
SEMANTYKA I WERYFIKACJA 2021/22 – Zadanie domowe nr 1

Napisz semantykę operacyjną małych kroków dla programów i instrukcji następującego języka:

Z 3 n ::= 0 | 1 | -1 | 2 | -2 | . . .
Var 3 x ::= x | y | . . .

Expr 3 e ::= n | x | e1 + e2 | e1 ∗ e2 | e1 − e2
BExpr 3 b ::= true | false | e1 < e2 | e1 == e2 | b1 and b2 | not b

Instr 3 I ::= skip | x := e | I1; I2 | if b then I1 else I2
| while b do I | atomic{I} | escape

Prog 3 P ::= I1 ‖ I2 ‖ ... ‖ In dla n ≥ 1

Wyrażenia arytmetyczne i logiczne mają standardowe znaczenie, dane przez funkcje

EJ_K : Expr → State→ Z oraz BJ_K : BExpr → State→ {tt, ff}

gdzie State = Var → Z. Semantykę instrukcji należy zdefiniować jako relację przejścia w postaci
dogodnej dla wykorzystania w semantyce programów. W razie potrzeby można rozszerzyć składnię
programów lub instrukcji.

Program reprezentowany jest jako lista wątków. Każdy wątek to jakaś instrukcja. Program kończy
działanie, gdy wszystkie jego wątki zakończą swoje działanie. Wątki współdzielą stan (zmiana
wartości zmiennych w jednym wątku jest widoczna w pozostałych) i są wykonywane ‘współbieżnie’
– ‘przeplotowo’, jak opisano niżej.

Znaczenie instrukcji innych niż atomic i escape jest standardowe. Wykonanie instrukcji składa się
z elementarnych kroków obliczeń, którymi są w szczególności instrukcje przypisania i sprawdzanie
warunków w if i while. Elementarne kroki różnych wątków mogą się ze sobą przeplatać.

Instrukcja przypisania x := e jest wykonywana ‘atomowo’ (jako krok elementarny) wraz z obli-
czeniem wartości e — inne wątki nie mogą zmienić stanu, w którym rozpoczęto jej wykonanie
i w którym obliczana jest wartość wyrażenia, aż do zakończenia realizacji tej instrukcji.

W instrukcjach if oraz while sprawdzenie warunku jest krokiem elementarnym (czyli odbywa się
‘atomowo’). Po obliczeniu warunku wybierana jest odpowiednia gałąź (w przypadku if) lub to,
czy pętla ma być kontynuowana (while). Instrukcje znajdujące się w ciele gałęzi lub pętli mogą
być już dowolnie przeplatane z instrukcjami innych wątków.

Blok atomic wymusza wykonanie całej zawartej w nim instrukcji w sposób ‘atomowy’: gdy w ja-
kimś wątku wykonywane są instrukcje wewnątrz bloku atomic, instrukcje z innych wątków nie
mogą być z nimi przeplatane. Bloki atomic mogą być zagnieżdżone. W takiej sytuacji dopiero
zakończenie ‘ostatniego’ (tj. najbardziej zewnętrznego) bloku atomic pozwala na wznowienie po-
zostałych wątków.

Instrukcja escape kończy działanie aktualnego bloku atomic — po wykonaniu tej instrukcji dany
wątek powinien kontynuować wykonanie od następnej instrukcji za tym blokiem (jeśli taka istnieje,
w przeciwnym razie dany wątek kończy działanie). Jeśli bloki atomic są zagnieżdżone, to escape
kończy działanie tylko najbardziej wewnętrznego bloku, w którym występuje. Wywołanie escape
poza jakimkolwiek blokiem atomic działa jak skip.

Wymagamy, aby semantyka programów prawidłowo realizowała wyżej opisany sposób przeplatania
operacji — poprawne rozwiązanie musi pozwalać na wszystkie zgodne z tym opisem przeploty.
W szczególności nie można po prostu tylko wykonać wątków jeden po drugim.

1

Kilka przykładów

Program x := 1 ‖ x := 2 ‖ x := 3 może wykonać trzy instrukcje przypisania w dowolnej kolejności,
tak że w stanie końcowym x może mieć dowolną wartość ze zbioru {1, 2, 3}.

Program (x := 0; x := x + 1) ‖ x := 5 skończy działanie w stanie, w którym x ma dowolną wartość
ze zbioru {5, 6, 1}, bo umożliwia nastepujace przeploty:

• x := 0; x := x + 1; x := 5
• x := 0; x := 5; x := x + 1
• x := 5; x := 0; x := x + 1

Program (x := 0; if x == 0 then x := x + 1 else x := x + 2) ‖ x := 10 może zakończyć
działanie w stanie, w którym x ma dowolną wartość spośród 1, 10, 11 lub 12, gdyż możliwe są
następujące przeploty:

• Najpierw x := 10, potem cały pierwszy wątek (w stanie końcowym wartość x to 1).
• Najpierw x := 0, potem x := 10, i dalej if (w stanie końcowym wartość x to 12).
• Najpierw x := 0, potem sprawdzenie warunku w instrukcji if, ale bezpośrednio po tym

sprawdzeniu, a przed wykonaniem instrukcji z wybranej gałęzi wykonywane jest x := 10,
a dopiero potem gałąź x := x + 1 (w stanie końcowym wartość x to 11).

