic dissemination.
Upon receiving a description of our result, in the e-mail message mentioned above, Joyal
wrote, among others: ‘I am happy you have proved this duality. I had suspected it shortly
after writing my notes ‘disk, ...’ [which are [J]], but had no proof. I like your description
of composable ω-graph’.

Recently we realized that the paper [BS] (that appeared in the year 2000, but which
had been put on the internet already in November 1997) contains, in essence, a statement
of Joyal’s conjecture. As we had been unaware of [BS], this source did not influence our
work. As we indicated at the beginning of this Introduction, the idea of the category S
came to the first author in the Spring of 1998 independently of considerations involving
disks.

As we mentioned above, A. Joyal called his category Θ the category of Batanin cells,
indicating connections of his work to Michael Batanin’s work. In [B], Batanin introduced
, and used extensively, the planar trees mentioned above. His construction of the ω-graph
T ∗ out of the tree T is the same as what we described above as the correspondence between
simple ω-graphs and trees; in particular, simple ω-graphs are the same as the ones of the
form T ∗, for T a planar tree. In Proposition 4.2 in [B], Batanin gives a construction of the
free ω-category generated by an arbitrary ω-graph, one that uses trees and, ultimately,
simple ω-graphs; we will reprove his result in this paper (in sections 4.1 and 6.4).

At the end of the paper [BS], we find a statement concerning Θ, Joyal’s category men-
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tioned above, the formal dual of the category of finite disks. When one compares Joyal’s
paper [J] with the description of Θ given in [BS], the coincidence of the two descriptions
turns out to be nothing but the main theorem of our paper! We have recently learned
from a private communication by Professors Street and Batanin that the description of
Θ given in [BS] resulted from conversations of theirs and Andre Joyal’s in which Joyal
described his conjecture, ”identifying” the original description of Θ and the one in [BS],
which is essentially the same as that of S.

In [BS], there is no proof of our theorem, neither is Joyal’s original description of Θ
presented. Therefore the reader who does not know Joyal’s paper gets the misleading
impression that the description of [BS] is merely a reformulation of Joyal’s definition.
Joyal’s purely combinatorial definition of Θ (already given above in this introduction) is
very different from that of the category of simple ω-categories; the equivalence of the two
categories is far from obvious as Joyal’s statement ‘[I] had no proof’ quoted above also
indicates. Let us point out that we got the idea of the duality theorem of this paper in
August 1998, and its proof shortly thereafter.

Since A. Joyal’s preprint [J] is unpublished, we find it appropriate to point out that,
despite the appearence of the word ‘duality’ in the title, the paper does not contain an
indication of the possibility of the statement of our duality theorem. In fact, [J] makes
no reference to (strict) ω-categories at all.

A theorem related to our main result is Theorem 1.13 of [Be]. Note, however, that the
expression Θ(S, T ) used in the statement of the theorem is defined in a way that is not
directly related to hom-sets in Joyal’s category Θ.

Our paper is organized as follows. In chapter 2 we introduce the notions and some
notation concerning the main notions used in the paper: disks, simple ω-categories, and
ud-vectors. In the last section, 2.7, we present the well known duality for finite linear
orders and finite intervals in a way that can be generalized to the case of simple ω-
categories and of finite disks. This presentation is more involved than it could be, but we
think that doing this exercise will help the reader to understand the main result of the
paper.

In chapter 3 we investigate the category of finite disks. In section 3.1, we introduce
some notation and state some basic facts concerning disks. In section 3.11, we study
certain special pullbacks of disks, and for this purpose we use some simple results discussed
in section 3.6, concerning similar limits in some related categories of posets. We obtain a
presentation of any finite disk as a multi-pullback of very simple disks, and we associate
with every disk a ud-vector which describes it up to isomorphism. In section 3.21, we
define three special kinds of morphisms in D and we show that every morphism can
be, essentially uniquely, presented as a composition of such morphisms. In section 3.25,
we define the internal ω-category C in D and we show that homming into it defines a
contravariant functor from D to S.

In chapter 4 the simple ω-graphs and simple ω-categories are investigated. In section
4.1, some notation concerning simple ω-graphs is introduced and the construction of a free
ω-category on an ω-graph is presented. The construction is based on simple ω-graphs.
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We verify that the construction is correct by relating it to a more general one presented
in Appendix 6.8. In section 4.7, we prove that simple ω-graphs are exactly those that are
composable. In section 4.9 , we introduce some notation for simple ω-categories, prove
some of their properties, define an internal disk D in S. We show that homming into it
defines a contravariant functor from S to D.

In chapter 5 we state and prove the main result of the paper. We show that the
contravariant functors mentioned above form a Stone adjunction between S and D, which
is an equivalence of categories. In section at the end of the section 5.5, we indicate the
correspondence of objects and some morphisms in categories D and S via the established
duality.

The final section of this chapter contains some applications of our work. Among other
things we define a nerve functor for ω-categories, i.e. a full and faithful functor

Nω : ωCat −→ SetD

In this way, we identify ω-categories as special pullbacks preserving cellular sets, i.e. a
special kind of θ-categories.

The chapter 6 contains four appendices. We spell out the full (elementary) definitions
of an internal disk and an internal ω-category. In Appendix 6.3 we prove some facts
concerning internal ω-categories. Among other things we prove some general form of
the associativity law for ω-categories. In Appendix 6.8 we give a construction of a free
internal ω-category over an internal ω-graph and we prove that the free ω-category functor
preserves pullbacks. This construction in based on ud-vectors.

For the convenience of the reader, all the notation introduced in the paper is collected
in chapter 7.

In the whole paper, ω denotes the set of (von Neuman) natural numbers, i.e. if n ∈ ω
then n = {0, . . . , n− 1}, and ω+ the set of positive natural numbers. Set is the category
of (small) sets.
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2. Preliminaries

2.1. The category D of finite disks. The category of finite disks D was introduced
by A. Joyal in [J]. In this section, we repeat this definition using the original terminology.

In order to introduce the category of finite disks we need to introduce the category of
finite trees.
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A bundle of linear orders over the set B is a linear order in Set/B, i.e. a map p :
E −→ B with each fiber linearly ordered. A (planar) tree T is a sequence of bundles of
linear orders

· · · T s+1-ps+1

T 1 T 0 ∼= 1-p0

T s-ps
. . .

We often omit the superscript s of projection ps, when it does not lead to confusion.
A morphism of trees f : T −→ T ′ is a set of functions {f s : T s −→ T ′s}s∈ω preserving

projections and order in fibers. A tree is finite if all Tn’s are finite and almost all are
empty. Let T ree and T denotes the categories of trees and finite trees, respectively.

If n > s, by p(s) : T n −→ T s we denote the composition of n − s projections. By
convention, if n = s, then p(s)(x) = x.

We introduce notation for some finite trees. For n ∈ ω, θn is a tree such that, for
s ∈ ω

θs
n =

{
{s} if s ≤ n
∅ if s > n

and the projections are the obvious ones. Thus, for example, θ3 can be drawn as

0

1

2

3

A leaf x of a tree T is a node of T , such that p−1(x) = ∅. Clearly, any tree morphism
f : T −→ T ′ in uniquely determined by the function f restricted to the leaves of T .

A bundle of intervals over set B is an interval in Set/B, i.e. a diagram of sets and
functions

� b

E B-p

�
t

with each fiber p−1(x), for x ∈ B being an interval, i.e. a linear order with endpoints b(x)
and t(x). The equalizer of b and t, a subset of B, is the singular set of the bundle. A disk
D is a sequence of bundles of intervals

· · · Ds+1-ps+1

D1 D0 ∼= 1-p0

Ds-ps
. . .
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such that the singular set eq(b, t) of p : Dn+1 −→ Dn is equal to b(Dn−1)∪t(Dn−1). (Here,
by convention, D−1 = ∅, and the functions b, t : D−1 −→ D0 are thereby defined.) We
call this property the disk condition.

As a consequence of the definition, we have bb = tb and bt = tt. We define the boundary
∂(Dn) to be b(Dn−1)∪ t(Dn−1) and the interior ı(Dn) to be Dn \ ∂(Dn). By the previous
convention ∂(D0) = ∅. The nodes in ı(Dn) are called inner and the nodes in ∂(Dn) are
called outer. Because of the ’disk condition’, the projections p send inner nodes to inner
nodes and hence, restricting the projections to the interiors, we obtain the internal tree
ı(D) of the disk D

· · · ı(Ds+1)-p
ı(D1) ı(D0) ∼= 1-pı(Ds)-p . . .

We say that the disk D is finite if ı(D) is.
A morphism of disks f : D −→ E is a set of functions {f s : Ds −→ Es}s∈ω preserving

projections, order and endpoints in fibers. Let Dk and D denotes the categories of disks
and finite disks, respectively. From now on, by a disk we mean a finite disk, unless
explicitly stated otherwise.

Similarly as for trees, if n ≥ s, by p(s) : Dn −→ Ds we denote the composition of n− s
projections.

There is an obvious forgetful functor |− | from disks to trees, forgetting the endpoints,
which has a left adjoint (−):

-

(−)

T ree Dk
�

| − |

For a tree T , T is the unique disk D, such that ı(D) is isomorphic to T . In fact, Dk
is both Kleisli and Eilenberg-Moore category for the monad induced by this adjunction.
The above adjunction restricts to finite disks and finite trees:

-

(−)

T D
�

| − |

It follows that, in order to define a disk morphism f : D −→ E, it is enough to define
a tree morphism f ′ : ı(D) −→ E. In the Appendix 6.1, we give an internal version of
the notion of a disk in an arbitrary category, so that, disks (not necessarily finite) defined
above become internal disks in Set.
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2.2. The category S of simple ω-categories . An ω-graph G in a category C has
for each n ∈ ω an object Gn of n-cells in C and operations

-dn

Gn+1 Gn
-

cn

of domain and codomain. We usually omit the subscripts of the morphisms dn and cn.
Furthermore, in the diagram

-d

Gn+1 Gn
-

c

-d

Gn−1
-

c

. . . . . .

we have d ◦ d = d ◦ c and c ◦ d = c ◦ c. A morphism between ω-graphs G and G′ is a
family of arrows {ϕn : Gn −→ G′

n}n∈ω in C commuting with operations of domain and
codomain. By ωGr we denote the category of ω-graphs in Set.

A simple ω-graph is an ω-graph G in Set, such that

1. G is non-empty and finite, i.e. each Gn in finite G0 6= ∅ and almost all are empty;
the height of G is ht(G) = max{n : Gn 6= ∅};

2. for n ∈ ω, Gn is partially ordered; for any x, y ∈ Gn the subset of Gn+1

Gn+1(x, y) = {u ∈ Gn+1 : d(u) = x and c(u) = y}

is linearly ordered by ≥; as well as G0; let � denote the immediate predecessor
relation: u � v means that u, v ∈ G0 and v is an immediate predecessor of u or
u, v ∈ Gn+1(x, y) for some x, y ∈ Gn such that x�y, and moreover v is a predecessor
of u in that order;

3. for n ∈ ω, if x, y ∈ Gn then

x� y iff Gn+1(x, y) 6= ∅

Let sωGr denote the full subcategory of ωGr, whose objects are simple ω-graphs.
The full definition of an ω-category in a category C is given in the Appendix 6.2.

Below, we briefly sketch the definition.
An ω-category A is an ω-graph together with operations of identity, for n, l ∈ ω, n ≤ l,

ιA(n,l) = ιA(l) : An −→ Al

and compositions
mA

n0,n1,n2
: An0,n1,n2 −→ Amax(n0,n2)

where for a 3-tuple 〈n0, n1, n2〉 such that n1 < n0, n2, the diagram
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An0 An1
-

cA

An0,n1,n2 An2
-π1

?

π0

?

dA

is a pullback. This data is subject to conditions concerning domains and codomains of
identities and compositions, neutrality of identities, associativity of compositions, and
middle exchange law. The morphisms of ω-categories are defined as the morphisms of the
underlying graphs preserving additionally compositions and identities. ωCat denotes the
category of ω-categories in Set.

The forgetful functor
U : ωCat −→ ωGr

has a left adjoint,
[−] : ωGr −→ ωCat

associating to a graph G, the free ω-category [G] generated by G. A specific construction
of this functor using simple ω-graphs is given in section 4.1.

If G′ is a sub-ω-graph of G, then [G′] is a sub-ω-category of [G]. Moreover the ω-
category [G] determines uniquely (up to an isomorphism) the ω-graph G, as the ω-graph
of those cells in [G] that are not compositions of two other non-identity cells in [G]. We
have that if an ω-functor ϕ : [G] −→ [G′] is an isomorphism then there is a unique
isomorphism of ω-graphs ψ : G −→ G′ such that [ψ] is ϕ. All this can be easily deduced
from the description of the functor [−] : ωGr −→ ωCat given in the section 4.1.

Let G be an ω-graph. A cell e in [G], is said to be maximal if it is not an identity cell
and it is not contained in [G′], for any proper sub-ω-graph G′ of G. An ω-category S is
simple iff for some graph G, it is isomorphic to the category [G] containing exactly one
maximal cell. The unique maximal cell in [G] and S, if exists, will be denoted by macG

and macS, respectively. An ω-graph is composable if [G] is a simple category. The name
composable comes from the intuition that if a graph G is composable then it has well
define composition in [G] which is the maximal cell macG.

Note, that a 1-category (i.e. ω-category without non-identity cells of dimension bigger
then 1) is simple iff it is generated by a composable string of arrows, e.g. the category
[G1], generated by the graph G1:

• •-
k

• •-f

?

g

?

h

has no maximal arrow, and in the category [G2], generated by the graph G2:
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� �
A
A

�
��
•

f

all non-identity arrows are maximal.
Later (Theorem 4.8) we shall prove that simple ω-categories are exactly those which

are free ω-categories generated by a simple ω-graphs, i.e. that a ω-graph is composable
iff it is simple.

We shall define a functor
Tr : sωGr −→ T

Let G be a simple ω-graph. Let max(Gn) be the set of maximal elements in Gn and
max(Gn, x, y) the maximal element in Gn(x, y), provided x, y ∈ Gn−1 and x� y. We put

Tr(G)n = max(Gn)

Thus Tr(G)0 contains only max(G0), the maximal element of G0 and for n > 0 and
x ∈ Gn we have that x ∈ Tr(G)n iff x = max(Gn, d(x), c(x)).

The projection pn : Tr(G)n+1 −→ Tr(G)n is defined as follows. For x ∈ G1, p
1(x) =

max(G0). For n > 1 and x ∈ Gn,

pn(x) = max(Gn−1, d(n−2)(x), c(n−2)(x))

The order in the fibers of Tr(G) is given as follows. If u, v ∈ Tr(G)1 then u ≥ v iff
d(u) ≥ d(v) in G0, and if u, v ∈ Tr(G)n for n > 1, then u ≥ v iff d(u) ≥ d(v) in
Gn−1(d(n−2)(x), c(n−2)(x)).

Let f : G −→ G′ be a morphism of simple ω-graphs. Then for x = max(G0) ∈ Tr(G)0

we put Tr(f)0(x) = max(G′
0) and for x ∈ Tr(G)n for n > 0, we put Tr(f)n(x) =

max(G′
n, d(fn(x)), c(fn(x))).

The functor Tr is neither full nor faithful, but it is conservative (i.e. reflects isomor-
phisms) and essentially surjective. We shall sketch why the last property holds. Let T be
a tree. We shall define a simple ω-graph G such that Tr(G) is isomorphic to T . To this
end, we define a predecessor function

preT :
∞⋃

s=1

T s −→
∞⋃

s=0

T s

such that, for x ∈ T n,

preT (x) =

{
next element in the fiber if exists
pn−1(x) otherwise

for n ≥ 1. We put
Gn = T n + T n+1
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for x ∈ T n ↪→ Gn

dn(x) = preT (x) ∈ Gn−1

cn(x) = x ∈ T n ↪→ Gn−1

for x ∈ T n+1 ↪→ Gn

dn(x) = preT (pn(x)) ∈ Gn−1

cn(x) = pn(x) ∈ T n ↪→ Gn−1

Now, one can check that Tr(G) is isomorphic to T .
Putting together the functors that we have mentioned so far, we get the following

diagram of categories and functors

T �
Tr

D

sωGr ωGr-

S ωCat-

6

[−]

6

(−)

?

| − |

6

[− ]

?

U

where horizontal arrow going right are inclusions.

2.3. The ud-vectors. In this section we introduce ud-vectors, some vectors of natural
numbers. They characterize up to an isomorphism both disks and simple ω-categories,
being much simpler then either of them.

The reason, the notion of a ud-vector is rather technical as opposed the other two
is that there is no reasonable easy notion of a morphism of ud-vectors. However, it is
very convenient to describe domains and codomains of disk morphisms and ω-functors
between simple ω-categories using ud-vectors. Some (important) pullbacks in D can be
described in terms of operation of amalgamation of ud-vectors. For l ∈ ω, we introduce
an l-size of ud-vectors. This will allow us to show easily many properties of disks and
simple categories, by induction on l-size.

By an up-and-down vector, ud-vector for short, ~u, we mean a sequence of natural
numbers ~u = 〈u0, . . . , u2k〉 with k ∈ ω, such that u2i+1 < u2i, u2i+2, for i ∈ k. By the
length lh(~u) of a ud-vector ~u, we mean the number of even-numbered elements in it. (To
help the intuition of the reader, let us note that, with T the tree corresponding to ~u in the
sense indicated in the Introduction, we have that lh(~u) is the number of the leaves in T .
This, and the similar parenthetical remarks that follow, are not needed for the technical
development.) Thus, in the above case, lh(~u) = k + 1. The height ht(~u) of a ud-vector ~u,
we mean the maximum number in ~u, i.e. max(~u). (ht(~u) is the maximal dimension of a
cell occuring in G, the simple graph corresponding to ~u.) If we write ~u = ~u′, z, ~u′′ then
we mean that the ud-vector ~u is a concatenation of ud-vector ~u′ followed by a single term
z, followed by ud-vector ~u′′.
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Let l, k ∈ ω, ~u a ud-vector of length k+ 1 . We say that ~u is l-primitive iff min(~u) ≥ l
and max(~u) > l. The l-size of a ud-vector ~n we define as follows

size(l)(~u) =


1 if ~u = u0 ≤ l
1 if ~u is l-primitive

size(l)(~u′) + size(l)( ~u′′) if ~u = ~u′, z, ~u′′, z = min(~u) < l

We shall prove many statements involving ud-vectors by induction on l-size. (With G as
above size(l)(~u) is the number of equivalence classes of the relation ‘a parallel to b’ for
l-cells a, b, where the l-cells a, b are said to be parallel if either l = 0, or d(a) = d(b) and
c(a) = c(b).)

The ud-vector tr(l)(~u), the l-truncation of ~u is defined, by induction on l-size of ~u, as
follows

tr(l)(~u) =


u0 if ~u = u0 ≤ l
l if ~u is l-primitive

tr(l)(~u′), z, tr(l)( ~u′′) if ~u = ~u′, z, ~u′′ and z = min(~u) < l

(With G as above, tr(l)(~u) is the ud-vector associated with the ‘l-truncation’ G′ of
G, where G′ is obtained from G by deleting every cell of dimension greater then l, and
replacing each parallelism class of l-cells by just one l-cell.)

For l ∈ ω and ud-vectors ~u, ~v, such that tr(l)(~u) = tr(l)(~v) = ~w, i.e. ~u and ~v are
l-compatible, we define recursively a ud-vector [~u, l, ~v], an l-amalgam of ud-vectors ~u and
~v, by induction on l-size of ~w, as follows

[~u, l, ~v] =



~u if ~v = v0 ≤ l,
~v if ~u = u0 ≤ l,
~u, l, ~v if both ~u and ~v are l-primitive,

[~u′, l, ~v′], z, [ ~u′′, l, ~v′′] if ~u = ~u′, z, ~u′′, ~v = ~v′, z, ~v′′,

tr(l)(~u′) = tr(l)(~v′),

tr(l)( ~u′′) = tr(l)(~v′′)
and z = min(~u) < l

If we write [~u, l, ~v], we always presuppose that ~u and ~v are l-compatible. (The l-amalgam
[~u, l, ~v] can be related to simple graphs as folows. Let G, H and I be the simple graphs
corresponding to ~u, ~v and ~w = tr(l)(~u) = tr(l)(~v), respectively. Consider the map c :
I −→ G, d : I −→ H defined as follows. On cells of dimensions less that l, c and d are
‘inclusions’. For a in I of dimension l, c(a) is the last element in the parallelism class of
elements of G corresponding to a, d(a) is the last element of the corresponding class in
H. Finally, let J be the pushout (in the category of ω-graphs) of the maps c and d. J is
the simple graph corresponding to [~u, l, ~v].)

The (n1, n3)-amalgam [~u, n1, ~v, n3, ~w] of three ud-vectors ~u, ~v, ~w, such that ~u and ~v
are n1-compatible and ~v and ~w are n3-compatible is defined as follows:

[~u, n1, ~v, n3, ~w] =

{
[[~u, n1, ~v], n3, ~w] if n1 ≥ n3

[~u, n1, [~v, n3, ~w]] if n1 < n3

We list the following easy relations between the notions introduced above.
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2.4. Lemma. Let l, n1, n3 ∈ ω, ~u, ~v, ~w ud-vectors, such that ~u and ~v are n1-complatible
and ~v and ~w are n3-complatible. Then

1. if ht(~u) ≤ l then tr(l)(~u) = ~u;

2. if l ≤ n1 then tr(l)(tr(n1)(~u)) = tr(l)(~u);

3. ht(tr(l)(~u)) = min(l, ht(~u));

4. size(l)(~u) = size(l)(tr(l)(~u)) = lh(tr(l)(~u));

5. ht([~u, l, ~v]) = max(ht(~u), ht(~v));

6. if l ≤ n1 then tr(l)(~u) = tr(l)([~u, n1, ~v]) = tr(l)(~v);

7. if n1 < l then tr(l)([~u, n1, ~v]) = [tr(l)(~u), n1, tr(l)(~v)];

8. if n1 = n3 then [[~u, n1, ~v], n3, ~w] = [~u, n1, [~v, n3, ~w]];

9. if n1 < n3 then [~u, n1, ~v, n3, ~w] = [[~u, n1, ~v], n3, [tr(n3)(~u), n1, ~w]];

10. if n1 > n3 then

[~u, n1, ~v, n3, ~w] = [[~u, n3, tr(n1)(~w)], n1, [~u, n3, ~w]];

11. [tr(n1)(~u), n1, ~u] = ~u = [~u, n1, tr(n1)(~u)];

12. if n1 < l then

tr(l)([~u, n1, ~v]) = tr(l)([tr(l)(~u), n1, ~v]) = tr(l)([~u, n1, tr(l)(~v)]);

13. if n1 < l then
[~u, n1, ~v] = [[~u, n1, tr(l)(~v)], l, [tr(l)(~u), n1, ~v]] =

[[tr(l)(~u), n1, ~v], l, [~u, n1, tr(l)(~v)]].

Proof. Exercise.
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The free ω-category on the terminal ω-graph can be conveniently described in terms
of ud-vectors and the operations introduced above. We denote this ω-category by UD.

Intuitively, UD is constructed by formally composing ud-vectors of length 1 (the gen-
erating cells of UD) in all possible ways. The cells in UD are diagrams of (generating)
cells with some prescribed compatibility (the domains of some cells match the codomains
of some other cells, in such a way that they ’compose’ altogether to a single cell). In
ud-vector ~u the i-th generating cell u2i matches i+1-st generating cell u2i+2 at level u2i+1.

The set of n-cells UDn consists of the ud-vectors of height at most n. The domain and
the codomain operations:

d(l) = dUD
(l) , c(l) = cUD

(l) : UDn −→ UDl

for l ≤ n, are given by the l-truncation, i.e. for a ~u ∈ UDn, we have

d(l)(~u) = c(l)(~u) = tr(l)(~u)

The operations are well defined by Lemma 2.4 3.
The identity operations:

ι(n) = ιUD
(n) : UDl −→ UDn

are inclusions, for l ≤ n.
The compositions in UD are given by the operations of amalgamation. The set

UDn0,n1,n2 is the set of n1-compatible pairs of ud-vectors (~u,~v), such that ht(~u) ≤ n0

and ht(~v) ≤ n2. The composition

mn0,n1,n2 : UDn0,n1,n2 −→ UDmax(n0,n2)

is given, for the pair of ud-vectors (~u,~v) ∈ UDn0,n1,n2 by

mn0,n1,n2(~u,~v) = [~u, n1, ~v]

The composition is well defined by Lemma 2.4 5.

2.5. Proposition. UD defined above is the free ω-category over the terminal ω-graph
1.

Proof. First we shall verify that UD is an ω-category and then we shall show that it is
free over 1. To prove this we are going to use Lemma 2.4.

By Lemma 2.4 2, we have,

d ◦ d = d ◦ c = c ◦ d = c ◦ c

so UD is an ω-graph. We shall indicate, why conditions (vi)-(xi) in 6.2 of the definition
of an ω-category are satisfied.
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(vi) .1: let (~u,~v) ∈ UDn0,n1,n2 , l ≤ n1. Then, using Lemma 2.4 6, we get

d(l) ◦ π0(~u,~v) = d(l)(~v)

= tr(l)(~v) = tr(l)([~u, n1, ~v])

= d(l)([~u, n1, ~v]) = d(l) ◦m(~u,~v)

(vi) .2: use Lemma 2.4 6.

(vi) .3 and (vi).4 are similar.

(vii) : use Lemma 2.4 1.

(viii) : use Lemma 2.4 1, 8, 9, 10.

(ix) : says that the compositions, of inclusions is an inclusion.

(x) : use Lemma 2.4 11.

(xi) : use Lemma 2.4 12, 13.

This shows that UD is indeed an ω-category.
Now we shall show that UD free on 1. We define

η : 1 −→ UD

so that ηn(∗) = n ∈ UDn, for n ∈ ω. Let F : 1 −→ A be an ω-graph morphism into an
ω-category A. We define an ω-graph functor F : UD −→ A, as follows:

F n(~u) =

{
ι(n)(F ( ~u0)) if ~u = u0

mA
n,l,n(F (~u′), F ( ~u′′)) if ~u = ~u′, l, ~u′′, and = min(~u) = l < min(~u′)

It is easy to see that, more generaly, the equality which results by droping the condition
l < min(~u′) is also true.

The verification that F ◦ η = F is trivial. Since every cell in UD is obtained by
applaying the ι and the m operations repeatedly starting with ud-vectors of length 1,
if follows that F must be unique, if it exists. It remains to show that F is indeed an
ω-functor. F preserves domains. Let l < n and ~u ∈ UDn. We need to show that
d(l)(F n(~u)) = F l((d(l)(~u)).

The argument is by induction on l-size of ~u.
If size(l)(~u) = 1, we argue by induction on lenght of ~u. If lh(~u) = 1, i.e. ~u = u0, we

have for l ≤ u0:
F l(d(l)(~u)) = F l(d(l)(u0)) = Fl(∗)) =

= Fl(d(l)(∗)) = d(l)(Fl(∗)) = d(l) ◦ ι(n)(Fu0(∗)) =

= d(l)(F (u0)) = d(l)(F (~u))
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and for l > u0:

F l(d(l)(~u)) = F l(u0) =

= ι(l)(Fu0(∗)) = d(l) ◦ ι(n)(Fu0(∗)) =

= d(l)(F n(u0)) = d(l)(F (~u))

If lh(~u) > 1 then ~u = ~u′, k, ~u′′, where n > k = min(~u) ≥ l. Using the inductive
hypothesis, we get

F l(d(l)(~u)) = F l(l) = F l(d(l)(∗)) = d(l)(Fu0(∗) =

= d(l)(F (~u′) = d(l)(mn,k,n(F (~u′), F ( ~u′′)) = d(l)(F (~u))

Now assume that size(l)(~u) > 1, ~u = ~u′, k, ~u′′, and k = min(~u) < l. Then, using the
inductive assumption and the axioms of ω-categories, we have:

F l(d(l)(~u)) = F l(tr(l)(~u)) =

= F l(tr(l)(~u′), k, tr(l)( ~u′′)) = ml,k,l(F l(tr(l)(~u′)), F l(tr(l)( ~u′′))) =

= ml,k,l(F l(d(l)(~u′)), F l(d(l)( ~u′′))) = ml,k,l(d(l)(F n(~u′)), d(l)(F n( ~u′′))) =

d(l)(mn,k,n(F n(~u′), d(l)(F n( ~u′′))) = d(l)(F n(~u))

For the codomains, the argument is the same.
F preserves identities. Let n < l and ~u ∈ UDn. We need to show that ι(l)(F n(~u)) =

F l((ι(l)(~u)).
The argument is by induction on lenght of ~u. If ~u = u0 then

ι(l)(F n(~u)) = ι(l)(ι(n)(F u0(∗))) =

= ι(l)(F u0(∗)) = F l(∗) = F l(ι(l)(∗))

If ~u = ~u′, k, ~u′′ where k = min(~u), we have

ι(l)(F n(~u)) = ι(l)(ml,k,l(F n(~u′), F n( ~u′′))) =



21

= ml,k,l(ι(l)(F n(~u′)), ι(l)(F n( ~u′′))) = ml,k,l(F l(ι(l)(~u′)), F l(ι(l)( ~u′′))) =

= ml,k,l(F l(~u′), F l( ~u′′)) = F l(~u) = F l(ι(l)(~u))

F preserves compositions. Let (~u,~v) ∈ UDn0,n1,n2 , n = max(n0, n2). We need to show
that mn0,n1,n2(F n0(~u), F n2(~v)) = F n(mn0,n1,n2(~u,~v)).

