
Semantyka i wery�kacja programów 2022/23.
Egzamin 6/02/2023, zadanie 2 (semantyka denotacyjna)

Napisz semantyk¦ denotacyjn¡ dla j¦zyka o nast¦puj¡cej gramatyce:

Num 3 n ::= . . .−1 | 0 | 1 | . . .
Var 3 x ::= x1 | x2 | . . .
VarP 3 p ::= p1 | p2 | . . .
Expr 3 e ::= n | x | e1 + e2 | e1 − e2
Block 3 b ::= begin I end

Instr 3 I ::= x := e | var x = e | I1; I2 | skip | if e = 0 then I1 else I2 |
b | while e = 0 do b | call p(e) | proc p(x) b

W j¦zyku tym zakªadamy, »e wszystkie instrukcje wykonuj¡ si¦ w jakim± bloku okre±lonym

za pomoc¡ kategorii syntaktycznej Block. Deklaracje zmiennych indywiduowych (var x =

e) s¡ rozumiane statycznie w ramach bloków z tej kategorii. Przy czym deklaracja takiej

zmiennej widoczna jest do ko«ca najbardziej wewn¦trznego bloku, w którym si¦ znajduje, ale

poza zakresem widoczno±ci pó¹niej wykonanych deklaracji zmiennej o tej samej nazwie w tym

samym bloku. W zwi¡zku z tym, »e ciaªo p¦tli jest blokiem, oznacza to, i» warto±¢ zmiennej

zadeklarowanej w ciele p¦tli nie mo»e bezpo±rednio na tej zmiennej przetrwa¢ mi¦dzy ró»nymi

obrotami p¦tli.

W j¦zyku tym niestandardowo traktowane s¡ deklaracje procedur (proc p(x) b). Inaczej

ni» zwykle wykonywane s¡ one dynamicznie. Instrukcja deklaracji procedury proc p(x) b ma

po doj±ciu sterowania do niej spowodowa¢ wykonanie bloku b, przy czym identy�kator x w

kodzie b ma odpowiada¢ zmiennej, jaka jest widoczna bezpo±rednio przed deklaracj¡. Oprócz

wykonania b taka deklaracja wprowadza pod identy�katorem p procedur¦ o kodzie b ze staty-
czn¡ widoczno±ci¡ identy�katorów i o parametrze formalnym x z przekazywaniem parametru

przez warto±¢. Tak wprowadzona procedura jest widoczna od miejsca deklaracji do ko«ca

dziaªania programu lub do nast¦pnego wykonania deklaracji procedury o tym samym identy-

�katorze, w tym jest ona widoczna rekurencyjnie w kodzie tej procedury równie» w pierwszym

wykonaniu bloku b.
Znaczenie pozostaªych konstrukcji jest standardowe. Nale»y zaªo»y¢, »e identy�katory

zmiennych i procedur pochodz¡ z rozª¡cznych zbiorów (tzn. Var ∩ VarP = ∅). Trzeba po-

da¢ typy funkcji semantycznych dla wyra»e«, bloków i instrukcji, a tak»e de�nicje dla funkcji

semantycznych dla bloków i instrukcji. Nale»y te» zde�niowa¢ wszystkie dziedziny seman-

tyczne, z których korzysta si¦ przy podawaniu semantyki. Je±li trzeba, mo»na wykorzysta¢

funkcj¦ alloc odpowiedniego typu (ten typ nale»y poda¢), która okre±la¢ b¦dzie dotychczas

niewykorzystywan¡ lokacj¦.

Przykªad:
01: begin

02: var x = 0;

03: var y = 0;

04: while x = 0 do begin

05: var z = 3;

06: proc p(x) begin

07: z := z + y + x;

08: if z - 3 = 0

09: then call p(1)

10: else y := z + 1

11: end;

12: if y - 10 = 0 then

13: x := 1

14: else

15: y := y + 1

16: end;

17: call p(3)

18: end

W wyniku dziaªania tego programu warto±ci¡ zmiennej

y tu» przed wyj±ciem z bloku w wierszu 18. b¦dzie 23.
Wykonanie kodu wygl¡da tak: najpierw nast¦puje ini-

cjalizacja x oraz y na 0. Nast¦pnie w wierszu 04.

wchodzimy do p¦tli while z warunkiem wej±cia x = 0,

który jest speªniony. Uruchamiamy zatem ciaªo p¦tli,

co prowadzi co zadeklarowania zmiennej z i nadania jej

warto±ci 3. Nast¦pnie wchodzimy do deklaracji proce-

dury p, która w swoim bloku najpierw okre±li warto±¢

zmiennej z jako sum¦ równ¡ 3. Wykonanie nast¦pnej

instrukcji if spowoduje wybranie gaª¦zi then i rekuren-

cyjne wywoªanie procedury p zadeklarowanej w wier-

szu 06. Tym razem zmiena z zostanie okre±lona jako

suma równa 4 i w nast¦pnej instrukcji if zostanie

wybrana gaª¡¹ else, gdzie warto±¢ zmiennej y zostanie

okre±lona jako suma równa 5. W dalszym ci¡gu nast¡pi

wyj±cie z wywoªania p. Nast¦puj¡ca po deklaracji p instrukcja warunkowa w wierszu 12.

