
Semantyka i wery�kacja programów 2023/24.
Egzamin 24/02/2024, zadanie 1 (semantyka operacyjna)

Napisz semantyk¦ operacyjn¡ dla j¦zyka ze statycznymi zmiennymi lokalnymi o nast¦puj¡cej
gramatyce:

Num ∋ n ::= . . .−1 | 0 | 1 | . . .
Var ∋ x ::= x1 | x2 | . . .
VarP ∋ p ::= p1 | p2 | . . .
Expr ∋ e ::= n | x | e1 + e2 | e1 − e2
Dec ∋ d ::= var x = e | proc p(var x = e) I | d1; d2
Instr ∋ I ::= x := e | I1; I2 | skip | if e <> 0 then I1 else I2 |

begin d; I end | while e <> 0 do I | call p(e) | call p()
Prog ∋ P ::= prog I

W j¦zyku tym procedury s¡ rekurencyjne, wi¡zanie identy�ktatorów wolnych w ciele pro-
cedury jest statyczne.

Niestandardowo dziaªa tutaj przekazywanie parametru do procedury. Deklaracja postaci

proc p(var x = e) I

oznacza, »e kod procedury p b¦dzie wykonywany z parametrem formalnym x, który jako
statyczna zmienna lokalna wmomencie deklaracji zostanie zainicjowany warto±ci¡ wyra»enia e,
a nast¦pnie b¦dzie funkcjonowaª w programie jak zmienna wspólna dla wszystkich wywoªa« tej
procedury, z bie»¡c¡ warto±ci¡ zachowywan¡ pomi¦dzy kolejnymi jej wywoªaniami. Zmienna
ta mo»e by¢ wykorzystywana jak �zwykªe� zmienne (wprowadzane deklaracjami zmiennych),
ale jedynie w wywoªaniach oraz w kodzie procedury p (nie jest widoczna poza ciaªem tej
procedury). W szczególno±ci ka»de wywoªanie powy»szej procedury postaci

call p()

oznacza, »e zmienna x na wej±ciu do kodu procedury b¦dzie miaªa sw¡ dotychczasow¡ warto±¢
bie»¡c¡ (tak¡, jak w momencie, gdy sterowanie opuszczaªo kod ostatniego czynnego wywoªa-
nia p lub, przy pierwszym wywoªaniu tej procedury, warto±¢ nadan¡ jej przy inicjalizacji
w deklaracji procedury). Natomiast wywoªanie postaci

call p(e)

spowoduje, »e obliczona w momencie wywoªania warto±¢ wyra»enia e zostanie tu» przed wyko-
naniem ciaªa procedury przypisana na widoczn¡ w ciele statyczn¡ zmienn¡ lokaln¡ x.

Nale»y zaªo»y¢, »e identy�katory zmiennych i procedur pochodz¡ z rozª¡cznych zbiorów
(tzn. Var∩VarP = ∅). Równie» nale»y przyj¡¢, »e ró»ne deklaracje procedur wprowadzaj¡ ró»ne
statyczne zmienne lokalne, nawet je±li ich nazwy w tych ró»nych deklaracjach si¦ pokrywaj¡.

W rozwi¡zaniu nale»y zde�niowa¢ zbiór kon�guracji oraz poda¢ reguªy przej±cia dla in-
strukcji oraz deklaracji.

Mo»na przyj¡¢, »e dana jest pomocnicza funkcja semantyczna dla wyra»e«:

� E : Expr → Env → Store → Num

gdzie, jak zwykle, Num to zbiór liczb caªkowitych. Mo»na te» przyj¡¢, »e dana jest funkcja
alloc : Store → Store× Loc alokuj¡ca nieu»ywan¡ lokacj¦.

verté

Przykªad 1
01: prog

02: begin

03: var x = 2;

04: var y = 3;

05: proc p(var x = 4)

06: begin

07 var z = 1;

08: x := x + y;

09: y := x + z;

10: end

11: proc q(var y = 5)

12: y := y + x;

13: call p();

14: call p(x);

15: call q(x);

16: call q();

17: call q(y);

18: call p(y);

19: end

W wyniku dziaªania tego programu tu» przed wyj±ciem
z bloku begin...end w wierszu 19 warto±¢ zmiennej x
b¦dzie 2, za± warto±¢ zmiennej y b¦dzie 23. Staty-
czna zmienna lokalna x z procedury p b¦dzie miaªa
warto±¢ 22, za± statyczna zmienna lokalna y z procedury q
b¦dzie miaªa warto±¢ 13. Zobaczmy, jak do tego dojdzie.
Po wywoªaniu procedury p w wierszu 13 zmienna
globalna x nie zmieni warto±ci, za± zmienna y przy-
bierze warto±¢ 8. Natomiast statyczna zmienna
lokalna x z procedury p przybierze warto±¢ 7.
Nast¦pnie po wywoªaniu procedury p w wierszu 14