The argument is by induction on n1-size of ~w = trn1(~u).
If ~u = u0 ≤ n1 then ~u = tr(n1)(~v) = ι(n0)(d(n1)(~v), n = n1, and we have

mn1(F n0(~u), F n2(~v)) = mn1(F n0(ι(n0)(d(n1)(~v)), F n2(~v)) =

= mn1(ι(n0)(d(n1)(F n2(~v)), F n2(~v)) = F n(~v) =

F n([tr(n1)(~v), ~v]) = F n(mn1(~u,~v))

The case ~v = v0 ≤ n1 is similar.
If both ~u and ~v are n1-primitive then

mn1(F n0(~u), F n2(~v)) == F n(~u, n1, ~v) =

= F n([~u, n1, ~v]) = F n(mn1(~u,~v))

Now, let ~u = ~u′, l, ~u′′, ~v = ~v′, l, ~v′′, l = min(~u) = min(~v) < n1, trn1(~u
′) = trn1(~v

′), and
trn1( ~u

′′) = trn1(~v
′′). Then, using inductive hypothesis, axioms (vi), (viii), and (xi) of the

definiton of ω-category, and the fact that

d(n1)(F n2(~v
′)) = c(n1)(F n0(~u

′)), c(n1)(F n0( ~u
′′)) = d(n1)(F n2(~v

′′)) (1)

we have (we drop indices in F )

F (mn1(~u,~v)) = F ([~u, n1, ~v]) =

(assumption on ~u and ~v)

= F ([[~u′, l, ~u′′], n1, [~v′, l, ~v′′]]) =

(definition of n1-amalgam)

= F ([~u′, n1, ~v′], l, [ ~u′′, n1, ~v′′]]) =
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(definition of F )
= ml(F ([~u′, n1, ~v′]), l, F ([ ~u′′, n1, ~v′′])) =

(inductive hypothesis)

= ml(mn1(F (~u′), F (~v′)),mn1(F ( ~u′′), F (~v′′))) =

(axiom viii.4)
= mn1(ml(F (~u′), d(n1)(mn1(F ( ~u′′), F (~v′′)))),

ml(F (~v′),mn1(F ( ~u′′), F (~v′′)))) =

(axiom viii.2)
= mn1(ml(F (~u′), d(n1)(mn1(F ( ~u′′), F (~v′′)))),

mn1(ml(F (~v′), F ( ~u′′)),ml(c(n1)(F (~v′)), F (~v′′)))) =

(axiom vi.1)

= mn1(ml(F (~u′), d(n1)(F ( ~u′′))),

mn1(ml(F (~v′), F ( ~u′′)),ml(c(n1)(F (~v′)), F (~v′′)))) =

(axiom ix, middle exchange law)

= mn1(ml(F (~u′), d(n1)(F ( ~u′′))),

mn1(mn1(ml(d(n1)(F (~v′)), F ( ~u′′)),ml(F (~v′), c(n1)(F ( ~u′′)))),

ml(c(n1)(F (~v′)), F (~v′′)))) =

(axiom viii.1)

= mn1(mn1(ml(F (~u′), d(n1)(F ( ~u′′))),ml(d(n1)(F (~v′)), F ( ~u′′))),

mn1(ml(F (~v′), c(n1)(F ( ~u′′))),ml(c(n1)(F (~v′)), F (~v′′)))) =

(equations (1))

= mn1(mn1(ml(F (~u′), d(n1)(F ( ~u′′))),ml(c(n1)(F (~u′)), F ( ~u′′))),

mn1(ml(F (~v′), d(n1)(F (~v′′))),ml(c(n1)(F (~v′)), F (~v′′)))) =

(axiom xi, middle exchange law)

= mn1(ml(F (~u′), F ( ~u′′)),ml(F (~v′), F (~v′′))) =

(definition of F )
= mn1(F (~u), F (~v))

This ends the proof of the proposition.
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2.6. Some notation concerning ω-graphs and ω-categories. In this section we
introduce some notation concerning ω-graphs and ω-categories. For any ω-graph G and
ud-vector ~u, we define the pullbacks G~u of lh(~u)-tuples of compatible cells and between
such objects we define the ’multi’-versions of the operations of domain dG

~u;l, codomain cG~u;l,
and some projections. If additionally, G is an ω-category we define the ’multi’-versions of
the operations of composition m~u. These ’multi’-operations satisfy some generalizations
of the laws defining ω-categories. The explicit statements and proofs of these laws are in
Appendix 6.3.

Since we will use these definitions not only when the ambient category is Set but also
in the category D which is not even finitely complete, we assume that we have a fixed
ω-graph G and ω-category A in a category C with all (finite) limits that are explicitely
taken.

We assume that in C, for any ud-vector ~u, we can form the following limit

Gu0 Gu2

Gu1

c@
@@R

d
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��	

Gu2k−2
Gu2k

Gu2k−1

c@
@@R

d
�

��	
. . .
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πG
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�
��	

πG
2k−2

@
@@R

πG
2k

PPPPPPPPq
πG

0

��������)

If 0 ≤ i ≤ j < lh(~u) we denote by

πG
i..j : G~u −→ Gu2i,...,u2j

the obvious projection.
Let l ∈ ω and ~u be a ud-vector, lh(~u) = k + 1. The morphisms of multi-domain and

multi-codomain in an ω-graph G

dG
~u;l, c

G
~u;l : G~u −→ Gtr(l)(~u)

are defined recursively, as follows

dG
~u;l =


1Gu0

if ~u = u0 ≤ l;
dG

(l) ◦ π0 if ~u is l-primitive;

dG
~u′;l
× dG

~u′′;l
if ~u = ~u′, w, ~u′′ and w = min(~u) < l.

min(~u′) > l.

and

cG~u;l =


1Gu0

if ~u = u0 ≤ l;
cG(l) ◦ πk if ~u is l-primitive;

cG~u′;l × cG~u′′;l if ~u = ~u′, w, ~u′′ and w = min(~u) < l.

min(~u′) > l.



24

It is convenient to define morphisms dG
(l), c

G
(l) : Gn −→ Gmin(l,n) for any l, n ∈ ω, by

putting dG
(l) = cG(l) = idGn , if l ≥ n.

For ~u,~v ∈ UDn0,n1,n2 the projection morphisms in C

πG
0;~u : G[~u,n1,~v] −→ G~u πG

1;~v : G[~u,n1,~v] −→ G~v

are defined as follows

πG
0;~u =



dG
~v;u0

if ~u = u0 ≤ n1;

πG
0..k if ~u is n1-primitive, and lh(~u) = k + 1;

πG
0;~u′

× πG
0; ~u′′

if ~u = ~u′, z, ~u′′, ~v = ~v′, z, ~v′′,

tr(n1)(~u′) = tr(n1)(~v′), tr(n1)( ~u′′) = tr(n1)(~v′′),
and z = min(~u) < n1.

and

πG
1;~v =



cG~u;v0
if ~v = v0 ≤ n1;

πG
k+1..k′ if ~v is n1-primitive, lh(~u) = k + 1,

and lh(~u, n1, ~v) = k′ + 1;

πG
1;~v′

× πG
1; ~v′′

if ~u = ~u′, z, ~u′′, ~v = ~v′, z, ~v′′,

tr(n1)(~u′) = tr(n1)(~v′), tr(n1)( ~u′′) = tr(n1)(~v′′),
and z = min(~u) < n1.

In Lemma 6.5 we show that, with the above definitions, the square

G~u G~w
-

cG~u;n1

G[~u,n1,~v] G~v-
πG

1;~v

?

πG
0;~u

?

dG
~v;n1

is a pullback.
Let ~u a ud-vector, lh(~u) = k + 1 > 2. We put

u = max{u2i+1 : i ∈ k} and j = min{i ∈ k : u2i+1 = u}

and then ~u = ~u′, u2j−1, u2j, u, u2j+2, u2j+3, ~u′′, for some ud-vectors ~u′ and ~u′′. The mor-
phisms

A~u A~u′,u2j−1,max(u2j ,u2j+2),u2j+3, ~u′′
-

1A ~u′
×mA

u2j ,u,u2j+2
× 1A ~u′′

(2)
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is the one-step (~u-compatible) composition morphism, and the morphisms

A~u Aht(~u)
-

mA
~n

(3)

which is a composition of one-step composition morphisms is the canonical composition
morphism. By convention, if ~u = u0 then mA

~u = idAu0
.

2.7. The small duality for S1 and D1. For n ∈ ω+, by Sn we denote the category
of simple n-categories i.e. the simple ω-categories truncated to the first n levels, and by
Dn we denote the category of finite n-disks, i.e. disks truncated to the first n levels. In
this section we sketch the well know duality between S1 and D1 in the way we will prove
duality between S and D. In fact, for any positive n, the duality between Sn and Dn

holds and it is a restriction of the duality between S and D.
S1 is equivalent to the category of finite non-empty linear orders and monotone maps

and D1 is equivalent to the category of finite linear orders with (necessarily different)
endpoints and monotone functions preserving endpoints. Thus, it is well know that they
are dually equivalent. An easy explanation of this fact can be found in [SGL]. Below, we
will exhibit a more involved but, as we believe, more instructive explanation of this fact,
that can be generalized to the higher dimensional categories, of which it is a special case.

Before we prove the duality theorem we need to develop some notation. Both elements
on level 1 in a disk in D1 and objects in categories in S1 comes with an order. However it
is convenient to draw these orders in reverse directions, in disk as increasing orders, and
in categories as decreasing orders. At the end of this section we will return to this point.

The 1-disks. An object of D1, i.e. a 1-disk in Set, is a finite linear order with different
endpoints, i.e. it is isomorphic to one of the form

-π1

{〈k, l〉 : 0 ≤ k ≤ l ≤ n} {k : 0 ≤ k ≤ n}
-

π2

� b

{?}-p

�
t

for some n ∈ ω+, where b(?) = 0 and t(?) = n. Such a 1-disk will be denoted by bnc.
We introduce a notation for maps into b1c in D1. For l ∈ n we have disk maps

l; l + 1 : bnc −→ b1c

defined by

l; l + 1(i) =

{
0 if i ≤ l
1 otherwise

We write l; or ; l + 1 for l; l + 1, as well. These are all the maps from bnc to b1c.
A map g : bn′c −→ bnc induces a dual map by composition

D1(g, b1c) : D1(bnc, b1c) −→ D1(bn′c, b1c)
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D1(g, b1c)(l;) = l; ◦ g
for l ∈ n.

The category D1 does not have pullbacks of arbitrary pairs of morphisms with common
codomain. But it has some pullbacks. In fact, the morphisms f : bnc −→ blc and
f ′ : bn′c −→ blc have a pullback in D1 iff for any x ∈ blc either f−1(x) or f ′−1(x) has
at most one element. If this is the case, the pullback is computed as in the category of
posets. Let d, c : b2c −→ b1c be morphism in D1, such that d = 0; 1 and c = 1; 2. Then
d and c satisfy the above condition and we have a pullback

b2c b1c-
c

b3c b2c-π1

?

π0

?

d

Similarly, we have a pullback

b3c b2c-
π2

b4c b3c-π23

?

π12

?

π1

Let
m : b3c −→ b2c ι : b1c −→ b2c

be morphisms in D1 such that m(1) = m(2) = 1. In this way, we have defined an internal
category C1 in D1 given by the diagram

� d

b1c b2c-ι
�

c

� π1

b3c� m
�

π2

� π12

�1×m
b4c�

m× 1
�

π23

The simple 1-categories. The objects of S1 are free categories generated by finite
(possibly empty) strings of arrows. Let for n ∈ ω, dne denote the free category generated
by the string

n −→ (n− 1) −→ . . . −→ 1 −→ 0

Any object in S1 is isomorphic to dne for some n ∈ ω.
Similarly, we introduce a notation for functors into d1e in S1. Since in S1 the func-

tors are uniquely determined by their values on objects, we will define only their object
functions. We define functors

0↓, (k + 1↓k), ↓n : dne −→ d1e
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with k ∈ n, so that for i ∈ {0, . . . , n}

(0↓)(i) = 1

(↓n)(i) = 0

(k + 1↓k)(i) =

{
1 if i > k
0 if k ≥ i

We abbreviate (k + 1↓k) to either k + 1↓ or ↓k.
A functor ϕ : dn′e −→ dne induces a dual map by composition

S1(ϕ, d2e) : S1(dne, d2e) −→ S1(dn′e, d2e)

S1(ϕ, d2e)(h) = h ◦ ϕ

In S1 we have an internal 1-disk, denoted by D1

-ρ1

d2e d1e
-

ρ2

� b

d0e-p

�
t

with ρ1 = 2↓1, ρ2 = 1↓0, b = ↓n, and t = 0↓.

The schizophrenic object. The category C1 in D1 and the disk D1 in S1 form to-
gether a schizophrenic object. By this, we mean, that we can form the following diagram
in Set
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X
f
Y

X f Y
gf g

Z

X
Y

X Y
Z

(X,X,X)
(X,X, f)
(X, f, Y )
(f, Y, Y )
(Y, Y, Y )

(X,X,X) (X,X, f) (X, f, Y ) (f, Y, Y ) (Y, Y, Y )
(X,X, gf) (X, f, g) (f, Y, g) (Y, Y, g)

(X, gf, Z) (f, g, Z) (Y, g, Z)
(gf, Z, Z) (g, Z, Z)

(Z,Z, Z)

(X,X)
(X, f)
(f, Y )
(Y, Y )

(X,X) (X, f) (f, Y ) (Y, Y )
(X, gf) (f, g) (Y, g)

(gf, Z) (g, Z)
(Z,Z

?

?

?

?

...

...

...

-b
�p-
t

-b
�p-
t

-b
�p-
t

-b
�p-
t

�ρ′0

�
ρ′1

�ρ0

�
ρ1

�ρ
00

�
ρ11

�ρ
000

�
ρ111

?

ι
6

c
6
d

?

ι
6

c
6
d

6
m

6
π2

6
π1

6
m

6
π2

6
π1

6

m× 1

6

1×m

6

m× 1

6

1×m

In this diagram the rows are disks isomorphic to the internal category C1 in D, and the
columns are categories isomorphic to the internal disk D1 in S. Before we will see this
we shall describe the data in the above diagram, in details.

The sets in this diagram are given by lists or arrays of its elements, so that the
projections were easy to understand, e.g. in the second row of the right column array

X f Y
gf g

Z

represents the the set {idX , f, idY , gf, g, idZ}.
As we said, the columns are diagrams of free categories on simple 1-graphs, on one

object, on one arrow X
f−→ Y and, on a string of arrows X

f−→ Y
g−→ Z, respectively.

Thus they are equivalent to d0e, d1e, and d2e. In the first row there are objects, in the
second there are morphisms, in the third there are composable pairs of morphism, and



29

in the fourth there are composable triples of morphism. The object X, Y , Z in 2nd, 3rd
and 4th rows stand for identities on them, i.e. for 1X , 1Y , 1Z , respectively.

The rows are disks isomorphic to b1c, b2c ,b3c, and b4c, respectively. In the first
column there are one-element sets, i.e. level 0 parts of the disks, in the second column
there are universes of disks, and in the third row there are linear orders on these universes.

The morphism ρi and ρ′i, for i = 0, 1 are 1st and 2nd projections, e.g. ρ′0(X) =
ρ′1(Y ) = X, ρ′1(Y ) = ρ′1(Z) = Y , ρ0(g) = ρ0(gf) = f , ρ1(g) = ρ1(Z) = Y , etc. The
morphisms ρii and ρiii, for i = 0, 1, denote ρi × ρi and ρi × ρi × ρi, respectively. The
morphisms p are uniquely determined, b and t picks the least and the largest elements in
the order, respectively, e.g. in the forth row b(?) = (X,X,X). The way the morphism
in the columns are defined is easy to guess: d, c, ι, and m are morphisms of domain,
codomain, identity and composition, respectively.

Note that respective morphisms in rows and columns commute, e.g.

m ◦ ρii = ρi ◦m d ◦ ρi = ρ′i ◦ d

and so on. This is equivalent to saying, that if we pick the corresponding morphisms in
three columns, then they form a disk morphism between disks in the rows, e.g. m’s form
a disk morphism m form the disk in third row to the disk in the second row. The same
thing remains true if we exchange the role of the rows and columns. This is the essence
of being a schizophrenic object.

The duality. We claim

2.8. Theorem. The contravariant functors of homming into C1 and into D1 give rise
to a Stone adjunction

-
D1(−,C1)

D1 S1�
S1(−,D1)

which is an equivalence of categories. Thus the categories S1 and D1 are dually equivalent.

Proof. To fix the notation, in the following we consider the category C1 in D1 as being
formed of the rows in the diagram describing the schizophrenic object, e.g. the disk
universe of object of objects b1c will be {X, Y } rather than {0, 1}. Similarly, we consider
the disk D1 in S1 as being formed from columns in the same diagram, e.g. b2c in D1

stands for the second row. This give us certain convenient identifications, e.g. the universe
of the disk b2c is equal to the set of maps of the category d1e.

For n ∈ ω+, the objects of D1(bnc,C1) form the set

D1(bnc, b1c) = {0; 1, 1; 2, . . . , n− 1;n}

and the category D1(bnc,C1) isomorphic to dn− 1e.
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For n ∈ ω, the universe of the disk S1(dne,D1) is the set

S1(dne, d1e) = {↓n, n↓n− 1, . . . , 1↓0, 0↓}

and with the increasing order so that S1(dne,D1) is isomorphic to bn + 1c. Thus the
functors have the appropriate codomains.

The statement of the theorem says that we have two natural isomorphisms η and ε,
satisfying the triangular equalities.

We shall define these natural transformations. The component of η at bnc in D1 is a
disk map

ηbnc : bnc −→ S1(D1(bnc,C1),D
1)

such that on universes it is a function

ηbnc : {0, . . . , n} −→ S1(D1(bnc,C1), d1e)

so that, for i ∈ {0, . . . , n},

ηbnc(i) : D1(bnc,C1) −→ d1e

is a functor with the object function

ηbnc(i)0 : D1(bnc, b1c) −→ {X, Y }

given by
h 7−→ h(i)

Identifying D1(bnc,C1) with dn− 1e we have, for i ∈ {0, . . . , n}

ηbnc(i) : dn− 1e −→ d1e =

{
i↓ if i < n
↓n− 1 if i = n

So ηbnc is iso.
The component of ε at dne in S1 is a functor

εdne : dne −→ D1(S1(dne,D1),C1)

with object function

εdne,0 : {0, . . . , n} −→ D1(S1(dne,D1), b1c)

such that, for i ∈ {0, . . . , n},

εdne,0(i) : S1(dne,D1) −→ b1c

is a disk map, given by the function on universes

εdne,0(i) : S1(dne, d1e) −→ {X, Y }
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by
h 7−→ h(i)

Identifying S1(dne,D1) with bn+ 1c we have, for i ∈ {0, . . . , n}, that

εdne,0(i) = i; i+ 1 : bn+ 1c −→ b1c

So εdne is iso.
We leave to the reader the verification that εdne and ηbnc are well defined, η and ε are

natural, and that the following triangles

S1(dne,D1) S1(dne,D1)-
Id

S1(D1(S1(dne,D1),C1),D
1)

ηS1(dne,D1)

�
�

�
�

�
�

�
��

S1(εdne,D
1)

@
@

@
@

@
@

@
@R

D1(bnc,C1) D1(bnc,C1)-
Id

D1(S1(D1(bnc,C1),D
1),C1)

εD1(bnc,C1)

�
�

�
�

�
�

�
��

D1(ηbnc,C1)

@
@

@
@

@
@

@
@R

commute. This is end the proof.

We will make a comment on the orders in 1-disks and simple 1-categories or rather
finite intervals (strict with endpoints) and finite non-empty linear orders. In [J] there is
a very suggestive picture explaining this duality:

| ∗ | ∗ | ∗ | ∗ |

showing that the interval
| | | | |

is the set of Dedekind cuts of the order

∗ ∗ ∗ ∗
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The trick is that the orders on ∗’s and |’s are going in the different directions i.e. to have
increasing order on cuts

| ≤ | ≤ | ≤ | ≤ |
we need to have decreasing order on stars

∗ ≥ ∗ ≥ ∗ ≥ ∗

3. Disks

3.1. Some notation concerning disks. We introduce some notation concerning
disks. Let x, y be nodes in a disk D. We call x a left endpoint (right endpoint, bi-
endpoint) iff it is the least (largest, both) element in the linear order of the fiber over
p(x). A node x is a leaf iff the fiber p−1(x) contain exactly two elements. Note that, x is
a leaf iff it is the image of a leaf of the tree ı(D) under the unit morphism η : ı(D) −→ D.
Since our disks are finite, over every inner node there is a leaf. We write x � y to mean
that both x and y are nodes in the same fiber and y is the immediate successor of x. Since
p(0)(x) = p(0)(y) we can define the number

µD
x,y = max{l : p(l)(x) = p(l)(y)}

We usually omit the superscript D. Note that, if x ∈ Dl, y ∈ Dk and µx,y < min{l, k}
then the node p(µx,y)(x) = p(µx,y)(y) must be inner (there are at least two elements in
the fiber over it), moreover the nodes p(µx,y+1)(x), p(µx,y+1)(y) are comparable. This last
observation allows us to introduce a natural linear order on the whole set Dl extending
the existing orders on fibers of p : Dl −→ Dl−1. Namely, if x, y ∈ Dl are different nodes
then we put

x < y iff p(µx,y+1)(x) < p(µx,y+1)(y)

But this order is not preserved by the disk morphisms, in general.
If x, y are different leaves of D then we always have µx,y < min{l, k}. Thus we can

also introduce a linear order on leaves by the above formula. We denote this order by �
and by � we denote the immediate successor relation given by this order.

If x, y are elements of a poset, we write x ⊥ y if x and y are comparable and x 6⊥ y if
they are not.

The category BL is a full subcategory of Poset containing finite sums of finite linear
orders, i.e. a poset X is in BL iff ⊥ is an equivalence relation on X (i.e. ⊥ is transitive
on X). BI is a subcategory of BL containing the same objects, and morphisms in BI
preserve additionally minimal and maximal elements.

Thus the category BL is equivalent to the category of finite bundles of finite linear
orders and the category BI is equivalent to the category of finite bundles of finite intervals.

Note that the inclusion functor BI −→ BL has a right adjoint (−) : BL −→ BI which
adds to a non-empty object X of BL new minimal and maximal elements at the ends of
each maximal linear order in X; (∅) is the one-element (non-strict) interval.

The following easy lemma provides an equivalent elementary description of disks.
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3.2. Lemma. The sequence of functions

· · · Ds+1-p
� b

�
t

Ds-p
� b

�
t

D1 D0 ∼= 1-p
� b

�
t

. . .

between objects of BI is a disk iff for s ∈ ω,

1. for x ∈ Ds, bp(x) ≤ x ≤ tp(x);

2. p maps Ds+1 onto Ds, so that, for x, y ∈ Ds+1, p(x) = p(y) iff x ⊥ y;

3. for x ∈ Ds, b(x) = t(x) iff x = bp(x) or x = tp(x).

Proof. The conditions 1. and 2. say that p : Ds+1 −→ Ds is a bundle of intervals and
the condition 3. expresses the disk condition.

For n ∈ ω, we give a description of the disk γn which is the image of θn under the
functor (−). The universe of γn is given by

γl
n =

{
2l + 1 if 0 ≤ l ≤ n
2n+ 2 if n < l

the projections p : γl+1
n −→ γl

n are defined as follows: for 0 ≤ l < n

p(i) =


i if 0 ≤ i ≤ l
i− 1 if i = l + 1
i− 2 if l + 1 < i ≤ 2l

for l = n

p(i) =

{
i if 0 ≤ i ≤ n
i− 1 if n < i ≤ 2n+ 1

and for l > n
p(i) = i

The orders in fibers of γn are defined as follows: if i, j ∈ γl
n, then

i < j iff


l ≤ n and l − 1 ≤ i < j ≤ l + 1
or
l = n+ 1 and i = n and j = n+ 1

In order to make this simple but tedious definition easier to grasp we present below the
first six levels of γ3. The inner nodes are marked bold.
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0
@@ ��

0 1 2
@@ @@ �� ��

0 1 2 3 4
@@ @@ @@ �� �� ��

0 1 2 3 4 5 6
AA AA AA AA �� �� �� ��

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Thus in γ3 at level l = 0, 1, 2, 3 there is exactly one inner node l, and l − 1 < l < l + 1,
and there are no inner nodes at higher levels. Moreover, at level 4 we have 3 < 4.

3.3. Lemma. Let l, n1, n2 ∈ ω, n1 < n2, l. Then

1. γl
n2

= γl
n1

+ γl−n1−1
n2−n1−1

2. min{x ∈ γl
n2

: p(n1)(x) = n1} = n1

3. max{x ∈ γl
n2

: p(n1)(x) = n1} = n1 + 1 + γl−n1−1
n2−n1−1 = γl

n2
− n1 − 1

Proof. Exercise.

We introduce some notions and notation concerning disks γn. Let l, n ∈ ω and x ∈ γl
n.

We say that x is in the left side of γn iff either l ≤ n and x < l or n < l and x ≤ n. We
say that x is in the right side of γn iff either l ≤ n and x > l or n < l and x > n. We say
that x is in the far left side of γn iff x is in the left side of γn and it is a right endpoint.
We say that x is in the far right side of γn iff x is in the right side of γn and it is a left
endpoint. By ls(γn), fls(γn), rs(γn), frs(γn), we denote left, far left, right, far right sides
of γn, respectively. Note that a node in the left (right) side is left (right) endpoints and
a node is far left or far right side iff it is a bi-endpoint.

For later reference, we list below the numeric conditions for a node of to be in the
above parts of the disk γn.

3.4. Lemma. Let l, n ∈ ω and x ∈ γn. Then

1. x ∈ ls(γn) iff ( l ≤ n and x < l ) or ( l > n and x ≤ n )

2. x ∈ fls(γn) iff ( l ≤ n+ 1 and x < l − 1 ) or ( l > n+ 1 and x ≤ n )

3. x ∈ rs(γn) iff ( l ≤ n and x > l ) or ( l > n and x > n )

4. x ∈ frs(γn) iff ( l ≤ n and x > l+ 1 ) or ( l = n+ 1 and x > n+ 1 ) or ( n+ 1 < l
and x ≥ n+ 1 ).
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Before defining some specific morphisms in D, we shall make some general observations
concerning them.

3.5. Lemma.

1. Any disk morphism f : D −→ E is uniquely determined by its values on leaves of
D.

2. Let n ∈ ω and D be a disk. Then the disk morphism f : γn −→ D is uniquely
determined by the value fn(n) ∈ Dn. Moreover, for any x ∈ Dn there is a unique
morphism f : γn −→ D, such that fn(n) = x. Thus, we have a bijection

D(γn, D) −→ Dn

which is natural in D.

3. Let n ∈ ω and D be a disk. Then the disk morphism f : D −→ γn is uniquely
determined by the value {f l}l≤n+1.

Proof.

Ad 1 We already noted that any disk morphisms f : D −→ E is uniquely determined by
its values on inner nodes of D. But since over each inner node there is a leaf and disk
morphisms preserves projections, once we fix values of a morphisms on leaves the other
values on inner nodes are uniquely determined.

Ad 2 The node n ∈ γn
n is the unique leaf of γn. Thus the value fn(n) ∈ Dn indeed uniquely

determines the morphism f . On the other hand, for any x ∈ Dn we can define a tree
morphism f ′ : θn −→ D by the formula f ′l(l) = p(l)(x) for 0 ≤ l ≤ n and f ′ extends
uniquely to a disk morphism f : γn −→ D, such that fn(n) = x.

Ad 3 This follows from the fact that at levels l greater than n+1 all the intervals contains
one element. So, for x ∈ Dl, we have f l(x) = fn+1(p(n+1)(x)).

Let n0, n1, n2 ∈ ω and n1 < n0, n2. We define the codomain morphism

c(n1) = c : γn0 −→ γn1

by the condition cn0(n0) = n1, and the domain morphism

d(n1) = d : γn2 −→ γn1

by the condition dn2(n2) = n1 + 1. Since these morphisms play very important role in
this paper we shall give their full descriptions. For x ∈ γl

n0
we have

cl(x) =


x if (0 ≤ l ≤ n1) or (x < n1)
n1 if n1 < l and n1 ≤ x < γl

n0
− n1 − 1

n1 + 1 if n1 < l and x = γl
n0
− n1 − 1

x− γl
n0

+ 2n1 + 2 if n1 < l and γl
n0
− n1 − 1 < x < γl

n0



36

and for y ∈ γl
n2

we have

dl(y) =


y if (0 ≤ l ≤ n1) or (n1 < l and y < n1)
n1 if n1 < l and y = n1

n1 + 1 if n1 < l and n1 < y ≤ γl
n2
− n1 − 1

y − γl
n2

+ 2n1 + 2 if n1 < l and γl
n2
− n1 − 1 < y < γl

n2

3.6. The limits in BI. We want to study the limits in D. In particular, we want to
show that all the disk are the multi-pullbacks constructed using objects γn and morphisms
c and d. Before we do this, we shall characterize, in this section, the multi-pullbacks in
BI.

For k ∈ ω, by a zigzag of morphisms of length k+ 1 in a category we mean a diagram

C0 C2

C1

f1
@

@@R
f2

�
��	

C4

C3

f3
@

@@R
f4

�
��	

C2k−2 C2k

C2k−1

f2k−1
@

@@R
f2k

�
��	

. . . (4)

The limit of such a zigzag, if exists, is called multi-pullback.
Given a zigzag (4) in Poset. By a compatible tuple for this zigzag, we mean, a k + 1-

tuple 〈x0, . . . , xk〉 such, that xi ∈ Ci for i ∈ k + 1 and f2i+1(xi) = f2i+2(xi+1) for i ∈ k.
Thus, the limit of (4) in Poset is the set of compatible tuples of the zigzag (4) with

pointwise order.
The limits in the category of linear orders, it they exists, are computed in the category

of partial orders Poset. This is mainly due to the fact that, one- and two-element linear
orders are objects of this category. The same is true for the category of (non-strict)
intervals I, since if all the maps in a diagram of linear orders preserves endpoints, then
so do all the projections. Thus in I the limit of a diagram exists if its limit in Poset is a
linear order. For similar reasons the limits in both BL and BI, if exists, are computed in
Poset.

We say that a zigzag (4) in I is thin iff for any compatible tuples ~x, ~y if there is
0 ≤ i0 ≤ k such, that xi0 < yi0 and f2i0+1(xi0) = f2i0+1(yi0) than xi = yi, for all
i0 < i ≤ k.

We have

3.7. Lemma. The limit of a zigzag of morphisms (4) in I exists in I iff (4) is thin.

We say that the zigzag (4) in Poset is thin iff for any compatible tuples ~x, ~y such that,
xi ⊥ yi, for i ∈ k + 1, xi0 < yi0 and f2i0+1(xi0) = f2i0+1(yi0) for some i0 ∈ k, we have
xi = yi, for all i > i0. We state some equivalent conditions for a zigzag in BI to be thin.