sprawdzi, »e y równe 5 nie speªnia jej warunku, wi¦c wykona przypisanie z wiersza 15., co nada

zmiennej y warto±¢ 6. Nast¦pnie przyst¡pimy do kolejnego sprawdzenia warunku wej±ciowego

p¦tli. Zmienna x nie zmieniªa warto±ci, wi¦c warunek pozostanie prawdziwy i znowu wejdziemy

do wn¦trza p¦tli, ponownie zadeklarujemy z i p. Wykonanie w ramach deklaracji ciaªa p

spowoduje okre±lenie warto±ci zmiennej z jako 3+6+0=9 i zmiennej y jako 10. Tym razem

warunek instrukcji warunkowej w wierszu 12. b¦dzie prawdziwy, wi¦c wykona si¦ przypisanie

z wiersza 13. To doprowadzi do wyj±cia z p¦tli, po którym nast¡pi wywoªanie w wierszu 17.

procedury p z parametrem aktualnym 3. Warto±¢ zmiennej z w tre±ci procedury p zostanie

okre±lona jako suma 9+10+3=22, warunek if nie b¦dzie speªniony i nast¡pi przypisanie na

zmienn¡ y warto±ci 23, wyj±cie z procedury p i wyj±cie z bloku w wierszu 18.

Mo»liwe rozwi¡zanie:

Dziedziny Podstawowe dziedziny semantyczne maj¡ tutaj nast¦puj¡c¡ posta¢:

� Val = Z⊥,

� SVal = Val ∪ Proc,

� State = (Loc⊥] VarP)→ SVal,

� Proc = Val→ State→ State,

Okre±limy ±rodowisko:

Env = Var→ Loc⊥

Funkcja alloc ma nast¦puj¡cy typ: alloc : State→ State× Loc.

Typy funkcji semantycznych

� E : Expr→ Env→ State→ Val,

� I : Instr→ Env→ State→ (Env × State).

� B : Block→ Env→ State→ (Env × State).

Denotacja dla programów Zakªadamy, »e dla programu, który skªada si¦ z instrukcji I,
denotacj¡ jest IJIK ρ s0, gdzie ρ = λx ∈ Var.⊥, s0 = λl ∈ Loc.⊥.

Denotacja bloków

� BJbegin I endK = λρ ∈ Env.λs ∈ State.(ρ, s′)
gdzie (ρ′, s′) = IJIK ρ s

Denotacja instrukcji

� IJx := eK = λρ ∈ Env.λs ∈ State.ifte(ρ x ∈ Loc, (ρ, s[ρ x 7→ EJeK ρ s]), (ρ,⊥))

� IJvar x = eK = λρ ∈ Env.λs ∈ State.(ρ[x 7→ l], s′[l 7→ EJeK ρ s]), gdzie (s′, l) = alloc(s)

� IJI1; I2K = λρ ∈ Env.λs ∈ State.IJI2K ρ′ s′, gdzie (ρ′, s′) = IJI1K ρ s

� IJskipK = λρ ∈ Env.λs ∈ State.(ρ, s)

� IJif e = 0 then I1 else I2K = λρ ∈ Env.λs ∈ State.ifte(n =Val 0, IJI1K, IJI2K) ρ s,
gdzie n = EJeK ρ s

� IJbK = λρ ∈ Env.λs ∈ State.BJbK ρ s,

� IJwhile e = 0 do bK = λρ ∈ Env.λs ∈ State.(fixF)(ρ, s),
gdzie F = λϕ : (Env × State)→ Env × State. λ(ρ′, s′) ∈ Env × State.

ifte(EJeK ρ′ s′ =Val 0, ϕ(BJbK ρ′ s′), (ρ′, s′))

� IJcall p(e)K = λρ ∈ Env.λs ∈ State.ifte(s p ∈ Proc, (ρ, s p n s), (ρ,⊥)),
gdzie n = EJeKρ s,

� IJproc p(x) bK = λρ ∈ Env.λs ∈ State.BJbK ρ s′,
gdzie s′ = s[p 7→ P]

P = λn ∈ Val.λs′′ ∈ State.BJbK ρ′ ŝ′,
przy czym (ŝ, l) = alloc(s′′), ρ′ = ρ[x 7→ l], ŝ′ = ŝ[l 7→ n]

