Semantyka i weryfikacja programéw 2022/23.
Egzamin 6/02/2023, zadanie 3 (weryfikacja)

Pracujemy w jezyku TINY 4 nad typem danych rozszerzonym o rodzaj Array i operacje:

newarr: Array

put: Array x Int x Int — Array
get: Array x Int — Int

swap: Array x Int x Int — Array

Nosnik rodzaju Array to zbior funkeji (catkowitych) z liczb catkowitych w liczby catkowite,
| Al Array = Int — Int,
a operacje interpretowane sg jako funkcje

newarr o | A| array

put 4= | Al array X |Alme X [Alme = | Al array
get,A: ‘A|Army X |A’]nt — ’A‘Int

sSwWap 4 - ’A‘Army X ‘A|Int X ‘-/4|Int — ‘A’Army

zdefiniowane nastepujaco:

newarr 4(1) =0

put (A, i,n) = Afi — n]
get (A7) = A(i)
3wapA<A7 Z7.]> = A[l = A(])7] = A<Z)}

dla wszystkich i, j,n € Int 1 A: Int — Int. Wyrazenie get(A, e) bedziemy jak zwykle zapi-
sywacl jako A[e]. Ponadto, w asercjach wykorzystujemy ,,predykat” A: Array stwierdzajacy,
ze zmienna A jest rodzaju Array (pozostale zmienne sa rodzaju Int). Wyrazenia logiczne
jezyka rozszerzamy tez o oczywiste nier6wnosci e < €’ (wyrazalne jako e < ¢/ A (e = €'))
oraz e > ¢ (wyrazalne jako ¢/ < e). Dla czytelnosci, w formutach ciagi nieréwnosci be-
dziemy zapisywaé w skroconej postaci, np. j < i A1 < k zapisujac jako j < i < k.

Dla wygody specyfikacji i dowodzenia poprawnosci wprowadzamy pomocniczy schemat
formul:

maz(A, 7, k,p) = A:Array AVi.(j <i <k = Ali] < Alp])

Nalezy udowodnié¢ catkowita poprawnosé nastepujacego programu wzgledem podanych
warunkow:

[A:Array An >0]
m:=1;
while m < n
do
(if Alm] > n*n then
(j := 03
while m+j < n-j
do (if A[m+j] > A[n-j] then A := swap(A,m+j,n-j) else skip;
j o= g+l
)3

m+j

m :

)
else

(x := Aln];

j :=mn; 1 :=mn;

while j > m

do (j := j-1;

if A[j] > x then (A := swap(A,i,j); i := i-1) else skip
);
if i =nthenm :=n elsem := i+1

)

)
[A:Array A maz(A,1,n,n)]

Na nastepnej stronie podana jest wersja tego programu z miejscem na wpisanie odpo-
wiednich adnotacji, ktora mozna wykorzystac¢ dla przedstawienia rozwiazania (przy braku
miejsca mozna tez np. wpisa¢ tam tylko nazwy adnotacji zdefiniowanych osobno).

Wymagane jest:

e podanie niezmiennikdéw g, v1 1 72 wszystkich trzech petli programu oraz asercji o i
as, ktore koduja” dowdd poprawnosci (podanie pozostatych asercji jest opcjonalne,

ale jesli zostana podane, to ewentualne bledy moga wplynaé¢ na ocene rozwigzania),
oraz

e podanie adnotacji [decr ... in ... wrt ...] tak, aby (w kontekscie podanych
niezmiennikéw) wynikala z nich wlasnosé stopu petli.

[A:Array An >0]

m:=1
[
while [~ :
m<n
do [decr in wrt]
(if A[m] > n*n then
(L
j = 0;
[
while [~ :
mtj < n-j
do [decr in wrt]
([
if A[m+j] > A[n-j] then A := swap(A,m+j,n-j) else skip;
[
j o= g+l
[
);
[ag :
m := mtj
[
)
else
(L
x := A[n];
[
j :=mn; 1 :=mn;
[
while [7 :
j>m
do [decr in wrt]
(L
j = 3-1;
[
if A[j] > x then (A := swap(4,1,j); i := i-1) else skip
[
);
[as :
if i =nthenm :=nelsem := i+1
[
)
[
)

[A:Array A maz(A,1,n,n)]

Mozliwe rozwigzanie

[A:Array An >0]
m:=1
while [y : A:Array N1 <mA3Jk.(m <k <nAmaz(A,1,m—1k))]
m<n
do [decr n—m in Nat wrt >]
(if Alm] > n*n then
(j :=0;
while [v1 i AMmM<nA0<2%xj<n—m+1A
VE.(0<k<j = Am+k| < A[n—k])]
mtj < n-j
do [decr n—j in Nat wrt >]
(if Alm+j] > A[n-j] then A := swap(A,m+j,n-j) else skip;
j o= g+l
)3
lag:voAm<nA(m+j=n—jVm+j=n—7+1)A7>0A
VE.(0<k<j = Am+k| < A[n—k])]

m := mtj
)
else
(x := A[n];
j :=mn; 1 :=mn;

while [ya:pAm<nAm<j<i<nA(i=n = z=Aln])A
Vk(i<k<n = A[k] > 2) AVEk.(j <k <i = A[k] <z)]
j>m
do [decr j in Nat wrt >]
(j:=3-1;
if A[j] > x then (A := swap(4,1,j); i := i-1) else skip
)3
[ag:yoAm<nAm<i<nA(i=n = x=A[n])A
Vk.(it <k<n = Alk] > x)AVk.(m <k <i = Alk] <z)]
if i =n thenm :=n elsem := i+1
)

)
[A:Array A maz(A,1,n,n)]