3.8. Lemma. Let (4) be a zigzag of morphisms in Poset. Then, the following are equiv-
alent

1. the zigzag (4) is thin;
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2. for any compatible tuples ~x, ~y such that, xi ⊥ yi, for i ∈ k + 1, xi0 < yi0 and
f2i0(xi0) = f2i0(yi0), for some 0 < i0 ≤ k, we have xi = yi, for all i < i0;

3. there are no compatible tuples ~x, ~y such that, xi ⊥ yi, for i ∈ k + 1, xi0 < yi0 and
xi1 > yi1, for some i0, i1 ∈ k + 1.

Proof. We shall prove that 1. is equivalent to 3. The condition 2. is ’symmetric’ to 1.
and its equivalence with 3. can be proved similarly.

Suppose 3. does not hold. Let ~x, ~y be compatible tuples for (4) such, that xi ⊥ yi for
all i ∈ k + 1, and xi0 < yi0 , xi1 > yi1 for some i0, i1 ∈ k + 1. Without loss of generality,
we can assume that i0 < i1. Let

i2 = max{i < i1 : xi < yi}

Then xi2 < yi2 , xi2+1 ≥ yi2+1, f2i2+1(xi2) ≤ f2i2+1(yi2) and

f2i2+1(xi2) = f2i2+2(xi2+1) ≥ f2i2+2(yi2+1) = f2i2+1(yi2)

So, we have f2i2+1(xi2) = f2i2+1(yi2), i1 > i2 and xi1 6= yi1 , i.e. the zigzag (4) is not thin.
To prove the converse, suppose that 1. does not hold. Let ~x, ~y be compatible tuples

for (4) such, that xi ⊥ yi for all i ∈ k + 1, and for some 0 ≤ i0 < i1 ≤ k, xi0 < yi0 ,
f2i0+1(xi0) = f2i0+1(yi0), xi1 6= yi1 . If xi1 > yi1 , then this contradicts 3. immediately. If
xi1 < yi1 then the tuples

~x′ = 〈x0, . . . , xi0 , yi0+1, . . . , yk〉 ~y′ = < y0, . . . , yi0 , xi0+1, . . . , xk >

are compatible and contradicts 3.

3.9. Lemma. Let (4) be a zigzag of morphisms in Poset, ~x, ~y compatible tuples such that,
xi ⊥ yi, for i ∈ k + 1. Then the tuple ~z = 〈zi〉i∈k+1, where zi = min{xi, yi} is compatible
and ~z ≤ ~x, ~y.

Proof. We shall prove, for i ∈ k, that

f2i+1(zi) = f2i+2(zi+1) (5)

Fix i ∈ k. If zi and zi+1 comes from the same tuple ~x or ~y, then (5) holds, since both
tuples are compatible.

Suppose that zi = xi < yi and zi+1 = yi+1 < xi+1. The other case is similar. We have

f2i+1(xi) = f2i+2(xi+1) ≥ f2i+2(yi+1)

and
f2i+1(xi) ≤ f2i+1(yi) = f2i+2(yi+1)

i.e. (5) holds.
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We have

3.10. Proposition. The zigzag (4) in BI has a limit iff it is thin. Moreover, if this is
the case the limit is computed in Poset.

Proof. Assume that (4) is thin. Let ~x, ~y, ~z be compatible tuples, such that ~x ⊥ ~y ⊥ ~z.
We shall show that ~x ⊥ ~z.

Since the relation ⊥ is transitive in C2i we have ~xi ⊥ ~zi, for i ∈ k + 1. If ~x = ~z then
clearly ~x ⊥ ~z. So, assume that ~x 6= ~z. Let

i0 = min{i : xi 6= zi}

With out loss of generality, we can assume that xi0 < zi0 . Let

i1 = max{i : xi ≤ zi}

If i1 < k then we have xi0 < zi0 and xi1+1 > zi1+1 and the zigzag (4) is not thin, by
Lemma 3.8. Thus i1 = k and ~x ≤ ~z, so ~x ⊥ ~z, as required.

Thus, we have shown that the limit of (4) in Poset is in BI. Hence this zigzag has a
limit in BI.

To prove the converse, assume that the zigzag (4) is not thin and let (L, π) be a
limiting cone of (4) in Poset. Then, by Lemma 3.8, we have compatible tuples ~x, ~y such
that xi ⊥ yi, for i ∈ k+1, xi0 < yi0 and xi1 > yi1 , for some i0, i1 ∈ k+1. So, in particular
~x 6⊥ ~y. By Lemma 5 the tuple ~z = 〈zi〉i∈k+1, where zi = min{xi, yi}, for i ∈ k + 1 is
compatible and ~z < ~x, ~y. So ⊥ is not transitive on L, L is not in BI, and hence the zigzag
(4) does not have a limit in BI.

3.11. The limits in D. In this section we study the limits in the category D. We show
that each disk has a canonical presentation as a multi-pullback of disks of form γn. Such
a presentation describes the correspondence between the disks and the ud-vectors, the
numerical invariants for disks, i.e. ud-vectors determine the disks up to isomorphisms.

Note that, for l ∈ ω, we have functors

(−)l : D −→ BI

sending disk D to its l-th level Dl (not forgetting the order).

3.12. Proposition. The limits in D, if exists, are computed pointwise in Poset, i.e. for
a cone in D to be a limiting cone it is necessary and sufficient that, for each l ∈ ω, its
image under every functor (−)l be a limiting cone in Poset.

Proof. Fix l ∈ ω.
Recall from Lemma 3.5 that, for any disk D, we have a bijective correspondence

between nodes x ∈ Dl and disk morphisms fx : γl −→ D, such that f l
x(l) = x. Let γ = θ

be a disk, such that θ is a tree with one node at levels smaller than l, two nodes l ≤ l+1,
at level l, and no other nodes. It easy to see that, we have a bijective correspondence
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between pairs of nodes x, y ∈ Dl, such that x ≤ y and morphisms fx,y : γ −→ D, such
that f l

x,y(l) = x and f l
x,y(l + 1) = y.

Let (D, π), be a limit in D of the functor F : J −→ D. Then, for l ∈ ω, we have a
bijective correspondences

x ∈ Dl

fx : γl −→ D
π ◦ fx : γl −→ F

πl ◦ f l
xd{l}: {l} −→ F l

and
x, y ∈ Dl, x ≤ y
fx,y : γ −→ D

π ◦ fx,y : γ −→ F
πl ◦ f l

x,yd{l,l+1}: {l ≤ l + 1} −→ F l

πl ◦ f l
x,yd{l}: {l} −→ F l ≤ πl ◦ f l

x,yd{l+1}: {l + 1} −→ F l

where the second bijection, in both cases, follows from the fact that (D, π) is a limit of
F . These correspondences show that, the universe of Dl is in bijective correspondence,
via πl, with with cones from one-element set to F l and moreover the order of elements in
Dl corresponds to the pointwise order of cones from one-element set to F l, i.e. (Dl, πl) is
a limit of F l in Poset.

To finish the proof, note that, the morphisms p, b, t in disk D are morphisms into
limits (Dl, πl) from cones induced by morphisms p, b, t in disks F (j), for j ∈ Ob(J). Thus
they are unique.

We call a zigzag of morphisms in D thin iff its image under every functor (−)l, for
l ∈ ω, is thin in BI. We have

3.13. Lemma. The limit of a zigzag of morphisms in D

D0 D2

D1

f1
@

@@R
f2

�
��	

D4

D3

f3
@

@@R
f4

�
��	

D2k−2 D2k

D2k−1

f2k−1
@

@@R
f2k

�
��	

. . . (6)

exists iff the zigzag (6) is thin.

Proof. By Propositions 3.12, 3.10, the condition is clearly necessary.
Assume that, the zigzag (6) is thin. We shall construct a limit (D, π) of (6) in D.
Since (6) is thin, for l ∈ ω, we have a limit (Dl, πl) in BI of the zigzag (6)l, the image

of (6) under the functor (−)l. Thus x = 〈xi〉i∈k+1 ∈ Dl iff f2i+1(xi) = f2i+2(xi+1), for
i ∈ k.

Let p : Dl+1 −→ Dl be the unique morphism from the cone (Dl+1, p ◦ πl+1) into the
limiting cone (Dl, πl), so that p◦πl+1 = πl ◦p. Similarly, b, t : Dl −→ Dl+1, are the unique
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morphisms, into the limiting cone (Dl+1, πl+1), such that

b ◦ πl = πl+1 ◦ b and b ◦ πl = πl+1 ◦ b

This ends the construction of (D, π).
Note that π preserves order, and commutes with p, b, t by construction. Now, by

Lemma 3.12, to show that (D, π) is a limit of (6) in D, it is enough to prove that D is a
disk. To this end, we shall verify that it satisfy the conditions from Lemma 3.2.

Fix l ∈ ω. Clearly, Dl is an object of BI.
If x ∈ Dl+1, then

b(p(x)) ≤ x ≤ t(p(x)) iff b(p(xi)) ≤ xi ≤ t(p(xi)) for i ∈ k + 1

and the latter condition holds, since D2i is a disk, for i ∈ k + 1.
Let x, y ∈ Dl+1. If p(x) = p(y) then b(p(x)) ≤ x, y, and since Dl+1 is in BI, we have

x ⊥ y. On the other hand, if x ⊥ y, then xi ⊥ yi, for i ∈ k + 1, and then

p(x) = 〈p(xi)〉i∈k+1 = 〈p(yi)〉i∈k+1 = p(y)

Thus, it remains to show that, for x ∈ Dl+1

b(x) = t(x) iff x = b(p(x)) or x = t(p(x)) (7)

If x = b(p(x)), then xi = b(p(xi)), and hence b(xi) = t(xi), for i ∈ k + 1. Thus
b(x) = t(x).

If x = t(p(x)) the argument is similar. This proves one side of (7).
For the converse, we assume that b(x) = t(x). Then y = b(p(x)) ≤ x ≤ t(p(x)) = z.

We need to show, that one of those inequalities is, in fact, an equality.
Assume contrary, that y < x < z. Note that, for i ∈ k + 1, since b(xi) = t(xi), the

node xi is outer and then either xi = yi or xi = zi. There are i1, i2 ∈ k + 1, such that

xi1 = yi1 < zi1 and yi2 < zi2 = xi2

Suppose that i1 < i2. The case i2 < i1 can be treated similarly. Let

i0 = max{i < i2 : xi = yi < zi}

Then i0 < i2 and

xi0 = yi0 < zi0 and yi0+1 ≤ zi0+1 = xi0+1

Thus, we have

f2i0+1(yi0) = f2i0+1(xi0) = f2i0+2(xi0+1) = f2i0+2(zi0+1) = f2i0+1(zi0)

i2 > i0, zi0 6= yi0 and yi ⊥ zi, for i ∈ k + 1. But this contradicts the fact, that 6l is thin.
Thus x = b(p(x)) or x = t(p(x)), and (7) holds.
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Let n0, n1, n2, c, d be as above, l ∈ ω, x ∈ γl
n0

and y ∈ γl
n2

. If cl(x) = dl(y), we say
that x and y are connected, and more specifically, x is connected to the right to y and y is
connected to the left to x. In order to study limits of some diagrams involving c and d, we
need to analyze properties of connected nodes. When two elements are connected they
may be from different sides of the disks and if one of the elements is inner the other may
be not. However, the connected elements inherit some properties one from another. Since
the following lemma contains many conditions we add some slogans to help understand
and remember them.

3.14. Lemma. Let l, n0, n1, n2 ∈ ω, n1 < n0, n2, x ∈ γl
n0

and y ∈ γl
n2

, and cl(x) = dl(y).
Then

1. if x is in the (far) left side of γn0 then if y is in the (far) left side of γn2 and y is
the unique node of γl

n2
with the property cl(x) = dl(y)

(the slogan: elements from the (far) left side are connected to the right to elements
on the (far) left side and they are connected in a unique way);

2. if y is in the (far) right side of γn2 then if x is in the (far) right side of γn0 and x
is the unique node of γl

n0
with the property cl(x) = dl(y)

(the slogan: elements from the (far) right side are connected to the left to elements
on the (far) right side and they are connected in a unique way);

3. if y is in the left side of γn2 and x is in the right side of γn0 then either x is in the
far right side of γn0 or y is in the far left side of γn2

(the slogan: if an element in the left side is connected to the left to an element on
an element on the right side one of the elements must be in the far side);

4. l ≤ n1 then x is inner iff y is inner;

5. if x is inner and n1 < l then y = n1, i.e. y is in the left side;

6. if y is inner and n1 < l then x = γl
n0
− n1 − 1, i.e. x is in the right side;

(the slogan the last three conditions: the inner nodes are connected to unique ele-
ments; moreover they are connected either to inner nodes or to the left to elements
in the right side or to the right to elements in the left side).

Proof. Recall the numeric conditions from Lemma 3.4 for elements to be in special parts
of the disk γn. For the whole proof we assume that l, n0, n1, n2 ∈ ω, n1 < n0, n2, and
x ∈ γl

n0
y ∈ γl

n2
, and cl(x) = dl(y).

Note that, if l ≤ n1 then, if one of the nodes x, y is in either side or far side or is inner
then so is the other node. Thus for l ≤ n1, all the statements of the lemma are obvious.
Therefore, we assume further that l > n1.

Ad 1. Let x ∈ fls(γn0). If x < n1 then

y = x < n1 ≤ min{l − 1, n2 − 1}
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and hence y ∈ fls(γn2). If x ≥ n1 then l > n1 + 1 and then

min{l, n2} > n1 = cl(x) = dl(y) = y

and y ∈ fls(γn2), as well.
Now assume that, x ∈ (ls(γn0) \ fls(γn0)). Then l ≤ n0 + 1, x = l − 1, and we have

again
min{l, n2} > n1 = cl(x) = dl(y) = y

i.e. y ∈ ls(γn2). Note that in all the above cases the node y connected to x is unique.
Ad 2. Let y ∈ frs(γn2). If y > γl

n2
− n1 + 1 then dl(y) > n1 + 1. It follows that,

cl(x) > n1 + 1, and we get

x = cl(x) + γl
n0
− 2n1 − 2 > γl

n0
− n1 − 1 > min{l, n0}

This means that x ∈ frs(γn0). If y ≤ γl
n2
−n1− 1 then l > n1 + 1, n1 + 1 = dl(y) = cl(x)

and
x = γl

n0
− n1 − 1 > min{l, n0 + 1}

Hence x ∈ frs(γn0).
Now assume that, y ∈ (rs(γn2) \ frs(γn2)). Then, either l ≤ n2 and y = l + 1 or

l = n2 + 1 and y = n2 + 2. In either case, cl(x) = dl(y) = n1 + 1. So x = γl
n0
− n1 − 1. If

l > n1 + 1, then we already know from the above argument that x ∈ frs(γn0) ⊆ rs(γn0).
If l = n1 + 1 then x = n1 + 2 and x ∈ frs(γn0). As before, it is easy to see that in all the
cases the node x connected to y is unique.

Ad 3. Let x ∈ frs(γn0) and y ∈ fls(γn2). Then, either cl(x) = n1 or cl(x) = n1 + 1.
In the former case, y = n1 and it is a bi-endpoint, unless l = n1 + 1. But then

x ∈ {n1, n1 + 1} i.e. x 6∈ rs(γn0).
In the latter case, x = γl

n0
−n1− 1 and it is a bi-endpoint, unless l = n1 +1. But then

y ∈ {n1 + 1, n1 + 2} i.e. y 6∈ ls(γn2).
The remaining cases are left for the reader as an exercise.

3.15. Lemma. Let ~u be a ud-vector of length k + 1. Then the zigzag

γu0 γu2

γu1

c@
@@R

d
�

��	

γu4

γu3

c@
@@R

d
�

��	

γu2k−2
γu2k

γu2k−1

c@
@@R

d
�

��	
. . . (8)

is thin.

Proof. Fix l ∈ ω, and let ~x, ~y be compatible tuples in the zigzag (8)l, the image of (8)
under the functor (−)l, such that for some i0 ∈ k + 1, xi0 < yi0 and c(xi0) = c(yi0). By
Lemma 3.14, l > u2i0+1 and the node xi0+1 = yi0+1 = u2i0+1 must be in the left side of
γu2i0+2

, and then for all i ≥ i0 we have xi = yi. Hence (8)l is thin.
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Thus, by Proposition 3.12 and Lemmas 3.13, 3.15, for any ud-vector ~u, the zigzag of
form (8) has a limit in D. We shall describe a specific limit (γ~u,π) of the diagram (8).
We have a limiting cone in D

γu0 γu2

γu1

c@
@@R

d
�

��	

γu2k−2
γu2k

γu2k−1

c@
@@R

d
�

��	
. . .

γ~u

π2
�

��	
π2k−2

@
@@R

π2k

PPPPPPPPq
π0

��������)

(9)

where for l ∈ ω, γl
~u is a set of compatible tuples for the zigzag (8)l, i.e. xi ∈ γl

u2i
, for

i ∈ k + 1, and cl(xi) = dl(xi+1), for i ∈ k. The order on γl
~u is defined pointwise, as well,

as the operations p, b, t on γ~u, e.g. p(~x) = 〈p(xi)〉i∈k+1. The projections π2i : γ~u −→ γu2i
,

for i ∈ k + 1, are the usual projections, i.e. πl
2i(~x) = xi, for ~x ∈ γl

~u.
The following lemma gives more informations about γ~u.

3.16. Lemma. All the unexplained notation refers to (9). Let l ∈ ω, ~x ∈ γl
~u. Then

1. | γl
~u |=

∑2k
i=0(−1)iγl

ui
;

2. there are 0 ≤ i0 ≤ i1 ≤ k + 1, such that

xi ∈ rs(γ2ui
) for i < i0

xi ∈ ls(γ2ui
) for i ≥ i1

xi is inner (xi = l) for i0 ≤ i < i1;

3. ~x is inner iff xi0 ∈ γl
u2i0

is inner, for some i0 ∈ k + 1;

4. there are k + 1 leaves: ~x0, . . . , ~xk in γ~u, such that ~xj ∈ γ
u2j

~u , for j ∈ k + 1 and
~xj � ~xj+1, for j ∈ k;

5. ~x is a j-th leaf iff xj = u2j, moreover xj
j ∈ γu2j

is the only inner node in ~xj;

6. for j ∈ k, µ~xj ,~xj+1 = u2j+1.

Proof. 1. is left as an exercise.
2. follows from Lemma 3.14, since elements in the right sides are connected to the

left to elements in the right side, elements in the left sides are connected to the right to
elements in the left side, and inner nodes are either connected to inner nodes or to the
left to elements in the right side, and to the right to elements in the left side.

Fix l ∈ ω and ~x ∈ γl
~u. If, for some i0 ∈ k + 1, xi0 ∈ γl

u2i0
is inner then b(xi0) 6= t(xi0)

and hence b(~x) 6= t(~x). So, ~x is inner, as well. If xi is outer then b(xi) = t(xi). So, if all
xi’s are outer then ~x is outer, as well. This shows 3.
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If xi0 ∈ γl
u2i0

is a leaf, then xi0 = l = u2i0 and xi0−1 ∈ rs(γ2u0−2), xi0+1 ∈ ls(γ2u0+2).

Hence, by Lemma 3.14, for i 6= i0, xi is an outer node. It follows, that b(~x) and t(~x) are
the only compatible tuples over ~x, i.e. ~x is a leaf.

On the other hand, if ~x ∈ γl
~u is a leaf, then b(~x) 6= t(~x) are the only compatible tuples

over ~x. Then, there is i0 ∈ k + 1, such that b(xi0) < t(xi0).
In case xi0 is not a leaf, then we have an inner node y ∈ γl+1

u2i0
, such that b(xi0) < y <

t(xi0).
In case, either xi0−1 or xi0+1 is inner, by Lemma 3.14, l < u2i0+1 < u2i0 and we have,

as in previous case, an inner node y ∈ γl+1
u2i0

, such that b(xi0) < y < t(xi0).

Having y as in either case, we show that ~x is not inner. As, y is inner, there is a
unique tuple ~y ∈ γl

~u, such that yi0 = y. Clearly, b(~x) 6= ~y 6= t(~x). Since xi0 is inner, ~x is
the unique compatible tuple in γl

~u with xi0 on i0-th place and p(~y) has xi0 = p(y) on i-th
place, as well. Therefore p(~y) = ~x, i.e. there are at least three elements over ~x and ~x is
not a leaf.

Thus, we have shown that ~x ∈ γl
~u is a leaf iff there is a unique i0, such that xi0 is an

inner node and moreover this xi0 is a leaf in γl
u2i0

. Then, we must have xi0 = l = u2i0 .
For j ∈ k + 1, we define compatible tuples

~xj = 〈xj
i 〉i∈k+1 ∈ γ

u2j

~u

by the condition xj
j = u2j. Since n2j ∈ γ

u2j
u2j is the unique leaf of γu2j

, ~xj’s are well defined
by the above condition. Then, by the above considerations, they are all and only leaves
of γ~u.

Since xj+1
j+1 is inner, for l ≤ u2j, u2j+2, we have

p(l)(~xj) = p(l)(~xj+1) iff p(l)(xj
j+1) = p(l)(xj+1

j+1)

We can easily check, that
xj

j+1 = u2j+1 ∈ γu2j
u2j+2

and, for l ≥ u2j+1

p(l)(xj
j+1) = p(l)(u2j+1) = u2j+1

p(l)(xj+1
j+1) = p(l)(u2j+2) = l

Thus, we have
p(u2j+1)(xj

j+1) = p(u2j+1)(xj+1
j+1)

p(u2j+1+1)(xj
j+1) = u2j+1 < u2j+1 + 1 = p(u2j+1+1)(xj+1

j+1)

This shows, that µ~xj ,~xj+1 = u2j+1 and that ~xj � ~xj+1, for j ∈ k. So, we also have
~xj � ~xj+1, for j ∈ k.
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Using the above Lemma we can prove the following Proposition.

3.17. Proposition. Let ~u, ~v be ud-vectors, such that the disks γ~u and γ~v are isomorphic.
Then ~u = ~v.

Proof. Let ~u, ~v be ud-vectors, and let f : γ~u −→ γ~v be a disk isomorphism. The leaves,
as well, as order on leaves are defined in terms of operations p, b, t, and order in disks.
Thus, any disk isomorphism must send leaves to leaves bijectively. Hence, γ~u and γ~v have
the same number of leaves, say k + 1, i.e. the ud-vectors ~u and ~v have equal length. Let
~x0, . . . , ~xk be the leaves of γ~u and ~y0, . . . , ~yk be the leaves of γ~v, listed in order. Then
f(~xj) = ~yj, for j ∈ k + 1. Thus u2j = v2j, for j ∈ k + 1. For l ≤ u2j, u2j+2, we also have

p(l)(~xj) = p(l)(~xj+1) p(l)(~yj) = p(l)(~yj+1)

Thus
u2j+1 = µ~xj ,~xj+1 = µ~yj ,~yj+1 = v2j+1

i.e. ~u = ~v.

We have shown that the inner nodes of the disk γ~u, form a tree θ~u, which have lh(~u)
leaves. The j-th leaf is at the level u2j and it ’meets’ j + 1-st leaf at the level u2j+1. This
describes θ~u and hence γ~u uniquely. For example the tree θ3,2,3,1,2,0,1,0,4,1,3 looks like that:

•
H

HH ���•• •
@

@ �
� @

@ �
�

• • • •
AA ��
• • • •

•

We shall show, that any disk is isomorphic to a disk γ~u, for some ud-vector ~u. To this
end we introduces some ’projection’ morphisms from any disk into disks of form γn, and
gives some connections between them.

3.18. Proposition. Let D be a disk, n0, n1, n2, n ∈ ω. Then

1. Let x = xn ∈ Dn be a leaf, and xl = p(l)(xn) for 0 ≤ l < n. Then, there is a unique
disk morphism

x : D −→ γn

such that, for 0 ≤ l ≤ n and y ∈ Dl, we have

xl(y) = l iff y = xl (10)
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2. Let x ∈ Dn0, y ∈ Dn2 be leaves, such that x� y, and n1 = µx,y. Then the diagram

c
@

@
@

@@R

D

γn0

x
�

�
�

��	

γn1

d

�
�

�
��	

γn2

y
@

@
@

@@R
(11)

commutes.

3. Let x ∈ Dn0, y ∈ Dn2 and n1 = µx,y, such that pn1+1(x) � pn1+1(y). Then there is a
unique morphism

x; y : D −→ γn1

such that, for 0 ≤ l ≤ n1 and z ∈ Dl

x; yl(z) = l iff z = p(l)(x) (= p(l)(y)) (12)

and
x; yn0(x) = n1 and x; yn2(y) = n1 + 1 (13)

Proof. Ad 1. Let D, n, x, xl be as in the statement. We put for l ≤ n and y ∈ Dl

xl(y) =


µx,y if p(µx,y+1)(y) < xµx,y+1

l if y = xl

2l − µx,y if p(µx,y+1)(y) > xµx,y+1

and for y ∈ Dn+1

xn+1(y) =


µx,y if p(µx,y+1)(y) < xµx,y+1

n if y = b(x)
n+ 1 if y = t(x)
2n+ 1− µx,y if p(µx,y+1)(y) > xµx,y+1

Since any node y ∈ Dl is either equal to xl or p(µx,y+1)(y) is comparable but different than
p(µx,y+1)(x), it follows, that for l ≤ n, the above formulas defines functions xl : Dl −→ γl

n.
As x is a leaf, if y ∈ Dl and p(y) = x then y ∈ {b(x), t(x)}. Moreover, if y ∈ Dl and p(y) 6=
x then xµx,y+1 and p(µx,y+1)(y) are comparable but different. Hence xn+1 : Dn+1 −→ γn+1

n

is a well defined function, as well.
We need to verify that the functions {xl}l∈n+2 preserves projections, order in fibers,

and endpoints. Then, by Lemma 3.5, we will get a unique morphism x : D −→ γn

extending the above set of functions.
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First, we shall show that the orders are preserved.
Note that, if l ≤ n, y, z ∈ γl

n and y < z, then p(y) = p(z) and either µx,y = µx,z < l−1
or p(y) = xl−1 ∈ Dl−1. In the former case, we simply have that xl(y) = xl(z), by first or
third close of the definition of xl. In the latter case, y, z ∈ p−1(xl−1). If u ∈ p−1(xl−1)
then u = xl−1 or µx,u = l − 1. Hence

xl(y) =


l − 1 if u < xl

l if u = xl

l + 1 if u > xl

Since, y < z, and l − 1 < l < l + 1 in order of γl
n, we have xl(y) ≤ xl(z).

If y, z ∈ Dn+1 and y < z, then either y = b(x) and z = t(x) and hence

xn+1(y) = n < xn+1(z)

or µx,y = µx,z < n and then xn+1(y) = xn+1(z). Thus, for l ≤ n + 1, the functions xn+1

preserves the orders.
To see, that projections are preserved, note that, if l ≤ n+ 1 and y ∈ Dl, then either

y ∈ p−1(l − 1) or µx,y < l − 1. In both cases, we have that

p ◦ xl(y) = xl(p(y))

i.e. projections are preserved.
For the preservation of endpoints, note that, if l ≤ n+1 and y 6∈ p−1(xl−1), then xl(y)

is the unique element in the fiber over p ◦ xl(y), i.e. it is a bi-endpoint. If y ∈ p−1(xl−1),
then

xl(y) =


l − 1 if l ≤ n and y < xl

n if y = b(xl−1)
n+ 1 if y = t(xl−1)
l + 1 if l ≤ n and y > xl

Since all the elements are endpoints of th appropriate kind, the endpoints in p−1(x) are
also preserved by xl, for l ≤ n+ 1.

It remains to show that, the morphism x is a unique disk morphism satisfying (10).
Suppose contrary, that π : D −→ γn is a different morphism satisfying (10). Let

l = min{l′ : πl′(y) 6= xl′

x(y) for some y ∈ Dl′}

and fix y ∈ Dl, such that πl(y) 6= xl(y).
Since l is minimal we have

p ◦ πl(y) = πl−1(p(y)) = xl−1(p(y)) = p ◦ xl(y)

Thus p(y) = l − 1, as l − 1 is the only node in γn having more than one element in the
fiber over it. So, xl(y), πl(y) ∈ {l − 1, l, l + 1}. Then one of the following

xl < y y = xl y < xl
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holds. If xl < y, then by (10) for x we have

xl(y) 6= xl(xl) = l and xl(xl) ≤ xl(y)

Thus xl(y) = l + 1. Since (10) holds for π, as well, we also have, that xl(y) = l + 1,
contrary to the choice of y.

The case y < xl is similar.
If y = xl, then by (10) for both x and π, we have

πl(y) = πl(xl) = xl(xl) = xl(y)

again contrary to the choice of y. This contradiction shows, that x satisfying (10) is
unique. Ad 2. Let x0 ∈ Dn0 , x2 ∈ Dn2 be leaves, such that x � y, and n1 = µx0,x2 . By
Lemma 3.5, it is enough to verify that, for l ≤ n1 + 1 and y ∈ Dl

cl ◦ x0
l(y) = dl ◦ x2

l(y) (14)

If l ≤ n1, then µx0,y = µx2,y. Moreover, p(l)(x0) = p(l)(x2). Thus x0
l(y) = x2

l(y).
Since, for l ≤ n1, cl = dl, as well, (14) holds for l ≤ n1.

If l = n1 + 1 and y 6∈ {p(n1+1)(x0), p
(n1+1)(x2)}, then µx0,y = µx2,y and, since

p(n1+1)(x0) � p(n1+1)(x2), we have

y < p(n1+1)(x0) iff y < p(n1+1)(x2)

Thus x0
n1+1(y) = x2

n1+1(y) 6= n1 + 1. But, for n1 + 1 6= x ∈ γn1+1
n0

= γn1+1
n2

, we have
cn1+1(x) = dn1+1(x), i.e. (14) holds for y 6∈ {p(n1+1)(x0), p

(n1+1)(x2)}.
Since p(n1+1)(x0) � p(n1+1)(x2), we have

x0
n1+1(p(n1+1)(x0)) = n1 + 1 x0

n1+1(p(n1+1)(x2)) = n1 + 2

x2
n1+1(p(n1+1)(x0)) = n1 x2

n1+1(p(n1+1)(x2)) = n1 + 1

cn1+1(n1 + 1) = n1 cn1+2(n1 + 2) = n1 + 1

dn1+1(n1) = n1 dn1+1(n1 + 1) = n1 + 1

i.e. (14) holds for y ∈ {p(n1+1)(x0), p
(n1+1)(x2)}. Thus (14) holds for l = n1 + 1, as well.

