
Semantyka i wery�kacja programów 2022/23.
Egzamin 6/02/2023, zadanie 3 (wery�kacja)

Pracujemy w j¦zyku TinyA nad typem danych rozszerzonym o rodzaj Array i operacje:

newarr : Array
put : Array × Int × Int → Array
get : Array × Int → Int
swap : Array × Int × Int → Array

No±nik rodzaju Array to zbiór funkcji (caªkowitych) z liczb caªkowitych w liczby caªkowite,

|A|Array = Int→ Int,

a operacje interpretowane s¡ jako funkcje

newarrA : |A|Array

putA : |A|Array × |A|Int × |A|Int → |A|Array

getA : |A|Array × |A|Int → |A|Int
swapA : |A|Array × |A|Int × |A|Int → |A|Array

zde�niowane nast¦puj¡co:

newarrA(i) = 0
putA(A, i, n) = A[i 7→ n]
getA(A, i) = A(i)
swapA(A, i, j) = A[i 7→ A(j), j 7→ A(i)]

dla wszystkich i, j, n ∈ Int i A : Int→ Int. Wyra»enie get(A, e) b¦dziemy jak zwykle zapi-
sywa¢ jako A[e]. Ponadto, w asercjach wykorzystujemy �predykat� A:Array stwierdzajacy,
»e zmienna A jest rodzaju Array (pozostaªe zmienne s¡ rodzaju Int). Wyra»enia logiczne
j¦zyka rozszerzamy te» o oczywiste nierówno±ci e < e′ (wyra»alne jako e ≤ e′ ∧ ¬(e = e′))
oraz e > e′ (wyra»alne jako e′ < e). Dla czytelno±ci, w formuªach ci¡gi nierówno±ci b¦-
dziemy zapisywa¢ w skróconej postaci, np. j ≤ i ∧ i < k zapisuj¡c jako j ≤ i < k.

Dla wygody specy�kacji i dowodzenia poprawno±ci wprowadzamy pomocniczy schemat
formuª:

max (A, j, k, p) ≡ A:Array ∧ ∀i.(j ≤ i ≤ k =⇒ A[i] ≤ A[p])

1



Nale»y udowodni¢ caªkowit¡ poprawno±¢ nast¦puj¡cego programu wzgl¦dem podanych
warunków:

[A:Array ∧ n > 0 ]

m := 1;

while m < n

do

( if A[m] > n*n then

(j := 0;

while m+j < n-j

do (if A[m+j] > A[n-j] then A := swap(A,m+j,n-j) else skip;

j := j+1

);

m := m+j

)

else

(x := A[n];

j := n; i := n;

while j > m

do (j := j-1;

if A[j] > x then (A := swap(A,i,j); i := i-1) else skip

);

if i = n then m := n else m := i+1

)

)

[A:Array ∧max (A, 1, n, n)]

Na nast¦pnej stronie podana jest wersja tego programu z miejscem na wpisanie odpo-
wiednich adnotacji, któr¡ mo»na wykorzysta¢ dla przedstawienia rozwi¡zania (przy braku
miejsca mo»na te» np. wpisa¢ tam tylko nazwy adnotacji zde�niowanych osobno).

Wymagane jest:

� podanie niezmienników γ0, γ1 i γ2 wszystkich trzech p¦tli programu oraz asercji α1 i
α2, które �koduj¡� dowód poprawno±ci (podanie pozostaªych asercji jest opcjonalne,
ale je±li zostan¡ podane, to ewentualne bª¦dy mog¡ wpªyn¡¢ na ocen¦ rozwi¡zania),
oraz

� podanie adnotacji [decr ... in ... wrt ... ] tak, aby (w kontek±cie podanych
niezmienników) wynikaªa z nich wªasno±¢ stopu p¦tli.

2



[A:Array ∧ n > 0 ]

m := 1

[ ]

while [γ0 : ]

m < n

do [decr in wrt ]

( if A[m] > n*n then

([ ]

j := 0;

[ ]

while [γ1 : ]

m+j < n-j

do [decr in wrt ]

( [ ]

if A[m+j] > A[n-j] then A := swap(A,m+j,n-j) else skip;

[ ]

j := j+1

[ ]

);

[α1 : ]

m := m+j

[ ]

)

else

([ ]

x := A[n];

[ ]

j := n; i := n;

[ ]

while [γ2 : ]

j > m

do [decr in wrt ]

( [ ]

j := j-1;

[ ]

if A[j] > x then ( A := swap(A,i,j); i := i-1 ) else skip

[ ]

);

[α2 : ]

if i = n then m := n else m := i+1

[ ]

)

[ ]

)

[A:Array ∧max (A, 1, n, n)]

3



Mo»liwe rozwi¡zanie

[A:Array ∧ n > 0 ]

m := 1

while [γ0 : A:Array ∧ 1 ≤ m ∧ ∃k.(m ≤ k ≤ n ∧max (A, 1,m− 1, k))]
m < n

do [decr n−m in Nat wrt >]
( if A[m] > n*n then

(j := 0;

while [γ1 : γ0 ∧m < n ∧ 0 ≤ 2 ∗ j ≤ n−m+ 1 ∧
∀k.(0 ≤ k < j =⇒ A[m+ k] ≤ A[n− k])]

m+j < n-j

do [decr n− j in Nat wrt >]
( if A[m+j] > A[n-j] then A := swap(A,m+j,n-j) else skip;

j := j+1

);

[α1 : γ0 ∧m < n ∧ (m+ j = n− j ∨m+ j = n− j + 1) ∧ j > 0 ∧
∀k.(0 ≤ k < j =⇒ A[m+ k] ≤ A[n− k])]

m := m+j

)

else

(x := A[n];

j := n; i := n;

while [γ2 : γ0 ∧m < n ∧m ≤ j ≤ i ≤ n ∧ (i = n =⇒ x = A[n]) ∧
∀k.(i < k ≤ n =⇒ A[k] > x) ∧ ∀k.(j ≤ k ≤ i =⇒ A[k] ≤ x)]

j > m

do [decr j in Nat wrt >]
( j := j-1;

if A[j] > x then ( A := swap(A,i,j); i := i-1 ) else skip

);

[α2 : γ0 ∧m < n ∧m ≤ i ≤ n ∧ (i = n =⇒ x = A[n]) ∧
∀k.(i < k ≤ n =⇒ A[k] > x) ∧ ∀k.(m ≤ k ≤ i =⇒ A[k] ≤ x)]

if i = n then m := n else m := i+1

)

)

[A:Array ∧max (A, 1, n, n)]

4