zmienna globalna x nie zmieni warto±ci, za± zmienna
y przybierze warto±¢ 11. Natomiast statyczna zmienna
lokalna x z procedury p przybierze warto±¢ 10.
Dalej wywoªanie procedury q w wierszu 16 nie spowoduje
zmiany zmiennych globalnych. Jednak zmieni si¦ warto±¢
statycznej zmiennej lokalnej y z procedury q z 4 na 6.
Wywoªanie procedury q w wierszu 17 nie spowoduje zmi-
any zmiennych globalnych. Jednak ponownie zmieni si¦
warto±¢ statycznej zmiennej lokalnej y tym razem na 13.
Wreszcie wywoªanie procedury p w wierszu 18 spowoduje,
»e zmienna y przybierze warto±¢ 23, za± statyczna
zmienna lokalna x z procedury p przybierze warto±¢ 22.

Rozwi¡zanie:

Semantyka naturalna (du»e kroki):
Kon�guracje ko«cowe: T = Store.
Kon�guracje: Γ = (Instr × Env × Store) ∪ T.
Kon�guracje deklaracji: (Dec× Env × Store) ∪ (Env × Store)

� �rodowiska s¡ postaci ρ ∈ Envn = EnvV × EnvPn, gdzie

� EnvV = Var ⇀ Loc

� EnvPn = VarP ⇀ Procn−1

� Dla ρ = ⟨ρv, ρp⟩ ∈ Env przyjmujemy notacje:

� ρ[x 7→ l] = ⟨ρv[x 7→ l], ρp⟩ oraz ρ(x) = ρv(x),
gdy x ∈ Var, l ∈ Loc,

� ρ[p 7→ P] = ⟨ρv, ρp[p 7→ P]⟩ oraz ρ(p) = ρp(p),
gdy p ∈ VarP, P ∈ Proc.

Zakªadamy tutaj, »e Loc ∩ Z = ∅.

� Store = Loc ⇀ Z

� Procn = Var × Loc× Envn−1 × Instr

� EnvP0 = {∅}

� Env =
⋃

i∈N Envi

� Proc =
⋃

i∈N−{0} Proci

Niestandardowa dziedzina dla procedur pozwala na przechowywanie informacji o umiejscowie-
niu w skªadzie warto±ci lokalnej zmiennej statycznej zwi¡zanej z procedur¡.
Relacja �doj±cia� (�du»ych kroków�) dla programów:

;P ⊆ Prog × T

Relacja �doj±cia� (�du»ych kroków�) dla instrukcji:

; ⊆ (Instr × Env × Store)× T

Relacja �doj±cia� (�du»ych kroków�) dla deklaracji:

;d ⊆ (Dec× Env × Store)× (Env × Store)

Reguªy:

Reguªy dla programu:

I, ∅, ∅ ; s

prog I,;P s

Standardowe reguªy dla zwykªych oblicze«:

x:=e, ρ, s ; s[ρ(x) 7→E [[E]] ρ s] skip, ρ, s ; s

I1, ρ, s ; s′ I2, ρ, s
′ ; s′′

I1;I2, ρ, s ; s′′

d, ρ, s ;d ρ′, s′ I, ρ′, s′ ; s′′

begin d; I end, ρ, s ; s′′

ρ(p) = ⟨x, l, ρ′, I⟩
I, ρ′[x 7→ l][p 7→ ρ(p)], s ; s′

call p(), ρ, s ; s′

E [[e]] ρ s = v ρ(p) = ⟨x, l, ρ′, I⟩
I, ρ′[x 7→ l][p 7→ ρ(p)], s′[l 7→ v] ; s′

call p(e), ρ, s ; s′

Reguªy dla while:

E [[e]] ρ s = 0

while e <> 0 do I, ρ, s ; s

E [[e]] ρ s ̸= 0 I, ρ, s ; s′

while e <> 0 do I, ρ, s′ ; s′′

while e <> 0 do I, ρ, s ; s′′

Reguªy dla if:

I1, ρ, s ; s′ E [[e]] ρ s ̸= 0

if e <> 0 then I1 else I2, ρ, s ; s′

I2, ρ, s ; s′ E [[e]] ρ s = 0

if e <> 0 then I1 else I2, ρ, s ; s′

Reguªy dla deklaracji:

alloc(s) = ⟨s′, l⟩ E [[e]] ρ s = v

var x = e, ρ, s ;d ρ[x 7→ l], s′[l 7→ v]

alloc(s) = ⟨s′, l⟩ E [[e]] ρ s = v

proc p(var x = e) I, ρ, s ;d ρ[p 7→ ⟨x, l, ρ, I⟩], s′[l 7→ v]

d1, ρ, s ;d ρ′, s′ d2, ρ
′, s′ ;d ρ′′, s′′

d1;d2, ρ, s ;d ρ′′, s′′