This proves that the diagram (11) commutes.
Ad 3. Let x ∈ Dn0 , y ∈ Dn2 and n1 = µx,y, such that x′ = pn1+1(x) � pn1+1(y) = y′.

We shall give the definition of x; y and leave to the reader the verification that, they
satisfy the conditions (12) and (13).

By x′′ and y′′ we denote the largest leaf over x′ and the least leaf over y′, respectively,
if they exists, i.e. if x′ and y′ are inner, respectively. We put

x; y : D −→ γn1 =


c(n1) ◦ x′′ if x′ is inner
d(n1) ◦ y′′ if y′ is inner

pµx,y(x) otherwise
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For further reference we give an explicit formula for x; yl : Dl −→ γl
n, where x, y ∈

Dn+1 and x� y. For z ∈ Dl we have

x; yl(z) =



n if l > n and p(n+1)(z) = x
n+ 1 if l > n and p(n+1)(z) = y
l if l ≤ n and p(l)(x) = z
µx,z if µx,z < min(l, n+ 1)

and p(µx,z+1)(z) < p(µx,z+1)(x)
γl

n − µx,z − 1 if µx,z < min(l, n+ 1)
and p(µx,z+1)(x) < p(µx,z+1)(z)

(15)

3.19. Theorem. Let D be a disk, and let {xi}i∈k+1 be the set of leaves of D such that
xi ∈ Du2i for i ∈ k + 1, xi � xi+1 and u2i+1 = µxi,xi+1

for i ∈ k. Then the diagram

γu0 γu2

γu1

c@
@@R

d
�

��	

γu2k−2
γu2k

γu2k−1

c@
@@R

d
�

��	
. . .

D

x2
�

��	
x2k−2

@
@@R

x2k

PPPPPPPPq
x0

��������)
(16)

is a limiting cone in D.

Proof. By Lemma 3.12, we need to verify that for l ∈ ω, the image (16)l of cone (16)
under the functor (−)l is a limiting cone in Poset, i.e. we need to verify, that (16)l is a
limit in Set and that for l ∈ ω and y, z ∈ Dl, we have

y ≤ z iff xi
l(y) ≤ xi

l(z) for i ∈ k + 1

First, we shall show that the diagram (16)l is a limit in Set. We have Claim 1. If
y, z ∈ Dl and y � z, then there is i0 ∈ k + 1 such that xi0

l(y) < xi0
l(z).

If y is inner, then for some i0 ∈ k + 1 there is a leaf xi0 over y, and we have

xi0
l(y) = l < l + 1 = xi0

l(z).

If z is inner, then for some i0 ∈ k + 1 there is a leaf xi0 over z, and we have

xi0
l(y) = l − 1 < l = xi0

l(z).

If both y and z are outer, then p(y) is a leaf, i.e. for some i0 ∈ k+1, p(y) = xi0 . Then

xi0
l(y) = l − 1 < l =≤ xi0

l(z).

This ends the proof of Claim 1.
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Now, let y, z ∈ Dl be arbitrary different nodes, l′ = µy,z + 1, y′ = p(l′)(y), z′ = p(l′)(z).
Then the nodes y′, z′ ∈ Dl′ are comparable and different, say y′ < z′. Thus, we have
a node y′′ ∈ Dl′ , such that y′ ≤ y′′ � z′. By Claim 1, there is i0 ∈ k + 1, such that
xi0

l′(y′′) < xi0
l′(z′), and then

xi0
l(y) = xi0

l′(y′) ≤ xi0
l(y′′) < xi0

l′(z′) < xi0
l′(z)

Hence xi0
l(y) < xi0

l(z).
We shall show by induction on l ∈ ω
Claim 2 For each compatible tuple {yi}i∈k+1 at level l, there is y ∈ Dl such that

xi
l(y) = yi for i ∈ k + 1

For l = 0, Claim 2 is obvious, since at level 0 all disks have exactly one element.
Now, suppose that Claim 2 holds for l−1. Let {yi}i∈k+1 be a compatible tuple at level

l, i0 and i1 as in Lemma 3.16.2 for that tuple. Since c and d commutes with projection
the tuple {zi}i∈k+1 at level l − 1, such that

zi = p(yi) ∈ γl−1
n2i

for i ∈ k + 1

is compatible at the level l − 1. By induction hypothesis there is z ∈ Dl−1, such that

xi
l−1(z) = zi for i ∈ k + 1

We shall consider four cases

1. i0 = k + 1;

2. i1 = 0;

3. i0 < i1;

4. 0 < i0 = i1 ≤ k.

Case 1. If i0 = k+1 then all yi’s are right endpoints. Then, since xi
l’s preserves endpoints,

the node y = t(z) satisfy the Claim 2. Case 2. If i1 = 0 then all yi’s are left endpoints,
and similarly as before, y = b(z) satisfy the Claim 2. Case 3. If i0 < i1 then yi0 = l is an
inner node in γ2i0 . We put y = p(l)(xi0). Then

xi0
l(y) = l = yi0

By Lemma 3.14, {yi}i∈k+1 is a unique compatible tuple {ui}i∈k+1 at level l, such that
ui0 = yi0 . But, {xi

l(y)}i∈k+1 is a compatible tuple with the same property, i.e. y is as in
the Claim 2. Case 4. If 0 < i0 = i1 ≤ k then yi0 is in the right side of γ2i0 and is connected
to the right to yi1 which is in the left side of γ2i1 . Thus by Lemma 3.14 either yi0 or yi1

is in the far side.
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If yi0 is in far side then, again by Lemma 3.14, all yi for i ≤ i0 are in the far right side.
Thus yi is a left endpoint for all i ∈ k + 1. Thus as in Case 2, y = b(z) satisfy the Claim
2.

If yi1 is in far side then, for similar reasons as previously, all yi for i ≤ i0 are in the far
left side. Thus yi is a right endpoint for all i ∈ k + 1. Thus as in Case 1, y = t(z) satisfy
the Claim 2.

This shows that for l ∈ ω, (16)l is a limiting cone in Set.
In order to show that (16)l is a limiting cone in Poset we need to verify, that if y, z ∈ Dl

and
xi

l(y) ≤ xi
l(z) in γn2i

for i ∈ k + 1 then y ≤ z Dl (17)

Since, for i ∈ k + 1

xi
l−1(p(y)) = p ◦ xi

l(y) = p ◦ xi
l(z) = xi

l−1(p(z))

it follows, form previous considerations, that p(y) = p(z). Therefore y and z are compa-
rable. If y > z then, again from previous considerations, there is i0 ∈ k + 1, such that
xi0

l(y) 6= xi0
l(z). But xi0

l(y) ≤ xi0
l(z), so xi0

l(y) < xi0
l(z), and we get a contradiction

with the fact that xi0
l preserves order. Thus, we have y ≤ z, i.e. (17) holds, and (16)l is

a limiting cone in Poset, as was to be shown.

Thus we have

3.20. Corollary. For every disk D, there is a unique ud-vector ~u such that D is iso-
morphic to γ~u.

Proof. By Lemmas 3.13, 3.15, for any ud-vector ~u, we have a disk γ~u. By Theorem 3.19,
for any disk D, there is a ud-vector ~u such, that D is isomorphic to γ~u, and by Proposition
3.17 such a ud-vector ~u is unique.

3.21. Factorizations in D. In this section we shall study morphisms of disks.
It is easy to see that the epi in D are onto and mono are one-to-one and that these

classes of morphisms form a factorization system in D. However in D there is another
factorization system.

Let f : D −→ E be a disk morphism. We say that f is inner iff f sends inner nodes
to inner nodes, i.e. f(ı(D)) ⊆ ı(E). We say that f is outer iff f is epi and for any inner
nodes x, y in D, if f(x) = f(y) then f(x) is an outer node.

The inner morphisms are exactly those that are induced by the maps of underlying
trees. In fact, the category of finite disks with the inner maps as morphisms is equivalent
to the category of finite trees.

If there is an inner morphism from γ~u to γl then it is unique, and it is the case iff
ht(~u) ≤ l. We denote by

m~u : γ~u −→ γht(~u) ι(l) : γn −→ γl

the unique inner morphisms between these disks, where n ≤ l. Note that this notaton
agree with the one in section 2.6 i.e. if we define for n1 < n0, n2 the morphisms

mn0,n1,n2 : γn0,n1,n2 −→ γmax(n0,n2)
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as the unique inner morphisms, then since the composition of inner morphisms is inner,
m~u is indeed the canonical internal composition morphism. This will be important in the
next section.

We have

3.22. Lemma.

1. Outer morphisms are split epimorphisms with a unique splitting;

2. Let ~u be a ud-vector. Then, a disk morphism f : D −→ γ~u is outer iff πi ◦f is outer
for i ∈ lh(~u);

3. For any ud-vector ~u the projection πi : γ~u −→ γu2i
is outer, for i ∈ lh(~u);

4. The following are equivalent

(a) A disk morphism f : D −→ γn is outer;

(b) there are x, y ∈ Dn+1, such that x� y and f = x; y;

(c) for l ≤ n there is a unique z ∈ ı(D)l such that f l(z) = l ∈ γl
n.

Proof. Ad 1. If f : D −→ E is an outer morphism of disks, then the inverse image of each
inner node of E contains one element. Thus f−1dı(E) : ı(E) −→ D is a tree morphisms.
Therefore, it extends to a disk morphism f : E −→ D. Since f ◦ (f−1dı(E) is identity
on inner nodes f ◦ f = idE. Since there are no choices involved in construction of f it is
clear that f with the above property is unique.

Ad 2. Let ~u be a ud-vector and f : D −→ γ~u a disk morphism. For any i ∈ lh(~u),
πi : γ~u −→ γu2i is outer. Hence if f is outer so is πi ◦ f for i ∈ lh(~u).

Suppose now, that πi ◦ f for i ∈ lh(~u). Let x, y be inner nodes in D such that
f(x) = f(y) and f(x) is inner. Then, by Proposition 3.16.3, for some i0 ∈ lh(~u), πi0 ◦f(x)
is inner. Since πi0 ◦ f is outer, we have that x = y.

Ad 3. Follows from 2.
Ad 4. (b) ⇒ (a). From the description in Proposition 3.18 easily follows, that x; y is

outer.
(a) ⇒ (c). If f : D −→ γn is outer then, it is epi and there is a a node z ∈ Dn such

that fn(z) = n ∈ γn
n . Since n ∈ γn

n is inner z must be inner. And since f is outer z must
be unique.

(c) ⇒ (b). Having such z as above, in the fiber p−1(z) = {z1, . . . , zk} ⊆ Dn+1, there
are nodes zi and zi+1 such that f(b(z)) = f(zi) and f(b(z)) = f(zi+1). Putting x = zi

and y = zi+1, we have f = x; y.

3.23. Proposition. Outer and inner morphisms of disks form a factorization system.
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Proof. For a disk morphism f : D −→ E we define an equivalence relation ∼ on D so
that for x, y ∈ D,

x ∼ y iff x ⊥ y and f(x) = f(y) and f(x) is outer

On D/∼ we have an obvious disk structure inherited from D and the obvious morphisms

D E-f

D/∼

◦
f

@
@

@
@@R

•
f

�
�

�
���

form the outer-inner factorization of f . If in the commuting diagram in D

-
g2

-f2

?
f1 ?

g1

f1 is outer and g1 is inner then h = f2 ◦ f1 is the unique lifting. It exists, by Lemma 3.22,
since f1 is outer, and the commutations of the triangles easily follows given the fact that
g1 is inner.

From the proposition we get

3.24. Corollary. For any n ∈ ω and any disk morphism f : D −→ γn there is a
ud-vector ~u, ht(~u) = u, such that f factorizes as follows

γ~u γu-
m~u

D γn
-f

?

◦
f

6
ι(n)

with
◦
f outer part of f , and the morphisms ι(n), m~u defined above.

Proof. In order to get this factorization of a disk morphism f we need to take the fac-

torization (
◦
f,

•
f) from Proposition 3.23 and furthermore take epi-mono factorization of its

inner part
•
f .
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We call the factorization of a disk morphism f described in the above Corollary the
canonical factorization of f .

3.25. An internal ω-category C in D. In this section we define an internal ω-
category C in D, and we show that by homming into C we get a functor into the category
of simple ω-categories S.

For n ∈ ω, γn is the object of n-cells of C, for n ≥ l

d(l), c(l) : γn −→ γl

are the domain and codomain morphisms in C, for n ≤ l

ι(l) : γn −→ γl

is the identity morphism, and for any ud-vector ~n of length 2

m~n : γ~n −→ γht(~n)

is the composition morphism in C.
We have

3.26. Proposition. C defined above is an internal ω-category in D.

Proof. We need to check, that the data specified above verify the conditions (vi)-(xi) of
the definition of an ω-category given in Appendix 6.2. Thus, we need to check that many
diagrams commutes. We shall only verify some chosen ones, and comment on the other
leaving to the reader to calculate the rest.

Note that by Lemma 3.5 it is enough to verify the equality of morphisms at leaves
only. Let for a ud-vector ~u, λi

~u ∈ γ
u2i
~u be the i-th leaf of γ~u, for i ∈ lh(~u). Usually we drop

subscript ~u in λi
~u.

The condition (vi).1 holds, i.e. for l ≤ n1 < n0, n2 the square

γn0 γl-
d(l)

γn0,n1,n2 γmax(n0,n2)-m

?

π0

?

d(l)

commutes, as the following calculations show

d(l) ◦m(λ0) = d(l)(n0) = l + 1 = d(l)(n0) = d(l) ◦ π0(λ
0)

d(l) ◦m(λ1) = d(l)(n2) = l + 1 = d(l)(γ
n2

max(n0,n2) − n1 − 1) = d(l) ◦ π0(λ
0)

The condition (vii) since, for l ≥ n, we have

d(l) ◦ ι(l)(λ
0) = c(l)(n) = n = d(n) ◦ ι(l)(λ

0)

The conditions (vii)-(x) holds, since all the morphisms involved are inner and inner
the morphism into a disk of form γn from a given disk is unique, if exists.

The condition (xi) holds as well, i.e. for n1 < l < n0, n2, the diagram
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γn0,l,n2 γmax(n0,n2)-
mn0,l,n2

γn0,n1,n2 γn2,l,n0
-

〈ml,n1,n2(d(l) × 1),mn0,n1,l(1× c(l))〉

?

〈mn0,n1,l(1× d(l)),ml,n1,n2(c(l) × 1)〉

?

mn2,l,n0m

PPPPPPPPPPPPPPPPPPq

commutes. The morphism 〈ml,n1,n2(d(l) × 1),mn0,n1,l(1 × c(l))〉 glue the two branches
up to the level l and switch the remaining parts, whereas the morphism 〈mn0,n1,l(1 ×
d(l)),ml,n1,n2(c(l)×1)〉 just glue together the branches up to level l without switching them.
Thus both morphisms are inner and composed with mn2,l,n0 and mn0,l,n2 , respectively must
be equal one to another.

From the proposition we get immediately

3.27. Corollary. For any disk D, D(D,C) is an ω-category in Set.

By an l-D-cut (or l-cut, D-cut) we mean an outer morphism D −→ γl.
Since both d and c are outer morphisms, on D-cuts we can define operations of domain

and codomain simply by composing them with d and c, respectively.
Let Cut(D)n be the set of n-D-cuts. We have a sequence of sets and functions, denoted

by Cut(D)

-d

Cut(D)n
-

c

-d

-
c

-d

Cut(D)1 Cut(D)0
-

c

. . . . . .

Note that if f : D −→ γn is outer then there is a unique inner node z ∈ Dn, such
that fn(z) = n ∈ γn

n . Thus b(z) 6= t(z) and there is a unique pair x, y ∈ p−1(z) ⊆ Dn+1,
such that x� y, fn+1(x) = b(z) and fn+1(y) = t(z). By Proposition 3.18 and Lemma 3.5,
we have f = x; y. Clearly, for any pair x, y ∈ Dn+1, such that x � y, x; y is an n-D-cut.
Moreover, both first and the second component determines the pair uniquely. We write
x; (;x) for the outer morphisms D −→ γn determined by the pair whose first (second)
component is x. In this notation, we have

d ◦ x; y = ; p(x) c ◦ x; y = p(x);

We define an order on n-D-cuts by putting for f = x;x′ and g = y; y′ such that d◦f = d◦g
and c ◦ f = c ◦ g (i.e. p(x) = p(y)) that

f ≥ g iff x ≤ y in Dn+1
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3.28. Proposition. Cut(D) is a simple ω-graph and the inclusion

ηD : Cut(D) −→ D(D,C)

is an ω-graph morphism.

Proof. Since d ◦d = d ◦ c and c ◦d = c ◦ c, Cut(D) is indeed an ω-graph. Moreover, the
domain and codomain operations in D(D,C) are defined by composition with d and c,
as well. Thus ηD is an inclusion of ω-graphs. It remains to show that Cut(D) is simple.

Clearly, for n ∈ ω, Cut(D)n is finite.
Since fibers of p are linearly ordered, the above condition defines a linear order on

those n-D-cuts whose domains and codomains coincide. Moreover, for f , g as above, we
have

f � g iff x′ = y

But, then y must be an inner node, and b(y) 6= t(y). So b(y); : D −→ γn+1 is an
n+ 1-D-cut for which

d ◦ b(y); = f and c ◦ b(y); = g

We have as well that
d ◦ f = ; p(x) � p(x); = c ◦ f

Thus Cut(D) is a simple ω-graph.

From the proof we get a Corollary.

3.29. Corollary. If n ∈ ω and f, g are n-D-cuts then f � g iff there is x ∈ Dn+1 such
that f = ;x and g = x;.

3.30. Proposition. For any disk D, the inclusion

ηD : Cut(D) −→ D(D,C)

is the universal morphism from graph Cut(D) to the forgetful functor ωCat −→ ωGr.

Proof. Let D be a disk, A an ω-category, and F : Cut(D) −→ A. We need to show that
there is a unique ω-functor G : D(D,C) −→ A such that the triangle

Cut(D) D(D,C)-ηD

F

@
@

@
@

@
@
@R

A
?

G (18)

commutes. First we extend F to all outer morphisms. For any ud-vector ~u, we shall
define a function

~F : Douter(D, γ~u) −→ A~u
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by the formula
~F (e) = 〈F (πA

i ◦ e)〉i∈lh(~u)
∈ A~u

Since F preserves domains and codomains, ~F is well defined. Let f : D −→ γn be a disk
morphism, i.e. n-cell in D(D, C). By Corollary 3.24, we have a factorization

γ~u γu-
m~u

D γn
-f

?

◦
f

6
ι(n) (19)

with
◦
f outer. We put

G(f) = ιA
(n) ◦mA

~u (~F (
◦
f)) ∈ An

First note that (19) shows that any n-cell is D(D,C) is a result of application of compo-
sition and identity operations to a compatible tuple of D-cuts. Thus G with the required
properties, if exists is, unique. Secondly, for a D-cut f : D −→ γn we have

G(ηD(f)) = G(f) = ιA
(n) ◦mA

n (F (f)) = F (f)

i.e. (18) commutes. It remains to show thatG defined above preserve domains, codomains,
identities and compositions.

Before we show that G preserves compositions we shall prove Claim. For any l ∈ ω,
ud-vector ~u and outer morphism e : D −→ γ~u we have

dA
(l) ◦ ~F (e) = ~F (d~u;l ◦ e) (20)

cA
(l) ◦ ~F (e) = ~F (c~u;l ◦ e). (21)

We prove the Claim by induction on l-size of ~u.
If ~u = u0 < l then e is an u0-cut, ~F (e) = F (e), d(l) = 1γu0

and dA
(l) = idAu0

. Hence
(20) holds in this case.

If ~u is l-primitive, then we have

dA
~u;l(~F (e)) = dA

(l) ◦ πA
0 (~F (e)) = dA

(l)(F (π0 ◦ e)) =

= F (d(l) ◦ π0 ◦ e) = ~F (d~u;l ◦ e) = ~F (d~u;l ◦ e)

If ~u = ~u′, z, ~u′′, lh(~u) = k + 1, lh(~u′) = k′ + 1, and z = min(~u) < l, then using the
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inductive assumption on ud-vectors ~u′ and ~u′′ of smaller l-size we have

d
A,(l)
~u (~F (e)) = dA

~u′;l
◦ πA

0..k′ ◦ (~F (e))× dA
~u′′;l

◦ πA
k′+1..k ◦ (~F (e))

= dA
~u′;l

(~F (π0..k′ ◦ e))× dA
~u′′;l

(~F (πk′+1..k ◦ e))

= ~F (d~u′;l ◦ π0..k′ ◦ e)× ~F (d ~u′′;l ◦ πk′+1..k ◦ e)

∗
= ~F (〈d~u′;l ◦ π0..k′ ◦ e,d ~u′′;l ◦ πk′+1..k ◦ e〉)

= ~F ((d~u′;l × d
(l)
~u′′

) ◦ e)

= ~F (d~u;l ◦ e)

where
∗
= follows from the fact that z = min(~u) and hence

c(z) ◦ d~u′;l ◦ π0..k′ ◦ e = d(z) ◦ d ~u′′;l ◦ πk′+1..k ◦ e

The proof of (21) is similar. This ends the proof of the Claim.

We can show now, that G preserves domains and codomains. Let l, n ∈ ω, and
f : D −→ γn be a disk map. By Lemma 6.4 we have the following commutative diagram

γtr(l)(~u) γmin(l,u)-
mtr(l)(~u)

γ~u γu-m~u

?

d~u;l

?

d(l)

γl-
ι(l)

γn-ι(n)

?

d(l)

D

?

◦
f

XXXXXXXXXXXXXXXz

f

with
◦
f outer. Then using the Claim we obtain

G(d(l) ◦ f) = ιA
(l) ◦mA

tr(l)(~u)(~F (d~u;l◦
◦
f)

= ιA
(l) ◦mA

tr(l)(~u) ◦ dA
~u;l(~F (

◦
f)

= ιA
(l) ◦ dA

(l) ◦mA
~u (~F (

◦
f)

= dA
(l) ◦ ιA(n) ◦mA

~u (~F (
◦
f)

= dA
(l)(G(f))
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Thus G preserves domains. The preservation of codomains can be proved similarly.
To see that G preserves identities, let l, n ∈ ω, l > n, and f : D −→ γn be a disk map.

Then, we can form a commuting diagram

γ~u γu-
m~u

D γn
-f

?

◦
f

6
ι(n)

γl-
ι(l)n

ι(l)

�
�

�
���

with
◦
f outer. Thus, we have

G(ι(l) ◦ f) = G(ι(l) ◦m~u◦
◦
f) = ιA

(l) ◦mA
~u (G(

◦
f))

= ιA
(l) ◦ ιA(n) ◦mA

~u (G(
◦
f)) = ιA

(l)(G(f))

i.e. G preserves identities.
It remains to show that G preserves compositions. Let u′, v′, l ∈ ω, l < u′, v′ and

f : D −→ γu′ , f : D −→ γv′ be disk morphisms, such that c(l) ◦ f = d(l) ◦ g. We have the
following commutative diagrams displaying the canonical factorizations of f and c(l) ◦ f ,

γ~u γu-
m~u

D γu′
-f

?

◦
f

6
ι(u′)

γmin(u,l)-
c(l)

γl-
c(l)

6 6
ι(l)

@
@

@@R �
�

��

γtr(l)(~u)

c~u;l m(tr(l)(~u)

and the canonical factorizations of g and d(l) ◦ g

γ~v γv-
m~v

D γv′
-g

?

◦
g

6
ι(v′)

γmin(v,l)-
d(l)

γl-
d(l)

6 6
ι(l)

@
@

@@R �
�

��

γtr(l)(~v)

d~v;l
m(tr(l)(~v)



60

Since c(l) ◦f = d(l) ◦g and the canonical factorizations are unique, we have that tr(l)(~u) =

tr(l)(~v), min(v, l) = min(u, l), and c~u;l◦
◦
f= d~v;l◦

◦
g. Thus we can form a commuting

diagram

D

◦
f

◦
g

?

e

HH
HHH

HHH
HHH

HHH
HHHHj

�
�

�
�

�
�

�
�

�	

γ~u

γ~w

XXXXXXXXXXXXXXXz

��
���

���

γ[u,l,v]

γ~v

XXXXXXXXXXXXXXXz

���
���

���

π0;~u π1;~v

c~u;l

d~v;l

?

?

?

?

m~u ×m~v

m~u m~vm~w

γu

γw

XXXXXXXXXXXXXXXz

�
���

����

γ[u,w,v]

γv

XXXXXXz

��
���

����

XXXXXπ0 π1

c(w) d(w)

?

?

?

?

ι(u′) × ι(v′)

ι(u′) ι(v′)

ι(l)

γu

γl

XXXXXXXXXXXXXXXz

���
�����

γu,l,v

γv

XXXXXXz

�
���

�����

XXXXXπ0
π1

c(l)

d(l)

in which the three horizontal squares are pullbacks, and e is the induced map into a
pullback. Moreover, by Lemma 6.7, for z = min(u, v) and z′ = min(u′, v′) we have a
commuting diagram



61

γu′,l,v′ γz′-
mu′,l,v′

γ[u,l,v] γz-
m[u,l,v]

?

ι(u′) × ι(v′)

?

ι(z′)

m[~u,l,~v]

@
@

@
@

@@R

γ[~u,l,~v]

?

m~u ×m~v

Thus we have

G(f) = ιA
(u′) ◦m~u(~F (

◦
f))

and
G(g) = ιA

(v′) ◦m~v(~F (
◦
g))

Now using Lemma 6.7 we have

G(mu′,l,v′)(f, g)) = ιA
(z′) ◦mA

[~u,l,~v](~F (e))

= ιA
(z′) ◦mA

[u,l,v] ◦ (mA
~u ×mA

~v )(~F (e))

= mA
u′,l,v′ ◦ (ιA

(u′) × ιA
(v′)) ◦ (mA

~u ×mA
~v )(〈~F (π0;~u ◦ e), ~F (π1;~v ◦ e)〉)

= mA
u′,l,v′ ◦ 〈ιA(u′) ◦mA

~u (~F (
◦
f), ιA

(v′) ◦mA
~v (~F (

◦
g)〉

= mA
u′,l,v′(G(f), G(g))

i.e. the compositions are preserved as well.

We get

3.31. Corollary. The essential image of the hom-functor D(−,C) into ωCat is con-
tained in the category of simple ω-categories S, and hence we have a contravariant hom-
functor

D(−,C) : Dop −→ S

Proof. By Proposition 4.8 an ω-category is simple iff it is a free ω-category on a simple ω-
graph. By Proposition 3.28 Cut(D) is a simple ω-graph and by Proposition 3.30 D(D,C)
is a free ω-category on Cut(D), for any disk D. Thus D(D,C) is a simple ω-category.
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4. Simple ω-categories

4.1. Simple ω-graphs and free ω-categories. This section begins the investigation
of simple ω-categories. We shall introduce some notation and prove some basic facts
concerning simple ω-graphs. In Appendix 6.8, we give an internal construction of a
free ω-category over an ω-graph, in an ambient category satisfying some mild exactness
properties. The construction uses essentially ud-vectors. When the ambient category is
Set the same construction can be described more conveniently, using simple ω-graphs. We
shall present the construction at the end of the section.

We shall define some specific ω-graphs α~u, for any ud-vector ~u. For ~u = n, we put

αn
l =


∅ if l > n
{2n} if l = n
{2l + 1, 2l} if 0 ≤ l < n

d, c : αn
l −→ αn

l−1

d(x) = 2l − 1 c(x) = 2l − 2

for x ∈ αn
l , and 1 ≤ l ≤ n.

For example α4 can be pictured as follows:

1 0
��@@

3 2
��@@

5 4
��@@

7 6
�� AA

8

For any two cells e, e′ in a simple ω-graph G we define a number

νG
e,e′ = max{l : d(l)(e) ⊥ d(l)(e

′)}

Since G0 is linearly ordered νG
e,e′ is well defined. We have

4.2. Lemma. Let f : G −→ H be a morphisms of simple ω-graphs. Then f is one-to-one
and the image of f is a sub-ω-graph of H. In particular, if m ∈ ω and e, e′, e′′ ∈ G′

m such
that e > e′ > e′′ and e, e′′ are in the image of f , so is e′.
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Proof. First note that if a function between finite linear orders preserves the successor
relation then it reflects the order and is one-to-one.

Let f : G −→ H be an ω-graph morphism between simple ω-graphs. f maps G0 to
H0 and, for n ∈ ω, x, y ∈ Gn f maps Gn+1(x, y) to Hn+1(f(x), f(y)). In particular, if
Gn+1(x, y) is not empty, so is Hn+1(f(x), f(y)). Since G and H are simple f preserves
�. Thus, by the remark above, it also reflects it and is one-to-one when restricted to
these sets. But if x, y ∈ Gn and x 6⊥ y then l = νx,y < n. Hence d(l)(x) 6= d(l)(y)
and d(l)(x) ⊥ d(l)(y). Thus by the above d(l)(f(x)) 6= d(l)(f(y)), and then f(x) 6= f(y).
Therefore f is one-to-one.

For l < n we define, the bottom and the top ω-graph morphisms

bn = b , tn = t : αl −→ αn

by the conditions bn(2l) = 2l and tn(2l) = 2l + 1.
Let ~u be a ud-vector. The set of nodes in the simple ω-graph α~u is the set of pairs 〈i, x〉

such that i ∈ lh(~u) and 0 ≤ x ≤ 2u2i divided by the equivalence relation ∼ generated by
the relation ∼0 such that

〈i, x〉 ∼0 〈i′, x′〉 iff



i = i′ and x = x′

or
i+ 1 = i′ and x = x′ and x < 2u2i+1

or
i+ 1 = i′ and x = 2u2i+1 and x′ = 2u2i+1 + 1

We write [i, x] for the equivalence class of the pair 〈i, x〉. We put, for l ∈ ω,

α~u
l = {[i, x] ∈ α~u : bx/2c = l}

and domain and codomain functions

dα~u

, cα
~u

: α~u
l+1 −→ α~u

l

are given by
dα~u

([i, x]) = [i, d(x)] cα
~u

([i, x]) = [i, c(x)]

for [i, x] ∈ α~u
l+1.

The embedding morphisms
κi : αu2i −→ α~u

are defined by the condition κi(2u2i) = [i, 2u2i], for i ∈ lh(~u).
We have
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4.3. Proposition. The diagram

αu0 αu2

αu1

b
@

@@I t
�

���

αu2k−2 αu2k

αu2k−1

b
@

@@I t
�

���. . .

α~u

κ2

�
��� κ2k−2

@
@@I κ2k

PPPPPPPPi

κ0

��������1

(22)

in sωGr is a colimiting cone in ωGr.

Proof. α~u described above is clearly a colimit of (22) in ωGr. The verification that α~u is
a simple ω-graph is left for the reader.

For l ∈ ω, and ud-vector ~u the multi-bottom and the multi-top ω-graph morphisms

b~u;l, t~u;l : αtr(l)(~u) −→ α~u

are defined as follows

b~u;l =


1αu0

if ~u = u0 ≤ l;

κlh(~u)−1 ◦ b(u0) if ~u is l-primitive;

b
~u′;l + b

~u′′;l if ~u = ~u′, w, ~u′′ and w = min(~u) < l.

t~u;l =


1αu0

if ~u = u0 ≤ l;
κ0 ◦ t(u0) if ~u is l-primitive;

t
~u′;l + t

~u′′;l if ~u = ~u′, w, ~u′′ and w = min(~u) < l.

For l ∈ ω and ud-vectors ~u and ~v such that tr(l)(~u) = tr(l)(~v) = ~w the embedding
morphisms in sωGr

κ0;~u : α~u −→ α[~u,l,~v] κ1;~v : α~v −→ α[~u,l,~v]

are as follows.

κ0;~u =



t~v;u0 if ~u = u0 ≤ n1;
κ0..k if ~u is n1-primitive, and lh(~u) = k + 1;

κ0;~u′ + κ0; ~u′′ if ~u = ~u′, z, ~u′′, ~v = ~v′, z, ~v′′,

tr(n1)(~u′) = tr(n1)(~v′), tr(n1)( ~u′′) = tr(n1)(~v′′),
and z = min(~u) < n1.

and

κ1;~v =



b~u;u0 if ~u = u0 ≤ n1;
κk+1..k′ if ~v is n1-primitive, lh(~u) = k + 1,

and lh(~u, n1, ~v) = k′ + 1;

κ1;~v′ + κ1; ~v′′ if ~u = ~u′, z, ~u′′, ~v = ~v′, z, ~v′′,

tr(n1)(~u′) = tr(n1)(~v′), tr(n1)( ~u′′) = tr(n1)(~v′′),
and z = min(~u) < n1.

We have
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4.4. Proposition. For l ∈ ω and ud-vectors ~u and ~v such that tr(l)(~u) = tr(l)(~v) = ~w
the diagram in sωGr

α~u α~w�
b~u;l

α[~u,l,~v] α~v� κ1;~v

6

κ0;~u

6

t~v;l (23)

is a pushout in ωGr.

Proof. Let ~u, ~v, and l be as in the proposition. We prove the Proposition by induction
on l-size of tr(l)(~u).

If ~u = u0 ≤ l then (23) is

αu0 αu0�
1

α~v α~v� 1

6
t~u;l

6
t~u;l

so it is a pushout.
The case ~v = v0 ≤ l is similar.
If ~u, ~v are l-primitive and then [~u, l, ~v] = ~u, l, ~v and (23) is

α~u αl�
b~u;l

α~u,l,~v α~v�κk+1..k′

6

κ0..k

6

t~v;l

where k = lh(~u) and k′ = ln(~u, l, ~v) + 1. So by Proposition 4.4 it is again pushout.
Finally, if z = min(~w) ~u = ~u′, z, ~u′′, ~v = ~v′, z, ~v′′ tr(l)(~u′) = tr(l)(~v′) = ~w′, tr(l)( ~u′′) =

tr(l)(~v′′) = ~w′′ then [~u, l, ~v] = [~u′, l, ~v′], z, [ ~u′′, l, ~v′′] and (23) is the following square

α
~u′,w, ~u′′ α

~u′,w, ~u′′�

b
~u′;l + b

~u′′;l

α[~u′,l,~v′],w,[ ~u′′,l, ~v′′] α
~v′,w, ~v′′�κ1;~v′ + κ1; ~v′′

6

κ0;~u′ + κ0; ~u′′
6

t
~v′;l + t

~v′′;l

which arises as a pushout over αz of two squares, which are pushouts by inductive assump-
tion for vectors ~w′ and ~w′′ with smaller l-size then ~w′, z, ~w′′. Thus it is again a pushout.
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4.5. Proposition.

1. For any simple ω-graph G, there is a ud-vector ~u such that G is isomorphic to α~u.

2. Let ud-vectors ~u, ~v be ud-vectors. If f : α~u −→ α~v is an isomorphism then ~u = ~v
and f = 1α~u.

Proof. 2. follows easily from 1. For 1. we give only a sketch of the proof.
Let G be a simple ω-graph. By TG we denote the set of cells in G which are neither

domains nor codomains of other cells in G. We define a linear order on TG, so that for
a, b ∈ TG

a ≤ b iff d(νa,b)(a) ≥ d(νa,b)(b)

Let TG = {a0, . . . , ak} such that ai ≤ ai+1 for 0 ≤ i ≤ k. Let u2i be such a number that
ai ∈ Gu2i

, for 0 ≤ i ≤ k, and u2i+1 = νai,ai+1
for 0 ≤ i ≤ k − 1. Then, we can prove, by

induction on the cardinality of TG that G is isomorphic to α~u, where ~u = u0, . . . , u2k.

Let G be an arbitrary ω-graph. In Appendix 6.8 the construction of the free internal
ω-category [G] over an internal ω-graph G is given, when the ambient category has finite
limits and disjoint and universal coproducts. In Set, this construction can be described
more conveniently using simple ω-graphs.

To distinguish (temporarily) between these two constructions by [[G]] we will denote
the ω-category defined in terms of simple ω-graphs.

The set of n-cells is

[[G]]n = {f : α~u → G : ht(~u) ≤ n}

The set of n1-compatible pairs of n0- and n2-cells is

[[G]]n0,n1,n2 = {〈f, g〉 : f : α~u → G, g : α~v → G,

ht(~u) ≤ n0, ht(~v) ≤ n2, and f ◦ b~u;n1 = g ◦ t~v;n1}
For l ≤ n, the domain and the codomain operations

d
[[G]]
l , c

[[G]]
l : [[G]]n −→ [[G]]l

for f : α~u → G ∈ [[G]]n, are defined by composition

d
[[G]]
l (f) = f ◦ t~u;l : αtr(l)(~u) → G,

c
[[G]]
l (f) = f ◦ b~u;l : αtr(l)(~u) → G.

For n ≤ l, the identity operations

ι
[[G]]
l : [[G]]n −→ [[G]]l

are inclusions. For n1 < n0, n2, the compositions

m[[G]]
n0,n1,n2

: [[G]]n0,n1,n2 −→ [[G]]max(n0,n2)

are defined, via pushouts in sωGr. By Proposition 4.4, for any pair 〈f, g〉 ∈ [[G]]n0,n1,n2

there is a unique morphism [f, g] : α[~u,n1,~v] −→ G making the diagram
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α~u α~w�
t~u;n1

α[~u,n1,~v] α~v� κ1;~v

6

κ0;~u

6

b~v;n1

g
XXXXXXXXXXXXXy

f

A
A

A
A

A
A

A
AK

G

[f, g]
HH

HHY

commutes, where ~w = tr(n1)(~u)(= tr(n1)(~v)). We put

m[[G]]
n0,n1,n2

(〈f, g〉) = [f, g]

We define
ηG : G −→ [[G]]

such that, for x ∈ Gn, ηG(x) : αn −→ G so that ηG(x)(2n) = x.
Thus by Theorem 6.9 we obtain

4.6. Theorem. For any ω-graph G, [[G]] as described above is an ω-category. Moreover,
the association G 7−→ [[G]] is functorial in G and the functor

[[−]] : ωGr −→ ωCat

is a left adjoint to the forgetful functor ωCat −→ ωGr, with η as the unit of adjunction,
i.e. [[G]] is the free ω-category on the ω-graph G.

Remark. This is essentially a special case of Proposition 4.2 in [B].

Proof. We shall show that [[G]] defined above is isomorphic to [G] defined in Appendix
6.8.

To this end, we define a functor

ξG : sωGrop −→ Set

such that, for a ud-vector ~u, we put

ξG(α~u) = ωGr(α~u, G).

On morphisms ξG acts by composition. Since colimits in ωGr are computed pointwise,
ξG sends pointwise colimits in sωGr to limits in Set. In particular ξG sends the diagrams
(22) and (23) in sG to the limiting diagrams in Set.

For n ∈ ω, we have a bijection

ϕn : ξG(αn) −→ Gn

such that ϕn(f) = f(2n), for f ∈ ξG(αn). Moreover, it is easy to see that the diagram
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ξG(αl) Gl
-

ϕl

ξG(αn) Gn
-ϕn

?

ξG(t)
?

ξG(b)
?

dG
(l)

?

cG(l)

commutes serially, i.e. ξG ’sends’ αn toGn, t to dG, and b to cG. It follows, that for any ud-
vector ~u, the colimit α~u with the coprojections κj : αu2i −→ α~u is sent by ξG toG~u with the
projections πj : G~u −→ Gu2i . We denote by ϕ~u : ξG(α~u) −→ G~u the induced morphisms
commuting with the projections. Thus we have ϕ~u(f : α~u → G) = 〈f ◦ κi(2u2i)〉i∈lh(~u)

.

Then, for any pair of vectors ~u, ~v ∈ UDn0,n1,n2 , ξ
G sends the pushout α[~u,n1,~v] with the

coprojections κ0;~u, κ1;~v to the pullback G[~u,n1,~v] with the projections π0;~u, π1;~v.
For l ∈ ω, and a ud-vector ~u the definition of dG

~u;l is dual to the definition of t~u;l, one
is using dG’s, projections, and pullbacks and the other one is using t’s, coprojections, and
pushouts. Therefore ξG is sending t~u;l to dG

~u;l, and for the similar reason ξG is sending b~u;l

to cG~u;l, i.e. the diagram

ξG(αtr(l)(~u)) Gtr(l)(~u)
-

Φtr(l)(~u)

ξG(α~u) G~u
-Φ~u

?
ξG(ttr(l)(~u))

?
ξG(btr(l)(~u))

?

dG
~u;l

?

cG~u;l

(24)

commutes serially.
Since, for n ∈ ω,

[[G]]n =
∐

~u∈UDn

ξG(α~u) (25)

we have a bijection
Φn =

∐
~u∈UDn

ϕ~u : [[G]]n −→ [G]n.

It remain to show that Φ commutes with the ω-category operations.
The preservations of the domains and the codomains follows from (25) and the dia-

gram 24. Preservation of identities is trivial. Finally, to show that the compositions are
preserved consider the following diagram
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[[G]]n [G]n-
Φn

[[G]]n0,n1,n2 [G]n0,n1,n2
-

Φn0 × Φn2

?

m

?

m

ξG(α[~u,n1,~v])

ζ~u;~v
@

@
@@R

A
A
A
A
A
A
A
A
AU

κ~u,~v
�

�
��	

κ[~u,n1,~v]

�
�

�
�

�
�

�
�

��

G[~u,n1,~v]
-

ϕ[~u,n1,~v]

where n = max(n0, n2), 〈~u,~v〉 ∈ UDn,n1,n2 , ζ~u,~v is the coprojection morphism, i.e. the
morphism of composing with coprojections κ0;~u and κ1;~v, and the unnamed morphism is
an inclusion. The commutation of the left triangle follows from the universal property of
the pushout, the right triangle commutes by definition of mG

n0,n1,n2
, and the outer square

commutes by definition of Φn. The upper square commutes, since for 〈f : α~u → G, g :
α~v → G〉 ∈ [[G]]n0,n1,n2 , we have

Φn0 × Φn2(f, g) = ϕ[~u,n1,~v]([f, g])

Hence the inner square commutes as well, i.e. Φ preserves compositions and it is an
isomorphism of ω-categories [[G]] and [G], as required.

In the following, we shall write [G], rather then [[G]].

4.7. Composable ω-graphs. In this section we make the connection between simple
ω-graphs and simple ω-categories. The latter are defined as free ω-categories with a unique
maximal cell, i.e. free on composable ω-graphs. We have

4.8. Proposition. An ω-graph is composable iff it is simple.

Proof. LetG be an ω-graph. A cell a : α~u −→ G in [G]n is a non-identity cell iff ht(~u) = n.
We have

Claim.
a is a maximal in [G] iff a is surjective.
Consider the surjective-injective factorization of a in ωGr

α~u G-a

G′

e
@

@
@@R

i
�

�
���

Then a is in the image of [i] : [G′] −→ [G]. If a is maximal, then, by definition, i an
iso and a is a surjection. On the other hand, if a is a surjection then so is i, and since it
is an injection it mast be an iso. Hence a is maximal. This proves the Claim.
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Thus if G is a simple ω-graph then there is a unique surjection a : α~u −→ G in ωGr,
for some ud-vector ~u, which is in fact an iso, as any morphism of simple ω-graphs is
one-to-one. Hence [G] is a simple ω-category, with the unique maximal cell a ∈ Ght(~u).

Now assume that [G] is a simple ω-category. We need to show that G is a simple ω-
graph. Let m ∈ [G]n be the unique maximal arrow in [G]. By the Claim m is surjective.
To finish the proof it is enough to show that m is injective, as well. Suppose not, let k
be the minimal such that mk : α~u

k −→ Gk is not one-to-one, and let x, y ∈ α~u
k , such that

mk(x) = mk(y). By minimality of k, we have d(x) = d(y) = x′ and c(x) = c(y) = y′. We
can divide the set of those cells o in α~u for which d(k−1)(o) = x′ and c(k−1)(o) = x′ into
three classes which we can picture schematically as follows

-

BLUE
-x

RED· · · x′ y′ · · ·
-y

GREEN
-

where the BLUE class contains those cells o in α~u for which c(k)(o) > x, the RED class
contains those cells o for which x ≥ d(k)(o) and c(k)(o) ≥ y, and the GREEN class
contains those cells o for which y > d(k)(o). Clearly x and y are in the RED class. We
shall construct another simple ω-graph H by dubbling the RED class in α~u. The relevant
part of the ω-graph H we can draw schematically as follows

-

BLUE
-x

RED

· · ·x′ y′ · · ·-y = x̄

PINK
-ȳ

GREEN
-

where the PINK class is the second copy of the RED class. A cell in the PINK class
corresponding to a cell in the RED class we distinguish by putting a bar over it, i.e. z̄ is
the PINK version of the RED cell z. The cell y is identified with x̄. The domains and
codomains in H remains as they were in α~u except that for those cells o in the GREEN
class for which we had d(k)(o) = y now we put d(k)(o) = ȳ and for the cell ō in the PINK
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class we put for domains

d(l)(ō) =

{
ō′ if l > k and d(l)(o) = o′

o′ if l ≤ k and d(l)(o) = o′

and similarly for codomains

c(l)(ō) =

{
ō′ if l > k and c(l)(o) = o′

o′ if l ≤ k and c(l)(o) = o′

We have a ω-graph morphism

m′ : H −→ G

by m′(o) = m(o) for o which are not in PINK and m′(ō) = m(o) for o in RED class.
Since m(x) = m(y) the morphism m′ is well defined. By Proposition 4.5, we can assume
that H = α~v for some ud-vector ~v. Since H in not equal to α~u, m 6= m′. But m′ is
surjective (since m was), so by the Claim, it is a maximal cell in [G] as well, i.e. G is not
composable contrary to the supposition.

4.9. An internal disk D in S. We introduce below some notation for simple ω-
categories and prove some basic facts about them.

For any ud-vector ~s, δ~s is, by definition, the free ω-category on α~s. However, for
some simple ω-categories we need a more precise description. Below, we give a specific
presentation for the simple categories δs and δs+1,s,s+1, for s ∈ ω.

It is maybe much simpler to look at the picture of δ4 given below to understand what
δs is, however before giving the picture we put the general definition of δs.

The n-cells of δs are

δs
n =

{
2n+ 2 if n < s
2s+ 1 if n ≥ s

and the domain, codomain, and identity functions

dn, cn : δs
n+1 −→ δs

n ιn+1 : δs
n −→ δs

n+1

are, for n < s− 1

dn(x) =

{
x if x ≤ n
x− 2 if x > n

cn(x) =

{
x if x < n
x− 2 if x ≥ n

ιn+1(x) =

{
x if x ≤ n
x+ 2 if x > n

for n = s− 1

ds−1(x) =

{
x if x ≤ s
x− 1 if x > s
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cs−1(x) =

{
x if x < s
x− 1 if x ≥ s

ιs(x) =

{
x if x < s
x+ 1 if x ≥ s

and for n ≥ s
dn = cn = ιn = id

We don’t give an explicit formula for compositions mn0,n1,n2 since any compositions are
compositions with identities.

The first six levels of δ4 can be pictured as follows:

1 0
@@ ��@@ ��

3 2 1 0
@@ @@ �� ��@@ ��

5 4 3 2 1 0
@@ @@ @@ �� �� ��@@ ��

7 6 5 4 3 2 1 0
AA AA AA AA �� �� �� ��AA ��

8 7 6 5 4 3 2 1 0

8 7 6 5 4 3 2 1 0

For s ∈ ω+, the n-cells of δs,s−1,s are

δs,s−1,s
n =


2n+ 2 if n < s− 1
2s+ 1 if n = s− 1
2s+ 4 if n ≥ s

and the definitions of domain, codomain, identity and compositions in δs,s−1,s are left for
the reader. For example δ4,3,4 can be pictured as follows (no-identity arrows are marked
bold):

1 0
@@ ��@@ ��

3 2 1 0
@@ @@ �� ��@@ ��

5 4 3 2 1 0
QQ QQ QQ �� �� ��Q

QAA AA�
�

�� ��
8 7 6 5 4 3 2 1 0

QQ QQ QQ QQ QQ �� �� �� �� ���� �� ��AA QQ

11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0



73

For s < s′, and ud-vector ~s and i ∈ lh(~s) the ω-functors

b, t : δs −→ δs′ b~s;l, t~s;l : δtr(l)(~s) −→ δ~s

κi : δs2i −→ δ~s

and for l ∈ ω and ud-vectors ~u and ~v such that tr(l)(~u) = tr(l)(~v) = ~w the ω-functors and

κ0;~u : δ~u −→ δ[~u,l,~v] κ1;~v : δ~v −→ δ[~u,l,~v]

are defined to be the images of the ω-graph morphisms with the same name in sωGr under
the free ω-category functor [−]. Thus, as an immediate corollary from Propositions 4.3
and 4.4 we obtain

4.10. Corollary.

1. For any ud-vector ~s, the diagram

δs0 δs2

δs1

t
@

@@I b
�

���

δs2k−2 δs2k

δs2k−1

t
@

@@I b
�

���. . .

δ~s

κ2

�
��� κ2k−2

@
@@I κ2k

PPPPPPPPi

κ0

��������1

(26)

is a colimiting cone in S.

2. For l ∈ ω and ud-vectors ~u and ~v such that tr(l)(~u) = tr(l)(~v) = ~w the diagram

δ~u δ ~w�
t~u;l

δ[~u,l,~v] δ~v� κ1;~v

6

κ0;~u

6

b~v;l (27)

is a pushout in S.

Let G be a simple ω-graph and s ∈ ω. We shall introduce some notation for the
morphisms

[G] −→ δs and [G] −→ δs+1,s,s+1

There is a unique ω-functor [G] −→ δ0, which we denote by ↓. For s ∈ ω, e, e′ ∈ Gs such
that, e� e′ we define an ω-functor

e↓e′ : [G] −→ δs+1
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so that its composition with the ω-graph morphisms ηG : G −→ [G], is given for n ≥ 0
and x ∈ Gn by

(e↓e′ ◦ ηG)n(x) =


s+ 1 if n > s and d(s)(e) = x
l if n ≥ l and c(l)(e

′) ≥ d(l)(x)
δs+1
n − l − 1 if n ≥ l and c(l)(x) ≥ d(l)(e)

The ω-functor e↓e′ sends e and e′ to the only two non-identity s-cells and the remaining
cells in [G] to the only cell in δs+1 with the suitable domain and codomain. It is the only
ω-functor from [G] to δs+1 distinguishing e and e′. If x ∈ Gn then we can define

l = max{l′ : l′ ≤ s, n and d(l′)(e) ⊥ d(l′)(x)}

Then, either
l = s and d(l)(x) = e and c(l)(x) = e′

or
c(l)(e

′) ≥ d(l)(x) and d(l′)(e
′) = d(l′)(x) forl′ < l

or
c(l)(x) ≥ d(l)(e) and c(l′)(e) = c(l′)(x) forl′ < l

Thus the formula for e↓e′◦ηG defines the only graph morphism such that e↓e′◦ηG(e) = s+1
and e↓e′ ◦ ηG(e′) = s. We subsume the properties of e↓e′ in the following lemma.

4.11. Lemma. Let s ∈ ω and G be a simple ω-graph.

1. Let e, e′ ∈ Gs, such that e� e′. Then e↓e′ : [G] −→ δs+1 is a well defined ω-functor
and it is the unique ω-functor from [G] to δs+1 such that

(e↓e′)s(e) = s+ 1 (e↓e′)s(e
′) = s

2. The ω-functor f : [G] −→ δs+1 is onto iff there is e ∈ Gs+1 such that f = (d(e)↓c(e)).

Proof. For 1. we argued before the statement of the lemma.
The ω-functor f : [G] −→ δs+1 is onto iff there is an s + 1-cell e ∈ Gs+1 such that

fs+1(e) = s+ 1. But then f = (d(e)↓c(e)). Thus 2. holds as well.

If e is minimal in Gs(d(e), c(e)) then, we define

e↓ = b ◦ (d(e)↓c(e)) : [G] −→ δs+1

and if e is maximal in Gs(d(e), c(e)) then, we define

↓e = t ◦ (d(e)↓c(e)) : [G] −→ δs+1

Since in the morphism (e↓e′) we have e � e′, both e and e′ determine the morphism
(e↓e′) uniquely. Hence we can write e↓ = e↓e′ = ↓e′, for short. Note that in this way,
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for any s-cell e the morphisms ↓e and e↓ are defined, no matter e has successor and
predecessor or not.

Using this notation we can define the some ω-functors. Let s ∈ ω. We have

ps : δs+1 −→ δs

such that ps = (s↓s− 1), i.e. ps ’glue together the only non-identity s-cells s + 1 and s.
Moreover, we define

ρ0;s+1,ρ1;s+1 : δs+1,s,s+1 −→ δs+1e

such that ρ0;s+1 = (s+2↓s+1) and ρ1;s+1 = (s+1↓s) with s+2, s+1, s ∈ δs+1,s,s+1
s , and

ρs+1 : δs+1 −→ δs+1,s,s+1

such that ρs+1
s+1(s+ 1) = s+ 3, where s+ 3 ∈ δs+1,s,s+1

s+1 is the maximal cell in δs+1,s,s+1.
We shall prove that any s ∈ ω, the diagram

-ρ0

δs+1,s,s+1 δs+1

-
ρ1

� b

δs-p

�
t

(28)

is an internal bundle of intervals in S. To this end, we introduce below and in the following
lemma more notation and state some properties of the ω-functors that we have defined
so far.

For ω-functors z0, z1 : [G] −→ δs+1, we write z0 ≤ z1 iff there is an ω-functors f :
[G] −→ δs+1,s,s+1 such that ρi ◦ f = z − i, for i = 0, 1.

4.12. Lemma. Let s ∈ ω and [G] be a simple ω-category, e, e′ ∈ Gs. Then

1. We have
(↓e)s(e) = s (e↓)s(e) = s+ 1

Moreover, if e is maximal (minimal) in G(d(e), c(e)) then the equality ↓es(e) = s
(e↓s(e) = s+ 1) determines the ω-functor ↓e (e↓) uniquely.

2. If s = 0 then
p ◦ (↓e) = p ◦ (e↓) = ↓;

3. If s > 0 then
p ◦ (↓e) = p ◦ (e↓) = (d(e)↓c(e));

4. If e� e′ then

b ◦ (e↓e′) = (min(Gs(e, e
′)↓) t ◦ (e↓e′) = (↓max(Gs(e, e

′));

5. ρi ◦ ρ = id for i = 0, 1;
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6. If e ≥ e′ then there is a unique morphism

↓e..e′↓ : [G] −→ δs+1,s,s+1

such that for e′′ ∈ Gs

↓e..e′↓(e′′) = s+ 1 iff e ≥ e′′ ≥ e′

If e = e′ we write ↓e↓ for ↓e..e↓;

7. If e ≥ e′ then
ρ0 ◦ ↓e..e′↓ = ↓e ρ1 ◦ ↓e..e′↓ = e′↓

8. if z0, z1 : [G] −→ δs+1 are two different ω-functors and z0 ≤ z1 then there are
e0, e1 ∈ Gs such that e0 ≥ e1 and z0 = ↓e0 and z1 = e1↓;

9. Let z : [G] −→ δs+1 be an ω-functor. If zs(e) = s (zs(e) = s + 1) then there is
e0 ∈ Gs (e1 ∈ Gs) such that e0 ≥ e (e ≥ e1) and z = ↓e0 (z = e1↓);

Proof. Exercise.

Now we can prove

4.13. Lemma. For any s ∈ ω the diagram (28) is a bundle of intervals S.

Proof. We shall verify the conditions 1. - 4. in Appendix 6.1.
To see 1. we calculate

ps ◦ bs(s) = ps(s+ 1) = s = ps(s) = ps ◦ ts(s)

Hence we have p ◦ b = 1δs = p ◦ t.
2. is easy .
Ad 3. let z0, z1, z0 : [G] −→ δs+1 be ω-functors with G simple.
Then (a) holds since, by Lemma 4.12 ρi ◦ ρ ◦ z0 = z0, for i = 0, 1.
To show (b), we suppose contrary, that z0 ≤ z1 and z1 ≤ z0 but z0 6= z1. Then by

Lemma 4.12 there are cells e0, e1, e
′
0, e

′
1 ∈ Gs such that e0 ≥ e1, e

′
0 ≥ e′1 and z0 = ↓e0 = e′0↓,

z1 = e1↓ = ↓e′0. Thus we get
e′0 � e0 ≥ e1 � e′1 ≥ e′0

which is a contradiction.
Ad (c). Suppose that z0 ≤ z1 and z1 ≤ z2. We shall show that z0 ≤ z2. We assume

that z0 6= z1, z1 6= z2 since otherwise the thesis is obvious. Thus, by Lemma 4.12, there
are e0, e1, e

′
1, e2, such that e0 ≥ e1, e

′
1 ≥ e2 and

ρ0 ◦ ↓e0..e1↓ = z0 ρ1 ◦ ↓e0..e1↓ = z1

ρ0 ◦ ↓e′1..e2↓ = z1 ρ1 ◦ ↓e′1..e2↓ = z2
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Hence, in particular e1 � e′1. But then e0 ≥ e2 and

ρ0 ◦ ↓e0..e2↓ = z0 ρ1 ◦ ↓e0..e2↓ = z2

i.e. z0 ≤ z2, as required.
To show (d), we assume that z0 6= z1. If p ◦ z0 = p ◦ z1 then there is e ∈ Gs such that

either z0(e) = s and z1(e) = s + 1 or z0(e) = s + 1 and z1(e) = s. We suppose that the
former condition holds. The latter can be treated similarly. There are s-cells e0, e1 ∈ Gs

such that e0 ≥ e ≥ e1 and z − 0 = ↓e0 and z1 = e1↓. So, we have

ρ0 ◦ ↓e0..e1↓ = z0 ρ1 ◦ ↓e0..e1↓ = z1

i.e. z0 ≤ z1, as required. On the other hand, if z0 ≤ z1 then, there are e0, e1 ∈ Gs, such
that e0 ≥ e1, z0 = ↓e0 and z1 = e1↓. But then

p ◦ z0 = p0↓e0 = d(e0)↓c(e0) = d(e1)↓c(e1) = p ◦ e1 = p ◦ z1

as required.
Ad 4. Note that for morphisms κ0,κ1 : δs+1 −→ δs+1,s,s+1 we have κ0 = ↓s↓, κ1 =

↓s+ 1↓. Therefore, we have

ρ0 ◦ κ0 = s↓ = b ◦ p ρ1 ◦ κ0 = ↓s = 1

and
ρ0 ◦ κ1 = s+ 1↓ = t ◦ p ρ1 ◦ κ0 = s+ 1↓ = 1

i.e. b ◦ p ≤ 1 ≤ t ◦ p, as required.

Thus for any m ∈ ω and simple ω-category [G] there is a partial order ≤ on the set
S([G], δs+1). Moreover, since (28) is a bundle of intervals each element has at most one
immediate successor. We denote by � the immediate successor relation induced by this
partial order. We have

4.14. Lemma. For any s ∈ ω and ω-functors z0, z1 : [G] −→ δs+1 we have z0 � z1 iff
there is e ∈ Gs such that z0 = ↓e and z1 = e↓.
Proof. We can assume that z0 6= z1. By Lemma 4.12, z0 < z1 iff there are e0, e1 ∈ Gs

such that e0 ≥ e1, z0 = ↓e0 = ρ0 ◦ ↓e0..e1↓, and z1 = e1↓ = ρ1 ◦ ↓e0..e1↓. Thus z0 � z1 iff
e0 = e1, as required.

4.15. Lemma. Let s > 0 and [G] be a simple ω-category. Then any ω-functor f : [G] −→
δs is either onto and there are e, e′ ∈ Gs−1 such that, e � e′ and f = (e↓e′) or f admits
one of the following factorizations

[G] δs-f

δ0

↓@
@R

b
�

��

[G] δs-f

δ0

↓@
@R

t
�

�� (29)
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or there are 0 < s′ < s and e, e′ ∈ Gs′−1 such that, e�e′ and f admits one of the following
factorizations

[G] δs-f

δs′

e↓e′@
@R

b
�

��

[G] δs-f

δs′

e↓e′@
@R

t
�

�� (30)

Proof. Let G be a simple ω-graph and f : [G] −→ δs be an ω-graph morphism. If f is
onto then the thesis follows from Lemma 4.11. Suppose that f is not onto and let s′ be
the the maximal number so that the ω-functor

f ′ : [G]
f−→ δs p−→ δs′

is onto. If s′ = 0 then f ′ = ↓ and if s > 0 then, by Lemma 4.11 there is e ∈ G′
s

such that f ′ = d(e)↓c(e). Thus in either case there is e ∈ Gs′ such that f ′s′(e) = s′. Since
p(s′) = {s′+1, s′}, we have that either fs′(e) = s′+1 or fs′(e) = s′. Then from definitions
of p, b, and t follows that in the former case f = t ◦ d(e)↓c(e) and in the latter case
f = b ◦ d(e)↓c(e), as required.

Thus, we have defined all the objects and morphisms of the following diagram D

� bs

δs δs−1-ps−1

�
ts

� bs+1

δs+1 δs-ps

�
ts+1

� b1

δ1 δ0 ∼= 1-p1

�
t1

δs+1,s,s+1

?

ρ0;s+1

?

ρ1;s+1

δs,s−1,s

?

ρ0;s

?

ρ1;s

δs−1,s−2,s−1

?

ρ0;s−1

?

ρ1;s−1

δ1,0,1

?

ρ0;1

?

ρ1;1

. . .. . .

in S.
Now, we are ready to define a contravariant functor from S to D. We have

4.16. Proposition. The diagram D defined above is an internal disk in S.

Proof. We need to verify that the elementary axioms of an internal disk given in Appendix
6.1 are satisfied. The first for axioms holds by Lemma 4.13. Thus, it remains to verify
the ’disk condition’. As we remarked earlier δ0 is a terminal object in S. From the proof
of Theorem 4.6 follows that, for s ∈ ω, both bs and ts equalizes bs+1 and ts+1. Moreover,
if an ω-functor f : [G] −→ δs+1, equalizes bs+1 and ts+1 then f is not onto. Therefore by
Lemma 4.15, there is f ′ : [G] −→ δs+1, such that either f = b ◦ f ′ or f = t ◦ f ′, i.e. ’disk
condition’ holds.

From the proposition we get

4.17. Corollary. The internal disk D in S induces a contravariant hom-functor

S(−,D) : Sop −→ D.
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Proof. Proposition 4.16, is essentially saying that hom functors send the diagram D in
S into a disk in Set. To see that it is finite, it is enough to notice that, there is finitely
many morphism from any ω-category S into δs, for s ∈ ω. Moreover, by Lemma 4.15, for
any S the numbers of such morphisms is bound by 2 times the cardinality of the simple
ω-graph G, such that [G] ' S.

5. The duality

5.1. Stone adjunction. In this section we show that the the contravariant hom-
functors

-
D(−,C)

D S�
S(−,D)

give rise to a Stone adjunction based on a schizophrenic object. Then, in the next section
we shall show that it is in fact a duality.

First we make some easy observation, showing the connections between γ’s and δ’s,
and between internal operations and and external morphisms on those. This explains, in
what sense, the collections of δs, for s ∈ ω and the collection of γn, for n ∈ ω, are equal.
In fact, it is the essence of being the schizophrenic object for the adjunctions between D
and S.

5.2. Lemma.

1. For any n, s ∈ ω we have
γs

n = δs
n;

2. for any s ∈ ω and n ∈ ω+, the diagrams in Set

-
πs

0,n

γs
n,n−1,n γs

n
-

ms
n,n−1,n

-
πs

1,n

-
ds

n−1

γs
n−1

�
ιs
n

-
cs

n−1

and

-
πs

0,n

δs
n ×δs

n−1
δs
n δs

n
-

ms
n,n−1,n

-
πs

1,n

-
ds

n−1

δs
n−1

�
ιsn

-
csn−1

are equal;
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3. for any n ∈ ω and s ∈ ω+, the diagrams in Set

-
ρ0;s

n

δs,s−1,s
n δs

n-
ρ1;s

n

�
bs

n

δs−1
n

-
ps−1

n

�
ts
n

and

-
ρ0;s

n

≤s
n γs

n
-

ρ1;s
n

�
bsn

γs−1
n

-
ps−1

n

�
tsn

are equal, where ≤s
n is the order on γs

n in the disk γn.

This observation allow to define the following morphisms.
Let s ∈ ω, D be a disk and x ∈ Ds. Then we can define an evaluation ω-functor

evx : D(D,C) −→ δs

such that, for n ∈ ω,
evx,n : D(D, γn) −→ δs

n

is a function
f : D → γn 7−→ f s(x) ∈ γs

n = δs
n

Let n ∈ ω, S be a simple ω-category and e ∈ Sn. Then we can similarly define an
evaluation disk map

eve : S(S,D) −→ γn

such that, for m ∈ ω,
evs

e : S(S, δs) −→ γs
n

is a function
g : S → δs 7−→ gn(e) ∈ δs

n = γs
n

Having these evaluation maps we can define the following two natural transformations:

η : 1D −→ S(D(−,C),D)

such that, for a disk D,

ηD : D −→ S(D(D,C),D)

is a disk map such that, for s ∈ ω and x ∈ Dm,
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ηs
D(x) = evx

ε : 1S −→ D(S(−,D),C)

such that, for a simple ω-category S,

εS : S −→ D(S(S,D),C)

is an ω-functor such that, for n ∈ ω and e ∈ Sn,

εS,n(e) = eve

We have

5.3. Lemma. η and ε are well defined natural transformations.

Proof. We need to verify that

1. evaluation disk maps are indeed disk maps;

2. evaluation ω-functors are indeed ω-functors;

3. for any disk D, ηD is disk map;

4. for any simple ω-category S, εS is ω-functor;

5. η is a natural transformation;

6. ε is a natural transformation.

In the following, we shall use Lemma 5.2 many times.
Ad 1. Let D be a disk, s ∈ ω, x ∈ Ds. We shall show that

evx : D(D,C) −→ δs

is an ω-functor. Let n ∈ ω, f : D −→ γn. We have

evx,n−1(d ◦ f) = ds
n−1 ◦ f s(x) = ds

n−1(f
s(x)) = ds

n−1(evx,n(f))

i.e. evx preserves domains. Preservation of codomains can be shown similarly. Moreover,
we have

evx,n+1(ι ◦ f) = ιs
n+1 ◦ ds(x) = ιsn+1(f

s(x)) = ιsn+1(evx,n(f))

i.e. evx preserves identities. To show that evx preserves compositions, let f, g : D −→ γn

be disk maps, such that c ◦ f = d ◦ g. Then, we have

evx,n(mn,n−1,n ◦ 〈f, g〉) = ms
n,n−1,n(f s(x), gs(x)) =
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= ms
n,n−1,n(f s(x), gs(x)) = ms

n,n−1,n(evx,n(f), evx,n(g))

i.e. evx preserves compositions as well and it is an ω-functor.
Ad 2. Let S be a simple ω-category, n ∈ ω, and e ∈ Sn. We shall show that

eve : S(S,D) −→ γn

is a disk map. Let s ∈ ω+, ϕ : S −→ δs be an ω-functor. Then

evs−1
e (ps−1 ◦ ϕ) = (ps−1 ◦ ϕ)n(e) = ps−1

n (ϕn(e)) = ps−1
n (evs

e(ϕ))

i.e. eve preserves projections. Moreover, for s ∈ ω, and ϕ as above, we have

evs+1
e (bs+1 ◦ ϕ) = (bs+1 ◦ ϕ)n(e) = bs+1

n (ϕn(e)) = bs+1
n (evs

e(ϕ))

i.e. eve preserves left end-points. For right end-points the calculations are similar. To
see that eve preserves the order let s ∈ ω+ and ϕ0, ϕ1 : S −→ δs be ω-functors, such that
ϕ0 ≤ ϕ1, i.e. there is ϕ : S −→ δs,s−1,s and ϕi = ρi ◦ ϕ, for i = 0, 1. Then, we have

eve(ϕ
0) = ϕ0

n(e) = ρ0
n ◦ ϕn(e) = ρ0

n ◦ ϕn(e)

and

eve(ϕ
1) = ϕ1

n(e) = ρ1
n ◦ ϕn(e) = ρ1

n ◦ ϕn(e)

i.e. eve(ϕ
0) ≤ eve(ϕ

1) in γs
n and eve preserves the order, as well.

Ad 3. Let D be a disk. We shall show that

ηD : D −→ S(D(D,C),D)

is a disk map. For s ∈ ω+

ηs
D : D −→ S(D(D,C), δs)

Then, for and x ∈ Ds, n ∈ ω and f : D −→ γn we have

ηs−1
D (p(x))n(f) = evp(x),n(f) = f s−1(p(x)) = ps−1

n (f s(x)) =

= ps−1
n (evx,n(f)) = ps−1

n ◦ evx,n(f) = ps−1
n ◦ ηs

D(x)n(f)

i.e. ηs−1
D (p(x)) = ps−1

n ◦ ηs
D(x) and ηD preserves the projections. To see that ηD preserves

the endpoints, we take s ∈ ω and n and f as above. We have

ηs+1
D (b(x))n(f) = evb(x),n(f) = f s+1(b(x)) = bs+1

n (f s(x)) =



83

= bs+1
n (evx,n(f)) = bs+1

n ◦ evx,n(f) = ps+1
n ◦ ηs

D(x)n(f)

i.e. ηs+1
D (b(x)) = bs+1

n ◦ηs
D(x) and ηD preserves the left endpoints. For the right endpoints

the argument is similar. Finally, let x0, x1 ∈ Ds, x0 ≤ x1, and f : D −→ γn. Then

ηs
D(x0)n(f) = f s(x0) = f s(x1) = ηs

D(x1)n(f)

i.e. ηs
D(x0) ≤ ηs

D(x1), and ηD preserves the orders, so it is a disk map.
Ad 4. Let S be a simple ω-category. We shall show that

εS : S −→ D(S(S,D),C)

is an ω-functor. For n ∈ ω,

εS,n : Sn −→ D(S(S,D), γn)

Fix s ∈ ω+, e ∈ Sn, and ϕ : S −→ δs. Then, we have

εS,n−1(d(e))
s(ϕ) = ϕn−1(d(e)) = ds

n−1(ϕs(e)) =

= ds
n−1(ϕn(e)) = ds

n−1(εS,n−1(e)
s)(ϕ)) = (dn−1(εS,n−1(e))

s(ϕ))

i.e. εS preserves the domains. The argument for preservation of codomains is similar. To
show that εS preserves the identities we take n ∈ ω and s, e, ϕ as above. We have

εS,n+1(ι(e))
s(ϕ) = ϕn+1(ι(e)) = ιsn+1(ϕn(e)) =

= ιs
n+1(εS,n(e))s(ϕ)) = (ιs

n+1 ◦ εS,n(e))s(ϕ))

i.e. εS,n+1 ◦ ι = ιs
n+1 ◦ εS,n and εS preserves identities. For preservation of compositions,

let e, e′ ∈ Sn, such that c(e) = d(e′). Then

εS,n(m(e, e′))s(ϕ) = ϕn(m(e, e′)) = ms
n,n−1,n(ϕn(e), ϕn(e′)) =

= ms
n,n−1,n(ϕn(e), ϕn(e′)) = ms

n,n−1,n(εS,n(e)s(ϕ), εS,n(e′)s(ϕ)) =

= (ms
n,n−1,n ◦ 〈εS,n(e)s(ϕ), εS,n(e′)〉)s(ϕ)

i.e. εS,n(m(e, e′)) = ms
n,n−1,n ◦ 〈εS,n(e)s(ϕ), εS,n(e′)〉 and the compositions are preserved

as well. Hence εS is an ω-functor indeed, as required.
Ad 5. Let f : D −→ E be a disk map. We need to show that the square
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E S(D(E,C),D)-
ηE

S S(D(D,C),D)-ηD

?

f

?

S(D(f,C),D)

commutes. Let n, s ∈ ω, x ∈ Ds and g : E −→ γn a disk map. Then, we have

(S(D(f,C),D) ◦ ηD)(x)n(g) = (S(D(f,C),D)(ηs
D(x)))n(g) =

(ηs
D(x) ◦ D(f,C))n(g) = evx, n ◦ D(f,C)n(g) = evx,n(g ◦ f) = (g ◦ f)s(x) =

= (gs(f s(x)) = evf(x),n(g) = ηE(f(x))n(g) = ((ηE ◦ f)(x))n(g)

i.e. the above square commutes.
Ad 6. Let ϕ : E −→ T be an ω-functor. We need to show that the square

T D(S(T,D),C)-
εT

S D(S(S,D),C)-εS

?

ϕ

?

D(S(ϕ,D),C)

commutes. Let n, s ∈ ω, e ∈ Sn and ψ : T −→ δs an ω-functor. Then, we have

(D(S(ϕ,D),C) ◦ εS)n(e))s(ψ) = (D(S(ϕ,D),C)n(εS,n(e))s(ψ) =

= evs
e ◦ S(ϕ,D)s(ψ) = evs

e(ψ ◦ ϕ) = ψn ◦ ϕn(e) =

= evs
ϕn(e)(ψ) = εT,n(ϕn(e))s(ψ) = (εT ◦ ϕ)n(e)s(ψ)

i.e. the above square commutes.
This ends the proof of the Lemma.

5.4. Proposition. The natural transformations η and ε are the unit and counit of the
Stone adjunction

-
D(−,C)

D S�
S(−,D)
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Proof. We need to verify that the following triangles

D(−,C) D(−,C)-
1D(−,C)

D(S(D(−,D),C),D)

εD(−,C)

�
�

�
�

���

D(η,C)

@
@

@
@

@@R

(31)

and

S(−,D) S(−,D)-
1S(−,D)

S(D(S(−,D),C),D)

ηS(−,D)

�
�

�
�

���

S(ε,D)

@
@

@
@

@@R

(32)

commute.
For commutation of (31), let D be a disk, n, s ∈ ω, f : D −→ γn a disk map, and

x ∈ Ds. Then

((D(ηD,C) ◦ εD(D,C))n(f))s(x) =

= (D(ηD,C)n(evf ))
s(x) = (evf ◦ ηD)s(x) =

= evs
f (evx) = (evx)n(f) = f s(x)

i.e. the triangle (31) commutes.
For commutation of (32), let S be a simple ω-category, n, s ∈ ω, ϕ : S −→ δs an

ω-functor, and e ∈ Sn. Then

((S(εS,D) ◦ ηS(S,D))
s(ϕ))n(e) =

= (S(εS,D)s(evϕ))n(e) = evϕ,n ◦ εD,n(e) =

evϕ,n(eve) = (eve)
s(ϕ) = ϕ(e)

i.e. the triangle (32) commutes.
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5.5. The duality theorem. This section is devoted to the proof of the main theorem.
We show that the Stone adjunction that we established in the previous section is an
equivalence of categories. At the end, we list some specific corresponding objects and
morphisms in both categories.

5.6. Lemma. Let s ∈ ω, D be a disk and z ∈ Ds. Then the ω functors evz and ; z↓z;,
from D(D,C) to δs, are equal.

Proof. Fix s ∈ ω and z ∈ Ds. Then, we have disk morphisms ; z, z; : D −→ γs−1, such
that ; z � z; and an ω-functors

; z↓z; , evz : D(D,C) −→ δs

We have
; zs(z) = s z;s(z) = s+ 1

Then

; z↓z;s−1(; z) = s+ 1 = ; zs(z) = (evz)s−1(; z)

and

; z↓z;s−1(z;) = s = z;s(z) = (evz)s−1(z;)

Hence, by Lemma4.11 we get that ; z↓z; = evz, as required.

We have

5.7. Proposition. For every disk D, the disk map

ηD : D −→ S(D(D,C),D)

is an isomorphism.

Proof. Let D be a disk. First we shall show that ηD is mono. Fix n ∈ ω and x, y ∈ Dn

such that x 6= y. Then l = µx,y < n and the nodes p(l+1)(x) and p(l+1)(y) are comparable
but different. Suppose p(l+1)(x) < p(l+1)(y). Thus, with the disk morphism x; y : D −→ γl

in D(D, γl), we have

ηn
D(x)l(x; y) = evx,l(x; y) = x; yn(x) = l 6= l + 1 =

= x; yn(y) = evy,l(x; y) = ηn
D(y)l(x; y)

so, ηn
D(x) 6= ηn

D(y), i.e. ηD mono, as required.
It remains to show that ηD is epi. Let s ∈ ω, and f : D(D,C) −→ δs be an ω-functor.
If s = 0 then f = ↓ and η0

D(0) = ↓ = f .
If s > 0 and there are e, e′ ∈ Cut(D)s−1 such that e� e′ and f = e↓e′. By, Corollary

3.29, there is z ∈ Dm such that e = ; z and e′ = z;. Thus e↓e′ = ; z↓z;. So, by Lemma
5.6,
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ηs
D(z) = evz = ; z↓z; = e↓e′ = f

Now, if f : D(D,C) −→ δs is an arbitrary ω-functor, by Lemma 4.15, it can be factorized
as b or t followed by an ω-functor considered above, i.e. in the image of ηD. But ηD is
a disk morphism so it preserves endpoints i.e. operations b and t. Hence, any morphism
f : D(D,C) −→ δs is in the image of ηD, so ηD is epi, as required.

5.8. Lemma. Let n ∈ ω, G a simple ω-graph, and e ∈ Gn.

1. Then the disk map
eve : S([G],D) −→ γn

is outer;

2. the disk maps eve and ↓e; e↓ are equal.

Proof. Ad 1. This is an immediate corollary from Lemmas 3.22.4(c) and 4.11.
Ad 2. First note that by 1. and Lemma 3.22 both morphisms eve and ↓e; e↓ are outer.

Moreover, we have

(↓e; e↓)n+1(↓e) = n = (↓e)n(e) = (eve)
n+1(↓e)

and
(↓e; e↓)n+1(e↓) = n+ 1 = (e↓)n(e) = (eve)

n+1(e↓)

By, Proposition 3.18.3, ↓e; e↓ is the unique morphism with this property so eve = ↓e; e↓,
as required.

5.9. Proposition. For every simple ω-category S the ω-functor

εS : S −→ D(S(S,D),C)

is an equivalence of ω-categories.

Proof. By Proposition 4.8, we can assume that S = [G] for some simple ω-graph G. Thus
we will show that for any n ∈ ω the function

ε[G],n : [G]n −→ D(S([G],D), γn).

is a bijection.
First we shall show that ε[G] is mono. Let m ∈ ω, σ, σ′ ∈ [G]m and σ 6= σ′. Then,

there is s′ ≤ s and e ∈ Gs′ such that either e v σ and e 6v σ′ or e 6v σ and e v σ′. We can
assume that s′ is minimal such that e v σ and e 6v σ′. By minimality of s′, we have that
d(e), c(e) v σ′. Then, there is e′ ∈ Gs′ such that d(e) = d(e′) and c(e) = c(e′). Then,
either e > e′ or e′ > e. Since both cases are similar, we consider the case e > e′. We have
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(e↓)s(σ) =


s′ + 1 if there is e′′ ∈ Gs′+1

such that ds′(e′′) = e and e′ v σ
δs′+1
s − s′ − 1 otherwise

Thus (e↓)s(σ) > s′. By Lemma 4.2, if e′′ ∈ Gs′ , e
′′ v σ′ and e′′ ⊥ e then e > e′′. Therefore

(e↓)s(σ
′) = s′ and

(evσ)s′+1(e↓) = (e↓)s(σ) > s′ = (e↓)s(σ
′) = (evσ′)

s′+1(e↓)

i.e. (evσ) 6= (evσ′) and ε[G] is mono, as required.
Next, we show that ε[G] is onto. Let f : S([G],D) −→ γn be a disk map. In the

following diagram

γu2i
�
πi

x; y
�

�
�

��	
γ~u γu-

m~u

S(S,D) γn
-f

?

◦
f

6

ιn

the square is the canonical factorization of f . Thus f is obtained by the operation

of composition m~u and identity ιn from the compatible tuple
◦
f of D-cuts, πi◦

◦
f , for

i ∈ lh(~u). Since ε[G] is an ω-functor it preserves compositions and identities it is enough

to show that the tuple
◦
f is in the image of ε[G]. But ε[G] is mono so it both preserves and

reflects domains and codomains operations. Thus it is enough to show that for i ∈ lh(~u),

πi◦
◦
f : S([G],D) −→ γu2i

is in the image of ε[G].

Fix i ∈ lh(~u). Since both
◦
f and πi are outer so is the composition. Hence there are

ω-functors x, y : [G] −→ δu2i+1 such that x� y and x; y = πi◦
◦
f . By Lemma 4.14 there is

e ∈ Gu2i
such that x = ↓e and y = e↓. Thus, by Proposition 5.8.2, we have

πi◦
◦
f= ↓e; e↓ = eve = ε[G],u2i

(e)

i.e. πi◦
◦
f is in the image of ε[G], and hence ε[G] is epi, as required.

5.10. Theorem. The Stone adjunction

-
D(−,C)

D S�
S(−,D)

is an equivalence of categories.

Proof. The theorem follows from Propositions 5.4, 5.7, 5.9.
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In the table below we show how objects and some morphisms in S and D correspond
one another via the above duality. We need two notions concerning simple ω-categories.
We say, that an ω-fumctor g : S −→ T between simple ω-categories is an immersion iff
it sends indecomposable1 cells to indecomposable cells. Let ht(S) = u ≥ v = ht(T ). We
say that g is essential iff g(macS) = ι(u)(macT ).

The morphisms κi, κ0;~u, κ1;~v, b, t, b~u;l, t~u;l are typical immersions. The morphism p
is an essential epi. By %~u : δu −→ δ~u, where u = ht(~u), we denote the unique essential
epimorphism sending the maximal cell macδu = u ∈ δu

u to the maximal cell macδ~u of δ~u.
Thus, for n ∈ ω, %n+1,n,n+1 = ρn+1.

In the following, we denote by (−)∗ both dualising functors D(−,C) and S(−,D).
In the table k, l, n ∈ ω and ~u, ~v are ud-vectors, u = ht(~u), and if necessary tr(l)(~u) =

tr(l)(~u).

in D in S
γn δn

γ~u δ~u

πi : γ~u −→ γu2i
κi : δu2i −→ δ~u

π0;~u : γ[~u,l,~v] −→ γ~u κ0;~u : δ~u −→ δ[~u,l,~v]

π1;~v : γ[~u,l,~v] −→ γ~v κ1;~v : δ~v −→ δ[~u,l,~v]

d : γn −→ γk t : δk −→ δn

c : γn −→ γk b : δk −→ δn

d~u;l : γ~u −→ γtr(l)(~u) t~u;l : δtr(l)(~u) −→ δ~u

c~u;l : γ~u −→ γtr(l)(~u) b~u;l : δtr(l)(~u) −→ δ~u

ι : γk −→ γn p : δn −→ δk

mn+1,n,n+1 : γn+1,n,n+1 −→ γn+1 % : δn+1 −→ δn+1,n,n+1

m~u : γ~u −→ γu %~u : δu −→ δ~u

f : D → E is outer f ∗ : E∗ → D∗ is an immersion
f : D → E is inner f ∗ : E∗ → D∗ is essential

We shall make some comments about the above table. It is easy to see that

Cut(γn)k =


∅ if k > n
1γn if k = n
{dk ≥ ck} if 0 ≤ k < n

i.e. Cut(γn) is isomorphic to αn, by isomorphism sending 1γn to 2n. But the ω-categories
D(γn,C) and δn are free over the ω-graphs Cut(γn) and αn, respectively. Thus they are
isomorphic via the unique isomorphisms sending 1γn to n. Hence (γn)∗ ∼= δn.

The morphism t : αn −→ αn+1 is determined by the condition bn(2n) = 2n + 1 so
it corresponds via the above isomorphism of the ω-graphs to the morphism Cut(γn) −→
Cut(γn+1) sending 1γn to d : γn+1 −→ γn. Thus the square

1Recall that a cell a is indecomposable if it is not an identity of some other cell and if a = a′ ◦a′, then
either a′ of a′′ is an identity.
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D(γn+1,C) δn+1-∼=

D(γn,C) δn-
∼=

?

.. ◦ d

?

t

commute, i.e. d∗ ∼= t. Similarly we can prove that c∗ ∼= b. The object γ~u is a limit of
a diagram in which the morphism are of form c and d and δ~u is a colimit of the dual of
that diagram, see pages 43 and 73. Thus (γ~u)

∗ ∼= δ~u. Since the projections from the limit
correspond to coprojections into the colimit, we also have (πi)

∗ ∼= κi.
The morphism D(ι,C) : D(γn+1,C) −→ D(γn,C) sends both c, d : γn+1 −→ γn to

1γn = c ◦ ι = d ◦ ι. So the diagram

D(γn,C) δn-∼=

D(γn+1,C) δn+1-
∼=

?

D(ι,C)

?

p

commutes, i.e. ι∗ ∼= p.
The morphism m~u : γ~u −→ γu, is the maximal arrow in D(γ~u,C), so the square

D(γ~u,C) δ~u-∼=

D(γu,C) δu-
∼=

?

D(m~u,C)

?

%~u

commutes as both morphism D(m~u,C) and %~u sends the maximal arrow to the maximal
arrows. Thus (m~u)

∗ ∼= ρ~u.
Let D be a disk. Then, an n-cell a : D −→ γn in D∗ is indecomposable iff a is an

outer disk morphism. The maximal cell D∗ is the unique inner disk morphism
macD∗ : D −→ γht(D).

Let f : D −→ E be a disk morphism, and ht(D) = v ≤ u = ht(E). Recall that the
inner morphism from D to γu is unique. Moreover, if g ◦ f is an inner morphism so is f .
Consider the following diagram

γv γu-
ι(u)

D E-f

?

macD∗

?

macE∗ (33)

We have:
f : D → E is inner
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iff
the square (33) is commutes

iff
f ∗(macE∗) = ι(u)(macD∗)

iff
f ∗ : E∗ → D∗ is essential

Since outer morphisms do compose, f ∗ is an immersion whenever f is an outer mor-
phism.

Finally, assume that g : S −→ T is an immersion of simple ω-categories, n > 0, and
x, y : T −→ δn are two nodes of the disk T ∗, such that x ◦ g = y ◦ g is an inner node of
S∗. Then x ◦ g has a splitting z : δn −→ S, such that x ◦ g ◦ z = idδn = y ◦ g ◦ z, and
moreover zn(n) is an indecomposable cell. Hence

x ◦ g = d(zn(n))↓c(zn(n)) = y ◦ g.

Since f preserves indecomposable cells, we have

x = g(d(zn(n)))↓g(c(zn(n))) = y.

Thus g∗ is an outer morphism.

5.11. Closing remarks. In this final section, we shall show that the notion of a disk
plays a similar role for ω-categories to the role the notion of an interval plays for categories.
In picture

D
ω-categories

=
I

categories

The syntactic category for ω-categories
Since the theory of ω-categories is a finite limit theory it has an obvious syntactic

category, the opposite of the category of the finitely presented ω-categories. However,
there is a smaller category which is much easier to describe and contains all the necessary
syntactic data. We shall describe below what we mean by that.

Let Sω be the sketch for the notion of ω-category, which is the extension of the one
defined in Appendix 6.2 by objects O~u and cones stating that they are multipullbacks
of Oui

’s. Clearly, it is still true that, for any category C with finite limits, the category
of internal ω-categories in C, ωCat(C) is (equivalent to) the category of models of Sω in
C, ModC(Sω). Such an extension is natural in the sense that any ’reasonable’ morphism
definable in the theory of ω-categories has O~u as its domain, for some ud-vector ~u. For
example, On × Ok is not a ’reasonable’ type since any definable function from On × Ok

to Ol must be a projection followed by a definable function, i.e. there is no operation
involving two (or more) cells without a specification on what level the codomain of the
first cell match the domain of the second cell. O~u is a type of tuples of cells with a
prescribed matching condition.
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We can set a formal system to derive terms in contexts of form

~x : O~u ` ~t : O~v (34)

and to derive equations of terms in contexts of form

~x : O~u ` ~t = ~r : O~v (35)

Intuitively (34) means that ~x is a sequence of variable, the variable xi has type Ou2i
, the

variables xi and xi+1 match in the sense that c(u2i+1)(xi) = d(u2i+1)(xi+1). Moreover, ~t is
a sequence of matching terms ti of type Ov2i

(c(v2i+1)(ti) = d(v2i+1)(ti+1)) over Sω, i.e. it
is build from variables in ~x and the operations of domains, codomains, composition, and
identity. (35) means that the theory of ω-categories proves that the terms ~t and ~r are
equal.

Using this, we can define a syntactic category Tω with objects O~u for any ud-vector ~u
and whose morphism from O~u to O~v are terms in context (34) divided by equations (35).
The identity on O~u is

~x : O~u ` ~x : O~u

and the composition is defined by substitution in the obvious way.
Each term (34) corresponds to a morphism in S

‖~x ` ~t‖ : δ~v −→ δ~u (36)

The definition of ‖ − ‖ can be given along with term forming rules. If ~v = v0 then

‖~x ` t0‖ : δv0 −→ δ~u

sends the only non-identity v0-cell u0 in δv0
v0

to the value of the term t0 in δ~u, where the
variables in ~x are interpreted as the obvious cells generating δ~u. For vectors ~v of larger
length we can use the fact that δ~v is a colimit of δvi ’s.

Using the fact that all the ω-categories δ~u are free, we obtain

5.12. Proposition. For any pair of tuples of terms ~t, ~r, we have

~x : O~u ` ~t = ~r : O~v iff ‖~x ` ~t‖ = ‖~x ` ~r‖ 2

The above proposition allow us to define a functor

‖ − ‖ : Tω −→ Sop (37)

sending equivalence class of (34) to a morphism (36). It can be shown that the functor
‖ − ‖ is an equivalence of categories. Since the diagram

γu0 γu2

γu1

c@
@@R

d
�

��	

γu2k−2
γu2k

γu2k−1

c@
@@R

d
�

��	
. . .

γ~u

π2
�

��	
π2k−2

@
@@R

π2k

PPPPPPPPq
π0

��������)

(38)
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is a limiting cone in D (we call it a special pullback), the corresponding diagram in Tω

On0 Ou2

Ou1

[x0 ` c(x0)]
@

@@R
[x1 ` d(x1)]

�
��	

Ou2k−2
Ou2k

Ou2k−1

@
@@R

[xk ` d(xk)]
�

��	

. . .

O~u

�
��	

@
@@R

[~x ` xk]
PPPPPPPPq

[~x ` x0]
��������)

(39)

is a limiting cone, as well. We have an obvious sketch morphism

| − | : Sω −→ Tω (40)

which is identity on objects and sends

mn0,n1,n2 : On0,n1,n2 −→ Omax(n0,n2)

to
[x0, x1 ` mn0,n1,n2(x0, x1)] : On0,n1,n2 −→ Omax(n0,n2)

etc. Composing (37) with (40) and the equivalence S(−,D), we get a sketch morphism,
also denoted by [−]

[−] : Sω Tω
-

| − |
Sop-

‖ − ‖
D-

S(−,D)
(41)

Recall that if S is a sketch and A is a category then a model of S in A is an associa-
tion of objects and morphisms of S to objects and morphisms of A preserving domains,
codomains, sending of identity specifications and commutative diagram specifications in
S to identities and commutative diagrams, respectively, moreover sending the specified
(co)cones to (co)limiting (co)cones. A realized sketch S is a sketch based on a category
so that identity on S is a model of S in S.

Let Dspb be the finite limit realized sketch based on the category D, with cones being

the special pullbacks (38) in D. We have

5.13. Proposition.

1. The morphism [−] : Sω −→ D is a model of Sω in D. Moreover, for any realized
finite limit sketch S and a sketch morphism ψ there is a unique sketch morphism ϕ
such that the diagram

Sω Dspb-
[−]

ψ
@

@
@

@@R
S
?

ϕ

commutes, i.e. Dspb is the realized sketch generated by Sω.
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2. For any category C with finite limits, the functor of composing with [−] : Sω −→ D

ModC(Dspb) ModC(Sω)-

is equivalence of categories, i.e. the category of functors from D to C preserving
special pullbacks is equivalent to the category of internal ω-categories in C.

The nerve of ω-categories and geometric realization
The above result is to be compared with the well known fact that the category Cat(C)

of internal categories in a category with finite limits C, is equivalent to the category of
functor from the category of intervals I to C, preserving analogous special pullbacks. The
essential inverse functor is the nerve functor

N : Cat(C) −→ CAT(I, C)

associating to any small category its nerve. N is full, faithful and its essential image
consists of special pullbacks preserving functors.

A similar ω-nerve functor can be defined for ω-categories

Nω : ωCat(C) −→ CAT(D, C)

with similar properties, i.e. Nω is full, faithful and its essential image consists of special
pullbacks preserving functors. For C being the category of sets Set, it can be defined by
the formula

Nω(A) = ωCat((−,C), A) : D −→ Set

for any small ω-category A.
The ω-nerve functor composed with the geometric realization functor

R : SetD −→ Top

defined in [J] give rise to a geometric realization functor for arbitrary ω-categories

R : ωCat −→ Top

The image of Nω can be identified in a different way, using the notion of a homogenous
theories, cf. [Be]. In our terminology this can be explained as follows. The canonical
topology J on the category of simple ω-graphs sωGr, consists of the jointly surjective
families of morphisms. Moreover, we have two faithful, essentially surjective functors:

[−] : sωGr −→ S

the free ω-category functor restricted to the simple ω-graphs, and

D(| − |,C) : T −→ S
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associating to a given tree T the simple ω-category dual to the disk whose internal tree is
T . The morphisms in the image of [−] are immersions, and the morphisms in the image
of D(|− |,C) are essential (homogenous in the terminology of [Be]). Since the immersions
and the essential ω-functors form a factorization system on S, S together with the above
embedding functors [−], D(| − |,C), and the topology J form a homogenous theory. The
models of this homogenous theory, i.e. the contravariant functors on S, which are J-
sheaves when restricted to sωGr via [−], constitute the essential image of the ω-nerve
functor

N ′
ω : ωCat −→ SetS

op

given by
N ′

ω(A) = ωCat(−, A) : Sop −→ Set.

This is due to the fact, that for any presheaf X : Sop −→ Set, the functor

D Sop-
D(−,C)

Set-X

preserves the special pullbacks iff the functor

sG Sop-
[−]

Set-X

is a J-sheaf.
ω-categories as θ-categories

Nω is also an embedding of strict ω-categories into θ-categories, i.e. the strict ω-
categories are those θ-categories which preserves special pullbacks. To be more precise,
recall from [J] that a face of disk γ~u is any disk epimorphism with domain γ~u. The

dimension of disk γ~u is
∑lh(~u)−1

i=0 (−1)i ui. A θ-category is a cellular set X (i.e. an object in
SetD) such that any compatible filling of all but one inner face of γ~u in X can be extended
to a compatible filling of all faces of γ~u in X, for any ud-vector ~u. Note that this condition
can be rephrased as saying that X is a θ-category iff it sends limits of inner horns in D
to weak limits. The strict ω-categories satisfy the following much stronger ’horn-filling’
condition: for any ud-vector ~u if outer faces of the shape πi : γ~u −→ γu2i

are filled in X
in a compatible way then all other faces of γ~u, including γ~u itself have a unique filling in
X extending the given one. However it is not the case that the nerves of ω-categories are
necesserily flat functors. For example, they don’t preserve the following equaliser:

γn γn+1-ι
-

c

-d
γn

in general.
The disk classifier

In [SGL] it is shown that the topos SetI classifies intervals. Using essentially the same
method, adopted for the disk case it can be shown that the topos SetD classifies disks, cf.
Theorem 1 of [J].
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6. Appendices

6.1. The notion of an internal disk. In this Appendix, we present the concept of
disk. Note that this concept is not (generalized) algebraic; we need a category with rich-
enough internal logic in which existential quantifier and disjunction can be interpreted.
We take a category C, and the only assumption we make on C is that it has a terminal
object. Our concept of an internal disk ’in C’ will have all its data located in the category
C; however, the conditions imposed on the data will be evaluated in SetCop

, a topos, into
which C is embedded be the Yoneda functor. e also give a reformulation of the resulting
notion that is purely elementary, without reference to SetCop

. We do not distinguish
between an object in C and its image under Yoneda. A diagram

-r0

R X
-

r1

� b

B-p

�
t

in C is a bundle of intervals over B if it is a linear order with (not necessarily different)
endpoints b and t in the topos SetCop

/B, cf. [SGL] p. 455.
A disk D in a category C is a diagram

� bn

Dn Dn−1-pn

�
tn

�b
n+1

Dn+1 Dn-pn+1

�
tn+1

� b1

D1 D0 ∼= 1-p1

�
t1

Rn+1

?

r0;n+1

?

r1;n+1

Rn

?

r0;n

?

rn;1

Rn−1

?

r0;n−1

?

r1;n−1

R1

?

r0;1

?

r1;1

. . .. . .

in C, such that for n > 0 the diagram

-r0;n

Rn Dn

-
r1;n

� bn

Dn−1-pn

�
tn

is a bundle of intervals over Dn−1 and moreover, in SetCop

, the boundary of Dn, i.e. the
subobject ∂(Dn) = im(bn) ∪ im(tn) of Dn, is the singular set for the bundle pn+1, i.e.
the equalizer of bn+1 and tn+1, for n = 1, 2, . . .. By convention, we put ∂(D0) = ∅. A
morphism of disks in C is a family of morphisms {fn : Dn −→ D′

n}n∈ω preserving all the
additional structure, i.e. projections, order in fibers and endpoints in the obvious internal
sense.

The notion of a disk can be expressed in elementary terms as follows:
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1. bn and tn are splittings of pn, i.e. pn ◦ bn = pn ◦ tn = 1Dn−1 ;

2. r0;n, r1;n are jointly mono;

3. Rn is a linear order in fibers of pn. Explicitely, for z0, z1 : Z −→ Dn, we write
z0 ≤Rn z1, whenever there is z : Z −→ Rn, such that ri;n ◦ z = zi, for i = 0, 1. Then
for any z0, z1, z2 : Z −→ Dn we have

(a) z0 ≤Rn z0

(b) if z0 ≤Rn z1 and z1 ≤Rn z0 then z0 = z1;

(c) if z0 ≤Rn z1 and z1 ≤Rn z2 then z0 ≤Rn z2;

(d) if pn ◦ z0 = pn ◦ z1 iff either z0 ≤Rn z1 or z1 ≤Rn z0;

4. b and t are bottom and top endpoints in the fibers, i.e. bn ◦ pn ≤Rn 1Dn ≤Rn tn ◦ pn;

5. disk condition: for z : Z −→ Dn we have bn+1◦z = tn+1◦z iff there is z′ : Z −→ Dn−1

such that either z = bn ◦ z′ or z = tn ◦ z′.

6.2. The notion of an internal ω-category. It is well known that the concept of
ω-category is equational over the category of ω-graphs. In this section, give the details of
a definition of ω-category that exhibits its equational character over ω-graphs, and which
works internally in any category. Although of course the idea of an internal equational
description is common place, the details here are crucial for our purposes.

Our procedure here is slightly different from Appendix 6.1. We do not assume that the
category C has all finite limits, but our definition implicitly assumes that certain finite
limits exists in C. This will be seen e.g. in condition (ii) where the definition requires
that we have certain pullbacks in C as part of the data for the internal ω-category. In
the application, when the category C will be the category D of finite disks, we will have
one particular internal ω-category for which all the required pullbacks do indeed exist in
D, despite the fact that D is not a finitely complete category.

Since the notion of ω-category is generalized algebraic, we do not need to refer to the
topos SetCop

.
An ω-category A in C consists of data (i)-(v) subject to the conditions (vi)-(xi).
Data

(i) an ω-graph (or ω-globular object): i.e. the following diagram

-d

A1 A0
-

c

-d

A2
-

c

-d

An An−1
-

c

. . .. . .

such that the globularity conditions hold

d ◦ d = d ◦ c c ◦ d = c ◦ c
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Notation: If l < n, d(l) = d(n;l) : An −→ Al we denote a compositions of d’s with the
codomain Al, and similarly by c(l) = c(n;l) : An −→ Al we denote a compositions of c’s
with the codomain Al. By convention, if l ≥ n, d(l) and c(l) denotes the identity on An.
When both domain and codomain of d(l) and c(l) is clear from the context we also write
d and c for d(l) and c(l), respectively.

(ii) for a 3-tuple 〈n0, n1, n2〉 such that n1 < n0, n2 a pullback

An0 An1
-

c

An0,n1,n2 An2
-π1

?

π0

?

d

(iii) for a 5-tuple 〈n0, n1, n2, n3, n4〉 such that n1 < n0, n2, n3 < n2, n4 a (triple)
pullback

An1
�

d

An0
� π0

?

c

An2 An3
-

c

An0,n1,n2,n3,n4 An4
-π2

?

π1

?

d

(iv) composition morphisms

mn0,n1,n2 = mn1 = m : An0,n1,n2 −→ Amax(n0,n2)

(v) identity morphisms, for n ≤ l

ι(l) = ι(n;l) : An −→ Al

Conditions
(vi) Domains and codomains of compositions
We have the following commutative squares:

1. for l ≤ n1

An0 Al
-

d(l)

An0,n1,n2 Amax(n0,n2)
-m

?

π0

?

d(l)

2. for n1 < l ≤ max(n0, n2)
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Amin(n0,l),n1,min(n2,l) Al-
m

An0,n1,n2 Amax(n0,n2)
-m

?

d(l) × d(l)

?

d(l)

and similarly for codomains,

3. for l ≤ n1

An0 Al
-

c(l)

An0,n1,n2 Amax(n0,n2)
-m

?

π1

?

c(l)

4. for n1 < l ≤ max(n0, n2)

Amin(n0,l),n1,min(n2,l) Al-
m

An0,n1,n2 An0
-m

?

c(l) × c(l)

?

c(l)

(vii) Domains and codomains of identities
for n ≤ l

1.

An Al
-

ι(l)

1

@
@

@
@

@@R
An

?

c(n)

2.

An Al
-

ι(l)

1

@
@

@
@

@@R
An

?

d(n)

(viii) Associativity of compositions
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1. for n1 = n3

An0,n1,max(n2,n4) Amax(n0,n2,n4)
-

m

An0,n1,n2,n3,n4 Amax(n0,n2),n3,n4
-m× 1

?

1×m

?

m

2. for n1 < n3 < n0

An0,n1,max(n2,n4) Amax(n0,n2,n4)
-

m

An0,n1,n2,n3,n4 Amax(n0,n2),n3,n4
-

〈m(π0, π1),m(c(n3)π0, π2)〉

?

1×m

?

m

3. for n0 ≤ n3

An0,n1,max(n2,n4) Amax(n2,n4)
-

m

An0,n1,n2,n3,n4 An2,n3,n4
-

〈m(π0, π1),m(π0, π2)〉

?

1×m

?

m

4. for n3 < n1 < n4

An0,n1,max(n2,n4) Amax(n0,n2,n4)
-

m

An0,n1,n2,n3,n4 Amax(n0,n2),n3,n4
-m× 1

?

〈m(π0, d(n1)π2),m(π1, π2)〉

?

m

5. for n4 ≤ n1
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An0,n1,n2 Amax(n0,n2,n4)
-

m

An0,n1,n2,n3,n4 Amax(n0,n2),n3,n4
-m× 1

?

〈m(π0, π2),m(π1, π2)〉

?

m

(ix) Associativity of identities
for n0 < n1 < n2

An0 An1
-

ι(n1)

ι(n2)

@
@

@
@

@@R
An2

?

ι(n2)

(x) Compositions with identities
On the left:

1. for l ≥ n0

An0 Amax(l,n2)
-

ι

An0,n1,n2 Al,n1,n2
-

ι(l) × 1

?

m

?

m

2.
An2 An0,n1,n2

-
〈ι(n0) ◦ d(n1), 1〉

ι

@
@

@
@

@
@

@
@

@R
Amax(n0,n2)

?

m

On the right:

3. for l ≥ n2
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An2 Amax(n0,l)
-

ι

An0,n1,n2 An0,n1,l
-

1× ι(l)

?

m

?

m

4.
An0 An0,n1,n2

-
〈1, ι(n2) ◦ c(n1)〉

ι

@
@

@
@

@
@

@
@

@R
Amax(n0,n2)

?

m

(xi) Middle Exchange Law
for n1 < l < n0, n2

An0,l,n2 Amax(n0,n2)
-

m

An0,n1,n2 An2,l,n0
-

〈m(d(l) × 1),m(1× c(l))〉

?

〈m(1× d(l)),m(c(l) × 1)〉

?

mm

PPPPPPPPPPPPPPq

6.3. Some properties of ω-categories. In this Appendix we shall prove that the
analogs of the axioms of ω-categories, expressed for the ’multi’-version of the operations
of ω-categories (d~u;l, c~u;l, m~u, etc.) defined in section 2.6, holds. For example, Lemma
6.7.1, gives some general form of the associativity law for ω-categories. We also prove,
a more general form of the Middle Exchange Law. The definition of an ω-category is in
Appendix 6.2.

In the whole section A denotes is an internal ω-category in a category C. We assume
that for any ud-vector ~u the ’multi’-pullback A~u exists.

We have
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6.4. Lemma. Let A be an ω-category in a category C, l ∈ ω, ~u a ud-vector, l ≤ u = ht(~u).
Then the following squares

Au Al
-

dA
(l)

A~u Atr(l)(~u)-
dA

~u;l

?

mA
~u

?

mA
tr(l)(~u)

(42)

and

Au Al
-

cA(l)

A~u Atr(l)(~u)-
cA~u;l

?

mA
~u

?

mA
tr(l)(~u)

(43)

commute.

Proof. We shall prove, by induction on l-size of ~u that the square (42) commutes. The
commutation of the square (43) is similar and is left for the reader.

If ~u = u0 ≤ l then all morphisms in (42) are identities on Au0 .
If ~u is l-primitive then tr(l)(~u) = l, dA

~n;l = dA
(l) ◦ π0, and mA

tr(l)(~u) = idAl
. Thus the

commutativity of (42) reduces to the commutation of the following triangle

A~n Al
-

dA
~u;l

Au

?

mA
~u

dA
(l)

�
�

�
���

(44)

and the commutation of (44), we can show by induction on the length of the l-primitive
vector ~u.

If lh(~u) = 1 then (44) clearly commutes. Assume that (44) commutes for vectors of
length smaller then lh(~u) > 1. Let z = min(~u) ≥ l, ~u = ~u′, z, ~u′′, k′ = lh(~u′), u′ = ht(~u′),
and u′′ = ht( ~u′′). Then the triangles

Al

dA
~u′;l
◦ π0..k′

@
@

@
@

@
@

@
@R

A~u Au′,z,u′′
-

mA
~u′
×mA

~u′′

?

dA
(l) ◦ πA

0 dA
(l)

�
�

�
�

�
�

�
�	

Au
-

mA
u′,z,u′′
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commute. The left one by inductive assumption on ~u′ and the right one by the axioms
(vi).1 of the definition of an ω-category. Moreover, since

dA
~u′;l
◦ π0..k′ = dA

(l) ◦ πA
0 ◦ πA

0..k′ = dA
(l) ◦ πA

0 = dA
~u;l

and
mA

~u = mA
u′,z,u′′ ◦ (mA

~u′
×mA

~u′′
)

the outer triangle is (44). Thus (44) commutes for any ud-vector ~u.
Finally, let sizel(~u) > 1 and (42) commutes for ud-vectors of l-size smaller than sizel(~u)

. Let ~u = ~u′, z, ~u′′, where z = min(~u) < l, u = ht(~u), u′ = ht(~u′), u′′ = ht( ~u′′),
l′ = min(l, u′), and l′′ = min(l, u′′). Then in the following diagram

Atr(l)(~u′),z,tr(l)( ~u′′) Al′,z,l′′-
mA

tr(l)(~u′)
×mA

tr(l)( ~u′′)

A~u′,z, ~u′′ Au′,z,u′′-
mA

~u′
×mA

~u′′

?

dA
~u′;l
× dA

~u′′;l

Al
-

mA
l′,z,l′′

Au
-

mA
u′,z,u′′

?

dA
(l) × dA

(l)

?

dA
(l)

the left square commutes by inductive assumption on ud-vectors ~u′ and ~u′′, and and
the right one commutes by condition (vi).2 of the definition of an ω-category. Thus 42
commutes. The commutation of 43 is similar.

We have

6.5. Lemma. For any ω-graph A and l ∈ ω and ud-vectors ~u, ~v such that tr(l)(~u) =
tr(l)(~v) = ~w the square

A~u A~w
-

cA~u;l

A[~u,l,~v] A~v-
πA

1;~v

?

πA
0;~u

?

dA
~v;l (45)

is a pullback.

Proof. We show that (45) is a pullback by induction on l-size(~u).
If ~v = v0 ≤ l then (45) is the following commutative square

A~u Av0
-

cA~u;l

A~u Av0
-

cA~u;l

?

idA~u

?

idAv0
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The case ~u = u0 ≤ l is similar.
If both ~u and ~v are l-primitive then (45) is

A~u Al
-

cA~u;l

A~u,l,~v A~v
-

πA
k1+1..k1+k2+1

?

πA
0..k1

?

dA
~v;l

where k1 = lh(~u)− 1, and k2 = lh(~v)− 1. Since cA~u;l = cA(l) ◦ πA
k1

and dA
~v;l = dA

(l) ◦ πA
0 , it is a

pullback, as well.
Assume now that l-size(~u) > 1. Let w = min(~u) < l, ~u = ~u′, w, ~u′′, ~v = ~v′, w, ~v′′,

tr(l)(~u′) = tr(l)(~v′) = ~w′, and tr(l)( ~u′′) = tr(l)(~v′′) = ~w′′. Then (45) is

A~u′,w, ~u′′ A ~w′,w, ~w′′-
cA~u′;l × cA~u′′;l

A[~u′,l,~v′],w,[ ~u′′,l, ~v′′] A~v′,w, ~v′′
-

πA
1;~v′

× πA
1; ~v′′

?

πA
0;~u′

× πA
0; ~u′′

?

dA
~v′;l
× dA

~u′′;l

and it is a pullback, since by inductive hypothesis on ~u′ and ~u′′ it is a pullback of two
pullback squares. This ends the proof.

In Lemma 6.7 we shall prove among other things a kind of general associativity law.
But for this, we shall need the following form of the Middle Exchange Law.

6.6. Lemma. Let u′, u′′, v′, v′′, l, z ∈ ω, z < u′, u′′, v′, v′′, l. Moreover

min(u′, l) = min(v′, l) = l′, min(u′′, l) = min(v′′, l) = l′′

u = max(u′, u′′), v = max(v′, v′′),

n′ = max(u′, v′), n′′ = max(u′′, v′′), n = max(u, v).

Then the square

An′,z,n′′ An
-

mn′,z,n′′

A[u′,l,v′],z,[u′′,l,v′′] A[u,l,v]
-

〈m(π0, π2),m(π1, π3)〉

?

m[u′,l,v′] ×m[u′′,l,v′′]

?

m[u,l,v]

commutes.
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Proof. We need to show that the outer square in the following the diagram

A[u′,l,v′],z,[u′′,l,v′′]

m×m

�
�

�
�

�
�	 ?

@
@

@
@

@
@R

〈m(π0, π2),m(π1, π3), 〉

HHH
HHH

HHH
HHHj

[1] [2] [3]

An′,z,n′′ •- •� •- •� A[u,l,v]
-

m

@
@

@
@

@@R

A
A
A
A
AAU

�
�

�
�

�
��

m

�
���

���
�����

[4] [5] [6]

An

(46)

commutes. Below we explain what are the unexplained shapes in this diagram and why
they commutes. The square [1] is

An′,z,n′′ A[n′,l,n′′]-
〈m(π0, d(l)π1),m(c(l)π0, π1)〉

A[u′,l,v′],z,[u′′,l,v′′] A[[u′,l,v′],l,[u′′,l,v′′]]-
m(c(l)π1, π2),m(c(l)π1, π3) >

?

m×m

?

m×m

< m(π0, d(l)π2),m(π1, d(l)π2),

and it commutes by the axioms for domain and codomain of compositions (vi) and asso-
ciativity (viii).3 and (viii).5.

The square [2] is

A[[u′,l,v′],l,[u′′,l,v′′]] A[u′,l,max(v′,u′′),l,v′′]-
1×m× 1

A[u′,l,v′],z,[u′′,l,v′′] A[[u′,l,u′′],l,[v′,l,v′′]]-
m(π1, c(l)π2),m(c(l)π1, π3), >

? ?

1×m× 1
< m(π0, d(l)π2),m(π1, d(l)π2),

m(c(l)π1, π2),m(c(l)π1, π3) >

< m(π0, d(l)π2),m(d(l)π1, π2),

and it commutes by middle exchange law (xi).
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The triangle [3] is

A[[u′,l,u′′],l,[v′,l,v′′]] A[u,l,v]
-

m×m

〈m(π0, π2),m(π1, π3)〉

@
@

@
@

@
@

@
@R

A[u′,l,v′],z,[u′′,l,v′′]

?

< m(π0, d(l)π2),m(d(l)π1, π2),

m(π1, c(l)π2),m(c(l)π1, π3) >

and, again, it commutes by middle exchange law (xi).
The triangle [4] is

A[n′,l,n′′] An-
m

m

@
@

@
@

@
@

@
@R

An′,z,n′′

?

〈m(π0, d(l)π1),m(c(l)π0, π1)〉

and, again, it commutes by middle exchange law (xi).
The square [5] is

A[n′,l,n′′] An-
m

A[[u′,l,v′],l,[u′′,l,v′′]] A[u′,l,max(v′,u′′),l,v′′]-1×m× 1

?

m×m

?

m

and it commutes by associativity axiom (viii).1.
Finally, the square [6] is

A[u′,l,max(v′,u′′),l,v′′] An-
m

A[[u′,l,u′′],l,[v′,l,v′′]] A[u,l,v]
-m×m

?

1×m× 1

?

m

and, again, it commutes by associativity axiom (viii).1.
Thus all the shapes including the outer square in the diagram (46) commute.
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6.7. Lemma. For any ω-category A.

1. for l ∈ ω and ud-vectors ~u, ~v such that tr(l)(~u) = tr(l)(~v) = ~w the triangle

A[~u,l,~v] Amax(u,v)
-

mA
[~u,l,~v]

A[u,l,v]

mA
~u ×mA

~v

@
@

@
@

@@R

mA
[u,l,v]

�
�

�
�

���

(47)

commutes;

2. for any u, v, u′, v′, z, z′, l ∈ ω such that u ≤ u′, v ≤ v′, l < u′, v′, z = max(u, v) and
z′ = max(u′, v′), the square

Au′,l,v′ Az′
-

mA
u′,l,v′

A[u,l,v] Az-
mA

[u,l,v]

?

ιA(u′) × ιA(v′)

?

ιA(z′)
(48)

commutes.

Proof. Ad 1. We argue by induction on the l-size of ~u.
If ~v = v0, then (47) is

A~u Au
-

mA
~u

Au

mA
~u

@
@

@
@@R

1Au

�
�

�
���

so it commutes. The case ~u = u0 is similar.
If ~u and ~v are l-primitive then (47) is the following triangle

A~u,l,~v Amax(u,v)
-

mA
~u,l,~v

Au,l,v

mA
~u ×mA

~v

@
@

@
@@R

mA
u,l,v

�
�

�
���

commutes, by definition of m[~u,l,~v], since l = min([~u, l, ~v]).
Finally, we assume that sizel(~u) > 1. Let

z = min(~u), ~u = ~u′, z, ~u′′, ~v = ~v′, z, ~v′′,
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u = ht(~u), u′ = ht(~u′), u′′ = ht( ~u′′),

v = ht(~v), v′ = ht(~v′), v′′ = ht(~v′′),

~w′ = tr(l)(~u′) = tr(l)(~v′), ~w′′ = tr(l)( ~u′′) = tr(l)(~v′′),

w′ = ht( ~w′), w′′ = ht( ~w′′),

l′ = min(l, u′) = min(l, v′), l′′ = min(l, u′′) = min(l, v′′),
.

l= min(l′, l′′),
.
π0= π0 ◦ π0;[u′,l,v′],

.
π1= π1 ◦ π0;[u′,l,v′],

.
π2= π0 ◦ π1;[u′′,l,v′′],

.
π3= π1 ◦ π1;[u′′,l,v′′].

Then, the following diagram

A~u′,z, ~u′′

A ~w′,z, ~w′′

XXXXXXXXXXXXXXXz

���
�����

A[~u′,l,~v′],z,[ ~u′′,l, ~v′′]

A~v′,z, ~v′′

XXXXXXXXXXXXXXXz

���
�����

π0;~u′ × π0; ~u′′ π1;~v′ × π1; ~v′′

c~u′;l × c ~u′′;l
d~v′;l × d ~v′′;l

?

?

?

?

(m~u′ ×m~v′)× (m ~u′′ ×m ~v′′)

m~u′ ×m ~u′′ m~v′ ×m ~v′′m ~w′ ×m ~w′′

Au′,z,u′′

Al′,z,l′′

XXXXXXXXXXXXXXXz

���
�����

A[u′,l,v′],z,[u′′,l,v′′]

Av′,z,v′′

XXXXXXz

���
�����

XXXXX〈 .
π0,

.
π2〉

〈 .
π1,

.
π3〉

c(l′) × c(l′′) d(l′) × d(l′′)

?

?

?

?

〈m(π0, π2),m(π1, π3)〉

m m

m

Au

A.

l

XXXXXXXXXXXXXXXz

�
���

����

A[u,l,v]

Av

XXXXXXz

��
���

����

XXXXXπ0
π1

c(l) d(l)
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commutes, in which, the three horizontal squares are pullbacks by Lemma 6.5, the four
back squares commute formally, and four front squares commutes by Lemma 6.4. More-
over, by definition of mA

~u , the composition of vertical morphisms on the left is equal to
mA

~u and the composition of vertical morphisms on the right is equal to mA
~v . This shows

that the following triangle

A[~u′,l,~v′],z,[ ~u′′,l, ~v′′] A[u,l,v]-
mA

~u ×mA
~v

A[u′,l,v′],z,[u′′,l,v′′]

mA
~u′
×mA

~v′
×mA

~u′′
×mA

~v′′

@
@

@
@

@@R

〈mA(π0, π2),m
A(π1, π3)〉

�
�

�
�

���

(49)

commutes. Then the triangle (47) commutes by Lemma 6.6.
Ad 2. To proof that (48) commutes we consider four cases according to whether the

conditions
u ≤ l v ≤ l

hold true.
If u ≤ l and v ≤ l, then the square (48) is

Au′,l,v′ Az‘-
m

Az Az
-

1Az

?

〈ι(u′), ι(v′)〉
?

ι(z′)

If u′ ≤ v′, it can be decomposed as a diagram

Au′ Av′
-

ι(v′)

Az Az
-

1Az

?

ι(u′)

?

ι(v′)

-

Au′,l,v′
?

〈1, ι(v′)c(l)〉 m

�
�

�
�

���

in which the square commutes by associativity of identity (ix) and the triangle commutes
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by axiom (x).4, and if u′ > v′, it can be decomposed as a diagram

Av′ Au′
-

ι(u′)

Az Az
-

1Az

?

ι(v′)

?

ι(u′)

-

Au′,l,v′
?

〈ι(v′)d(l), 1〉 m

�
�

�
�

���

in which the square commutes by associativity of identity (ix) and the triangle commutes
by axiom (x).2.

If u > l and v ≤ l, then the square (48) is the outer square in the diagram

Au,l,v Au
-

m

Au Au
-

1Au

?

〈1, ι(v)c(l)〉
?

1Au

Au′,l,v Au′
-

m

?

ι(u′) × 1

?

ι(u′)

Au′,l,v′ Az′
-

m

?

1× ι(v′)

?

ι(z′)

in which the top square commutes by (x).4, the middle square commutes by (x).1, and
the bottom square commutes by (x).3.

The case u ≤ l and v > l is similar to the previous one.
If u > l and v > l, then the square (48) is the outer square in the diagram

Au′,l,v Amax(u′,v)
-
m

Au,l,v Az
-m

?

ι(u) × 1

?

ι(max(u′,v)

Au′,l,v′ Az′
-

m

?

1× ι(v′)

?

ι(z′)
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in which the top square commutes by (x).3 and bottom square commutes by (x).1.
This ends the proof of 2.

6.8. Free internal ω-categories. Let us fix for the whole section a category C with
pullbacks and stable disjoint countable coproducts, ωGr(C) is the category of ω-graphs in
C and ωCat(C) is the category of ω-categories in C. Then we have a forgetful functor

| − | : ωCat(C) −→ ωGr(C).

In this section, we shall construct a left adjoint to | − |:

[−] : ωGr(C) −→ ωCat(C)

Let G be an ω-graph in C. We shall construct an ω-category [G], and ω-graph mor-
phisms ηG : G −→ [G], which is universal from G to | − |.

Since C has pullbacks, for any ud-vector ~u, we can define, as in section 2.6, the multi-
pullback G~u, for 0 ≤ i ≤ j < lh(~u), the projections

πG
i : G~u −→ Gu2i, πG

i..j : G~u −→ Gu2i,...,u2j
,

for l ∈ ω, the morphisms of multi-domain and the multi-codomain in an ω-graph G

dG
~u;l, c

G
~u;l : G~u −→ Gtr(l)(~u)

and for 〈~u,~v〉 ∈ UDn0,n1,n2 the projection morphisms

πG
0;~u : G[~u,n1,~v] −→ G~u πG

1;~v : G[~u,n1,~v] −→ G~v.

Then, the object of n-cells of [G] is the following coproduct

[G]n =
∐

~u∈UDn

G~u

with the embedding morphisms κ~u : G~u −→
∐

~u∈UDn
G~u, for any ud-vector ~u ∈ UDn.

For n ≥ l, the domain and the codomain morphisms

d
[G]
(l) , c

[G]
(l) ; [G]n −→ [G]l

are so defined that, for any ~u ∈ UDn, the squares

G~u Gtr(l)(~u)-
d~u;l

[G]n [G]l-
d

[G]
(l)

6

κ~u

6
κtr(l)(~u)

G~u Gtr(l)(~u)-
c~u;l

[G]n [G]l-
c
[G]
(l)

6

κ~u

6
κtr(l)(~u)
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commute. For n ≤ l, the identity morphisms

ι
[G]
(l) : [G]n −→ [G]l

are so defined that, for any ~u ∈ UDn, the triangle

[G]n [G]l-
ι
[G]
(l)

G~u

6

κ~u κ~u

�
�

�
�

���

commutes.
In Lemma 6.5 we have shown that the square

G~u G~w
-

cG~u;n1

G[~u,n1,~v] G~v-
πG

1,~v

?

πG
0,~u

?

dG
~v;n1

is a pullback. Since the countable coproducts are disjoint and universal in C they com-
mutes with pullbacks and hence [G]n0,n1,n2 in the pullback

[G]n0
[G]n1

-
c

[G]n0,n1,n2
[G]n2

-π1

?

π0

?

d

is given by the coproduct

[G]n0,n1,n2 =
∐

〈~u,~v〉∈UDn0,n1,n2

G[~u,n1,~v]

with the embedding morphisms κ~u,~v : G[~u,n1,~v] −→ [G]n0,n1,n2 , for any 〈~u,~v〉 ∈ UDn0,n1,n2 .
The projections

π0 : [G]n0,n1,n2 −→ [G]n0 π1 : [G]n0,n1,n2 −→ [G]n2
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are so defined that, the squares

G[~u,n1,~v] G~u-
π0,~u

[G]n0,n1,n2
[G]n0

-π0

6
κ~u,~v

6

κ~u

G[~u,n1,~v] G~v-
π1,~v

[G]n0,n1,n2
[G]n2

-π1

6
κ~u,~v

6

κ~v

commute. Similarly, for a ud-vector n0, n1, n2, n3, n4, the object of compatible triples of
cells in [G] is the coproduct

[G]n0,n1,n2,n3,n4 =
∐

〈~u,~v, ~w〉∈UDn0,n1,n2,n3,n4

G[~u,n1,~v,n3, ~w]

with the embedding morphisms κ~u,~v, ~w : G[~u,n1,~v,n3, ~w] −→ [G]n0,n1,n2,n3,n4 , for any 〈~u,~v, ~w〉 ∈
UDn0,n1,n2,n3,n4 . We have a limiting diagram in C

[G]n1
�

d

[G]n0
� π0

?

c

[G]n2 [G]n3
-

c

[G]n0,n1,n2,n3,n4
[G]n4

-π2

?

π1

?

d

The composition morphisms

m[G]
n0,n1,n2

: [G]n0,n1,n2 −→ [G]max(n0,n2)

are so defined that, for any 〈~u,~v〉 ∈ UDn0,n1,n2 , the triangle

[G]n0,n1,n2 [G]max(n0,n2)
-

m[G]
n0,n1,n2

G[~u,n1,~v]

6

κ~u,~v κ[~u,n1,~v]

�
�

�
�

�
�

�
�

��

commutes. This ends the construction of [G]. We have

6.9. Theorem. The functor | − | : ωCat(C) −→ ωGr(C) has a left adjoint

[−] : ωGr(C) −→ ωCat(C).
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Proof. We verify that [G] is indeed an ω-category and that

ηG : G −→ [G]

is given, for n ∈ ω, by

ηG,n = κn : Gn −→ [G]n

is a universal morphism from G to | − |.
Note that since [G]n, [G]n0,n1,n2 , and [G]n0,n1,n2,n3,n4 are defined as coproducts the com-

mutations of diagrams involving such objects reduces to commutations involving objects
G~u, G~u;~v, and G~u;~v;~w, where ~u ∈ UDn, 〈~u,~v〉 ∈ UDn0,n1,n2 , and 〈~u,~v, ~w〉 ∈ UDn0,n1,n2,n3,n4 ,
respectively. After such reductions the commutations of the resulting diagrams follows
from some equalities concerning ud-vectors and additionally, if these diagrams involve
domains and codomains, some facts concerning muti-domains and multi-codomains of
ω-graphs (from the previous section) are needed.

First we verify that [G] is and ω-category in C. To show that d ◦ d = d ◦ c, note that,
for n ∈ ω and ~u ∈ UD, in the diagram

G~u Gtr(n+1)(~u)

[G]n+2 [G]n+1

6

κ~u

6
κtr(l)(~u)

Gtr(n+1)(~u) Gtr(n)(~u)-
dtr(n+1)(~u);n

[G]n-d

6
κtr(n)(~u)

-
c~u;n+1

-
d~u;n+1

-
c

-d

the right square commutes and the left square commutes serially, by definition of d and
c. Thus the equality d ◦ d = d ◦ c reduces to

dtr(l)(~u);n ◦ d~u;n+1 = dtr(l)(~u);n ◦ c~u;n+1 (50)

for any n ∈ ω and ~u ∈ UD. We prove (50) by induction on length ~u.
If lh(~u) = 1 then (50) reduces to dn ◦ dn+1 = dn ◦ cn+1 which holds in any ω-graph.
Assume that lh(~u) > 1, z = min(~u) and that ~u = ~u′, z, ~u′′. If z > n, using inductive

hypothesis and Lemma 6.5, we have

dtr(n+1)(~u);n ◦ d~u;n+1 = dn ◦ dtr(n+1)(~u′);n ◦ π0;~u′ =

dn ◦ ctr(n+1)(~u′);n ◦ π0;~u′ = dn ◦ dtr(n+1)( ~u′′);n ◦ π1; ~u′′ =

dn ◦ ctr(n+1)( ~u′′);n ◦ π1; ~u′′ = dtr(l)(~u);n ◦ c~u;n+1

If z = n, using inductive hypothesis, we have

dtr(n+1)(~u);n ◦ d~u;n+1 = dn ◦ π0 ◦ (d~u′;n+1 × d ~u′′;n+1) =
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dn ◦ π0 ◦ d~u′;n+1 ◦ π0;~u′ = dn ◦ π0 ◦ c~u′;n+1 ◦ π0;~u′ =

dn ◦ π0 ◦ (c~u′;n+1 × c ~u′′;n+1) = dtr(n+1)(~u);n ◦ c~u;n+1

If z < n, using inductive hypothesis, we have

dtr(n+1)(~u);n ◦ d~u;n+1 =

(dtr(n+1)(~u′);n × dtr(n+1)( ~u′′);n) ◦ (d~u′;n+1 × d ~u′′;n+1) =

(ctr(n+1)(~u′);n × ctr(n+1)( ~u′′);n) ◦ (c~u′;n+1 × c ~u′′;n+1) =

dtr(n+1)(~u);n ◦ c~u;n+1

So (50) holds.
The equality c[G] ◦ d[G] = c[G] ◦ c[G] can be proved similarly.
Ad (vi).1. Let n1〈n0, n2 and < ~u,~v〉 ∈ UDn0,n1,n2 . Then in the diagram

[G]n0 [G]n1
-

d(n1)

[G]n0,n1,n2 [G]n-m

?

π0

?

d(n1)

G~u Gtr(n1)(~u)-
d~u;n1

G[~u,n1,~v] G[~u,n1,~v]
-1

?

π0;~u

?

d[~u,n1,~v];n1

κ~u

�
�

�
��

κ[~u,n1,~v]

�
�

�
�	

κ~u;~v

@
@

@
@R

κtr(l)(~u)

@
@

@
@I

the four side squares commute. Thus the commutation of the inner square reduces to the
commutation of the outer square for any pair 〈~u,~v〉 ∈ UDn0,n1,n2 . The commutation of
the outer square can be proved by induction on n1-size of ~u. From this (vi).1 follows.

To show (vi).2, let 〈~u,~v〉 ∈ UDn0,n1,n2 , l ≤ max(n0, n2) = n, n′0 = min(l, n0), n
′
1 =
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min(l, n1), and consider the diagram

[G]n′0,n1,n′2
[G]l-

m

[G]n0,n1,n2 [G]n-m

?

d(l) × d(l)

?

d(l)

G[tr(l)(~u),n1,~v] G[tr(l)(~u),n1,~v]-
1

G[~u,n1,~v] G[~u,n1,~v]
-1

?

d~u;l × d~v;l

?

d[~u,n1,~v];l

κtr(l)(~u);tr(l)(~v)

�
�

�
��

κ[~u,n1,~v]

�
�

�
�	

κ~u;~v

@
@

@
@R

κtr(l)(~u);tr(l)(~v)

@
@

@
@I

As the four side squares commute, then again the commutation of the inner square reduces
to the commutation of the outer square for any pair 〈~u,~v〉 ∈ UDn0,n1,n2 . This is left as an
exercise.

The commutation of (vi).3 and (vi).4 can be proved similarly. The fact that [G]
satisfies (vii), (viii), (ix), and (x), essentially follows from the equalities on ud-vectors
proved in Lemma 2.4.

We end the verification that [G] is an ω-category in C by showing that it satisfies
Middle Exchange Law (xi). We need to show that for, l < n1 < n0, n2, n = max(n0, n2),
the diagram

[G]n0,n1,n2 [G]n2,l,n0
-

〈m(d(l) × 1),m(1× d(l))〉

[G]n
?

mm

XXXXXXXXXXXXXXXXXz

(51)

commutes. Let 〈~u,~v〉 ∈ UDn0,n1,n2 . By Lemma 2.4.13, we have [~u, n1, ~v] =
[[~u, n1, tr(l)(~v)], l, [tr(l)(~u), n1, ~v]]. Moreover the square

G[tr(l)(~u),n1,~v] G[tr(l)(~u),n1,tr(l)(~v)]-
1× c~v;l

G[~u,n1,~v] G[~u,n1,tr(l)(~v)]-
1× c~v;l

?

d~u;l × 1

?

d~u;l × 1

is a pullback. Thus by Lemma 6.5

d~v;l × id = π0;[tr(l)(~u),n1,~v] : G[[tr(l)(~u),n1,~v],l,[~u,n1,tr(l)(~v)]] −→ G[[tr(l)(~u),n1,~v] (52)
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id× c~v;l = π1;[~u,n1,tr(l)(~v)] : G[[tr(l)(~u),n1,~v],l,[~u,n1,tr(l)(~v)]] −→ G[~u,n1,tr(l)(~v)] (53)

Thus to show that (51) commutes , it is enough to show that the following three
squares

Gn0,n1,n2 Gn2,l,n0
-

〈m(d(l) × 1),m(1× d(l))〉

G[~u,n1,~v] G[[tr(l)(~u),n1,~v],l,[~u,n1,tr(l)(~v)]]-1

?

κ~u;~v

?

κ[tr(l)(~u),n1,~v];[~u,n1,tr(l)(~v)] (54)

G[~u,n1,~v] [G]n-
κ[~u),n1,~v]

G[~u,n1,~v] [G]n0,n1,n2
-

κ~u;~v

?

1

?

mn0,n1,n2

[G]n G[~u,n1,~v]
�

κ~u;~v

[G]n2,l,n0 G[[tr(l)(~u),n1,~v],l,[~u,n1,tr(l)(~v)]]�
κ[tr(l)(~u),n1,~v];[~u,n1,tr(l)(~v)]

?

m

?

1

commute. The second and the third squares commute by definition of mn0,n1,n2 and
mn2,l,n0 , respectively. Thus it remains to show that (54) commutes, as well. As [G]n0,n1,n2

is a pullback, we shall show that the square (54) commutes, when composed with the
projections

π0 : [G]n2,l,n0 −→ [G]n2 π1 : [G]n2,l,n0 −→ [G]n0 .
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Composing (54) with π0, we get the diagram

[G]n0,n1,n2 [G]n2,l,n0
-

〈m(d(l) × 1),m(1× d(l))〉

G[~u,n1,~v] G[[tr(l)(~u),n1,~v],l,[~u,n1,tr(l)(~v)]]-1

?

κ~u;~v

?

[G]l,n1,n2 [G]n2
-

m

-

?

d(l) × 1

?

π0

G[[tr(l)(~u),n1,~v]
�

�
�

�
���

@
@

@
@

@I
��������������9

B
B
B
B
B
B
B
B
B
B
B
B
BBXXXXXXXXXXXXXXz

�
�
�
�
�
�
�
�
�
�
�
�
���

d~u×1
π0;[tr(l)(~u),n1,~v]

where the unmarked morphisms are the obvious embeddings into coproducts. The outer
triangle commutes as it is (52). The left and right squares commute, by definition of
d(l) and π0, respectively. The triangle at the bottom commutes, by definition of ml,n1,n2 .
Hence (54) followed by π0 commutes.

Composing (54) with π1, we get the diagram

[G]n0,n1,n2 [G]n2,l,n0
-

〈m(d(l) × 1),m(1× d(l))〉

G[~u,n1,~v] G[[tr(l)(~u),n1,~v],l,[~u,n1,tr(l)(~v)]]-1

?

κ~u;~v

?

[G]n0,n1,l [G]n0
-

m

-

?

1× c(l)

?

π1

G[[tr(l)(~u),n1,~v]
�

�
�

�
���

@
@

@
@

@I
��������������9

B
B
B
B
B
B
B
B
B
B
B
B
BBXXXXXXXXXXXXXXz

�
�
�
�
�
�
�
�
�
�
�
�
���

1× c~u π1;[~u,n1,tr(l)(~v)]

which by similar reasons as before shows that (54) followed by π1 commutes. Therefore
(54) commutes as well, and [G] satisfy (xi). In this way we have proved that [G] is an
ω-category in C.

Now we show that η : G −→ [G] is a universal morphism. So assume that F :
[G] −→ A is an ω-graph morphism into an ω-category A. We construct an ω-functor
F : [G] −→ A, extending F .
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Since F is an ω-graph morphism, it preserves both domains and codomains, and hence
it induces a morphism between pullbacks

F~u : G~u −→ A~u

for any ud-vector ~u. Then, for m ∈ ω, we define the morphism

F k : [G]k −→ Ak

so that, for any ud-vector ~u ∈ UDk, its composition with the embedding κ~u : G~u −→ [G]k
is the following morphism:

G~u A~u
-F~u Aht(~u)

-
mA

~u Ak-
ιA(k)

To see that F so defined preserves domains, it is enough to note that, for any l ≤ n,
~u ∈ UDn, the following three squares

Gtr(l)(~u) Atr(l)(~u)-
Ftr(l)(~u)

G~u A~u
-F~u

?

d~u;l

?
Al′-

m

Au
-m

d~u;l

?

d(l′)

Al
-

ι(l)

An
-

ι(n)

?

d(l)

commute, where u = ht(~u) and l′ = min(l, u). The commutations of these squares can be
easily shown by induction on l-size of ~u.

The fact that F preserves codomains and identities is left for the reader.
To prove that F preserves compositions, we need to show that for n1 < n0, n2, the

diagram

[G]n An
-

F n

[G]n0,n1,n2 An0,n1,n2
-

F n0 × F n2

?

m

?

m

commutes. But this reduces to the commutation of the following diagram

G[~u,n1,~v] A[~u,n1,~v]
-

F[~u,n1,~v]

G[~u,n1,~v] A[~u,n1,~v]
-F~u × F~v

?

1

?

1

Ak-
m[~u,n1,~v]

Au,n1,v-m~u ×m~v

?

m

An
-

ι(n)

An0,n1,n2
-

ι(n0) × ι(n2)

?

m
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for any 〈~u,~v〉 ∈ UDn0,n1,n2 , where u = ht(~u), u = ht(~v), k = max(u, v), n = max(n0, n2).
The commutation of the left square is trivial, the commutation of the middle square
follows from Lemma , and the commutation of the right square follows from axioms (x).1
and (x).3. of the definition of the ω-category. Thus F is an ω-functor.

The uniqueness of F can be proved by a similar easy inductive argument.

Having the explicit description of the free internal ω-categories we can easily show the
following corollary.

6.10. Corollary. The functor

[−] : ωGr(C) −→ ωCat(C)

preserves pullbacks.

Remark. This result appears in [S]; see the Proposition in Section 5 in [S].

Proof. Suppose that

G K-
f

P H-k

?

h

?

g

is a pullback in ωGr(C). Thus for n ∈ ω, the square

Gn Kn
-

fn

Pn Hn
-kn

?

hn

?

gn

is a pullback in C. Since limits commutes with limits and k, h, f, g preserves domains and
codomains, for any ud-vector ~u, the square

G~u K~u
-

f~u

P~u H~u
-k~u

?

h~u

?

g~u
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is a pullback in C, as well. Then, since coproducts are commutes with pullbacks in C, the
coproduct of pullbacks

∐
~u∈UDn

G~u
∐

~u∈UDn
K~u-∐

~u∈UDn
f~u

∐
~u∈UDn

P~u
∐

~u∈UDn
H~u-

∐
~u∈UDn

k~u

?

∐
~u∈UDn

h~u

?

∐
~u∈UDn

g~u (55)

is again a pullback in C. But the above square is just

[G]n [K]n-
[f ]n

[P ]n [H]n-
[k]n

?

[h]n

?

[g]n

and hence [−] preserves pullbacks.endproof

7. Notation

The numbers in square brackets indicate the page or pages where the notation is first
introduced.

Conventions:

1. The ud-vectors are invariants for finite trees, finite disks, simple ω-graphs, and
simple ω-categories. For a given ud-vector ~u we define a specific finite tree θ~u [10,
45], a specific finite disk γ~u [33, 43] (ud-vector in subscript), a specific simple ω-
graph α~u [62, 63], and a specific simple ω-category δ~u [71] (ud-vector in superscript).
All the above structures are ’graded’ structures. The levels of trees and of disks are
marked in superscripts, and the levels of ω-graphs, and of simple ω-categories are
marked in subscripts. Thus, for example, Dn is the n-th level of the disk D, whereas
An is the set of n-cells of the ω-category A. Adopting this convention, we have for
any n, s ≥ 0 that

γs
n = δs

n

i.e. the s-th level of γn is equal to the n-th level of δs.

2. The operations in (specific) structures are not in bold-face, whereas the operations
on (specific) structures are in bold-face. Thus, for example, for s ≥ s′ and any
natural n, the projection inside a disk γn from level s to level s′ is marked p : γs

n −→
γs′

n , and the projection morphism between the simple categories δs to δs′ is marked
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p : δs −→ δs′ . Then the some specific instances of bold and not bold morphisms
coincide, e.g.

ps
n : γs+1

n −→ γs
n = ps

n : δs+1
n −→ δs

n.

7.1. ud-vectors.

1. ~u: a ud-vector [15];

2. Some functions defined on ud-vectors:

(a) lt(~u): the length of a ud-vector ~u [15];

(b) ht(~u): the height of a ud-vector ~u [15];

(c) size(l)(~u): the l-size of ~u [16];

3. Some sets of ud-vectors:

(a) UDn: the set of ud-vectors of height less or equal n ∈ ω [18];

(b) UDn0,n1,n2 : the set of pairs of n1-compatible ud-vectors of height less or equal
n0 and n2, respectively [18];

4. Some operations defined on ud-vectors:

(a) tr(l)(~u): the l-truncation of ~u [16];

(b) [~u, l, ~v]: the l-amalgam of l-compatible pair ud-vectors ~u and ~v [16].

7.2. Trees, bundles, and disks.

1. A tree T [10]:

· · · T s+1-ps+1

T 1 T 0 ∼= 1-p0

T s-ps . . .

2. Some special trees:

(a) θ~u: the tree corresponding to a ud-vector ~u [10, 45];

(b) The tree θ3 can be drawn as [10]:

0

1

2

3
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(c) The tree θ3,2,3,1,2,0,1,0,4,1,3 can be drawn as [45]:

•
HHH ���•• •

@
@ �

� @
@ �

�
• • • •

AA ��
• • • •

•

3. A bundle of intervals over B [10]:

-r0

R X
-

r1

� b

B-p

�
t

4. A (finite) disk D [10]:

· · · Ds+1-ps+1

�
ts+1

� bs+1

D1 D0 ∼= 1-p0

�
t0

� b0

Ds-ps

�
ts

� bs

. . .

(a) ∂(Dn) = b(Dn−1) ∪ c(Dn−1): the boundary of Dn [11];

(b) ı(Dn) = Dn \ ∂(Dn): the interior of Dn [11];

(c) ı(D): the internal tree of the disk D [11];

(d) x� y: the successor in a fiber relation, x, y ∈ Dn, n ∈ ω [32];

(e) µD
x,y = max{l : p(l)(x) = p(l)(y)}: the level on which the nodes x and y of D do

match [32].

5. Some special disks:

(a) γ~u: the disk corresponding to a ud-vector ~u [43];

(b) The first six levels of γ3 (the inner nodes are marked bold) [33]:
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0
@@ ��

0 1 2
@@ @@ �� ��

0 1 2 3 4
@@ @@ @@ �� �� ��

0 1 2 3 4 5 6
AA AA AA AA �� �� �� ��

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(c) A bundle in a disk γn over γs
n, s ≥ 0,n ≥ 0 [80]:

-
ρ0;s+1

n

≤s+1
n γs+1

n-
ρ1;s+1

n

�
bs+1
n

γs
n

-
ps

n

�
ts+1
n

6. Some special disk morphisms:

(a) d = d(s) = d(n;s), c = c(s) = c(n;s) : γn −→ γs: the domain and the codomain
morphisms [35];

(b) m~u : γ~u −→ γht(~u): the compositions [51];

(c) ι = ι(l) = ι(s;l) : γs −→ γl: the identity morphisms, for l ≥ s [51];

(d) in the diagram: l ≤ n

-
ds

(l)

γs
n γs

l
�

ιs
(n)

-
cs

(l)

(e) πi : γ~u −→ γu2i
: the projections, for i ∈ lh(~u) [43]:

γu0 γu2

γu1

cu1
@

@@R
du1

�
��	

γu2k−2
γu2k

γu2k−1

cu2k−1
@

@@R
du2k

�
��	

. . .

γ~u

π2
�

��	
π2k−1

@
@@R

π2k

PPPPPPPPq
π0

��������)
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(f) n-cuts of disks (outer morphisms into γn) [55]:

x : D −→ γn: if x ∈ Dn is a leaf in D [45];

x; y : D −→ γn1 : if x 6= y, n1 = µx,y, p
n1+1(x) � pn1+1(y) [45];

(g) the canonical factorization of a morphism f in D [53]:

γ~u γu-
m~u

D γn
-f

?

◦
f

6
ι(n)

with
◦
f outer part of f , ι(n) inner mono, m~u inner epi;

(h) Cut(D): the ω-graph of cuts of D [55];

(i) A (fragment of) an internal ω-category C in D at level s, s ≥ 0, n ≥ 0 [54]:

-
πs

0,n+1

γs
n+1,n,n+1 γs

n+1
-

ms
n+1,n,n+1

-
πs

1,n+1

-
ds

n

γs
n

�
ιs
n+1

-
cs

n

7.3. ω-graphs and ω-categories.

1. A general ω-graph G [12, 97]:

-dn

Gn+1 Gn
-

cn

. . . . . .

(a) dG
~u;l, c

G
~u;l : G~u −→ Gtr(l)(~u): the multi-domain and the multi-codomain mor-

phisms [23];

(b) Gn+1(x, y): hom-set of n+ 1-cells with domain x and codomain y in G [12];

(c) x� y: predecessor relation [12];

(d) max(Gn): the set of maximal elements in Gn [14];

(e) max(Gn+1, x, y): the maximal element of Gn+1(x, y) [14];

(f) x ⊥ y : x is comparable with y [32];

(g) νG
e,e′ = max{l : d(l)(e) ⊥ d(l)(e

′)}: the level on which domains (and codomains)
of cells e and e′ are comparable [62].

2. Some special simple ω-graphs:
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(a) α~u: the ω-graph corresponding to a ud-vector ~u [63];

(b) α4 can be pictured as follows [62]:

1 0
��@@

3 2
��@@

5 4
��@@

7 6
�� AA

8

3. Some special morphisms of simple ω-graphs:

(a) b, t : αn −→ αn′ : the bottom and the top morphisms [63];

(b) b~u;l, t~u;l : αtr(l)(~u) −→ α~u: the multi-bottom and the multi-top morphisms [64];

(c) κi : αu2i −→ α~u: the coprojections into α~u [63]:

αu0 αu2

αu1

bu0

@
@@I tu2

�
���

αu2k−2 αu2k

αu2k−1

bu2k−2

@
@@I tu2k

�
���. . .

α~u

κ2

�
��� κ2k−2

@
@@I κ2k

PPPPPPPPi

κ0

��������1

(d) κ0;~u : α~u −→ α[~u,l,~v], κ1;~v : α~v −→ α[~u,l,~v]: the coprojections into α[~u,l,~v] [64].

4. A general ω-category A [12, 97]:

(a) dA
(s) = dA

n;s, c
A
(s) = cAn;s : An −→ As: the domain and the codomain morphisms

[97];

(b) dA
~u;l, c

A
~u;l : A~u −→ Atr(l)(~u): the multi-domain and the multi-codomain mor-

phisms [23];

(c) ιA(n,l) = ιA(l) = ιA : An −→ Al: the identities [98];

(d) mA
n0,n1,n2

= mA
n1

= mA : An0,n1,n2 −→ Amax(n0,n2): the compositions [98];

(e) mA
~u : A~u −→ Aht(~u): the canonical composition morphism [25];

(f) πA
i..j : A~u −→ Au2i,...,u2j

: the projection i ≤ j [23];

(g) πA
o;~u : A[~u,l,~v] −→ A~u, πA

1;~v : A[~u,l,~v] −→ A~v: the projections [24].

5. The free ω-categories:
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(a) [G]: the free ω-category on a ω-graph G [66, 112];

(b) [G]n =
∐

~u∈UDn
G~u: the set/object of n-cells in [G] [112];

(c) κ~u = κ~u;n : G~u −→ [G]n: the coprojections [112];

(d) [G]n0,n1,n2 =
∐

(~u,~v)∈UDn0,n1,n2
G[~u,n1,~v]: the set/object of n1-compatible pairs of

n0- and n2-cells in [G] [113];

(e) κ~u,~v = κ~u,~v;n0,n1,n2 : G[~u,n1,~v] −→ [G]n0,n1,n2 : the coprojections [113]; ;

(f) δ~u = [α~u]: the simple ω-category corresponding to a ud-vector ~u [71];

(g) A fragment of a simple ω-category δs in S, s ≥ 0, n ≥ 0 [71]:

-
πs

0,n+1

δs
n+1 ×δs

n
δs
n+1 δs

n+1
-

ms
n+1,n,n+1

-
πs

1,n+1

-
ds

n

δs
n

�
ιsn+1

-
csn

(h) l ≤ n

-
ds

(l)

δs
n δs

l
�

ιs(n)

-
cs(l)

the composite morphisms;

(i) macG and macS: the maximal cells in [G] and S, respectively (if exist) [13].

6. Some special morphisms of simple ω-categories:

(a) b, t : δs −→ δs′ : the bottom and the top morphisms [73];

(b) b~s;l, t~s;l : δtr(l)(~s) −→ δ~s: the multi-bottom and the multi-top morphisms [73];

(c) κ0;~u : δ~u −→ δ[~u,l,~v] κ1;~v : δ~v −→ δ[~u,l,~v] the embeddings into the coproduct
[73];

(d) l ≤ s

�
t(s)
n

δs
n δl

n
-

p(l)
n

�

b(s)
n

the composite morphisms;

(e) ↓ : [G] −→ δ0, e↓e′ : [G] −→ δs+1: the morphisms into δn, e � e′, e, e′ ∈ Gs

[73];

(f) ps : δs+1 −→ δs: the projection [75];
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(g) ρ0;s+1,ρ1;s+1 : δs+1,s,s+1 −→ δs+1, ρs+1 : δs+1 −→ δs+1,s,s+1: the order on
δs+1 [75];

(h) The (a fragment of) the internal disk D in S at level n, s ≥ 0, n ≥ 0 [75]; :

-
ρ0;s+1

n

δs+1,s,s+1
n δs+1

n-
ρ1;s+1

n

�
bs

n

δs
n

-
ps

n

�
ts
n

(i) %~u : δu −→ δ~u: the unique essential morphism from δu to δ~u [89].
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