• Najpierw cały pierwszy wątek, potem drugi wątek (w stanie końcowym wartość x to 10).

Gdy instrukcję warunkową obejmiemy blokiem atomic:

(x := 0; atomic{if x == 0 then x := x + 1 else x := x + 2}) ‖ x := 10

to możliwe wartości x w stanie końcowym zawęzimy do zbioru {1, 10, 12}, bo przypisanie x := 10
z drugiego wątku nie może już ‘wpleść’ się pomiędzy sprawdzenie warunku a wykonanie odpowied-
niej gałęzi if.

Program (x := 0; y := 1; while y == 1 do x := x + 1) ‖ y := 0 może się zapętlić, gdy drugi wątek
zostanie ‘zagłodzony’ przez nieskończone wykonanie pętli pierwszego wątku (instrukcja drugiego
wątku nie zostanie ‘wpleciona’ w to nieskończone wykonanie), a może się zakończyć (w stanie,
w którym wartość x jest dowolną liczbą naturalną), gdy drugi wątek wplecie się przed sprawdzenie
warunku pętli (po dowolnej liczbie wykonań jej ciała).

Program atomic{x := 1; escape; x := 2} skończy działanie w stanie, gdzie wartość x to 1, gdyż
escape przerwie dalsze wykonanie bloku.

Program
atomic{ atomic{x := 1; escape; x := 2}; x := x + 10}

skończy skończy działanie w stanie, gdzie wartość x to 11, gdyż escape przerwie wykonanie we-
wnętrznego bloku, ale działanie zewnętrznego bloku będzie kontynuowane.

2

Przykładowe rozwiązanie

Semantykę wyrażeń mamy daną jak w treści zadania.

Rozszerzamy składnię programu: wątek może być instrukcją Ii (jak w treści zadania) lub specjal-
nym znacznikiem finished, oznaczającym, że dany wątek zakończył już działanie1.

Nie-końcowe konfiguracje programu rozszerzamy o dodatkowy znacznik rezerwacji
rs ∈ RS = N ∪ {all}. Znacznik all mówi, że można wykonywać dowolny wątek, zaś liczba i
w tym miejscu oznacza, że można wykonywać tylko obliczenia i-tego wątku aż do zwolnienia przez
niego blokady.

Przejścia programu mają więc postać: 〈P, s, rs〉 ⇒ 〈P ′, s′, rs′〉 lub 〈P, s, rs〉 ⇒ s′, gdzie s, s′ ∈ State
i P, P ′ ∈ Prog. Ta druga forma oznacza zakończenie wykonywania całego programu – wszystkie
wątki się zakończyły. Ewaluację programu P zaczynamy od konfiguracji ze znacznikiem all. Wy-
konanie programu jest reprezentowane przez kroki w relacji

⇒ ⊆ (Prog × State× RS)× ((Prog × State× RS) ∪ State)

gdzie konfiguracje końcowe to State. Zatem konfiguracja początkowa dla programu P to
〈P, ∅V ar→Z, all〉.

Dodatkowo definiujemy pomocniczą relację −→ opisującą wykonanie instrukcji. Relacja ta prowa-
dzi od instrukcji i pewnego stanu do pozostałej do wykonania instrukcji (jeśli nie nastąpił koniec
wykonania), nowego stanu oraz dodatkowego znacznika es ∈ ES = {⊥, escaping, reserved}.
Znacznik reserved informuje, że jesteśmy w trakcie wykonywania jakiegoś bloku atomic, a znacz-
nik escaping, że nastąpiło ‘przerwanie’ bloku za pomocą escape. Zatem relacja ma postać:

−→ ⊆ (Instr × State)× ((Instr × State× ES) ∪ (State× ES))

Czyli ‘przejścia’ dla instrukcji mają postać 〈I, s〉 −→ 〈I ′, s′, es〉 lub 〈I, s〉 −→ 〈s′, es〉. Tylko z
pozoru może wydawać się problematyczne, że nie opisujemy tutaj niezależnej semantyki operacyjnej
instrukcji (przejść relacji −→ nie można składać po sobie, bo ‘kształt’ wyjścia nie zgadza się z
‘kształtem’ wejścia – różnią się o dodatkowy znacznik rezerwacji). Opisujemy bowiem obliczenia
programów, których kroki definiuje relacja ⇒, zaś −→ jest tylko pomocniczą konstrukcją. Relacja
⇒ będzie zdefiniowana korzystając z −→ w powyższej postaci.

Instrukcja atomic normalnie wykonuje swoje kroki, ale po każdym kroku, gdy jeszcze jest coś do
zrobienia, ustawia status reserved. Reguły przejścia dla programów zapewnią, że do czasu zwol-
nienia blokady jedynie ten wątek będzie wykonywany. W przypadku, gdy instrukcja wewnątrz
atomic ustawi status escaping, blok kończy wywołanie, nawet jeśli pozostały w nim jeszcze ja-
kieś instrukcje. Zagnieżdżanie bloków działa trywialnie: blok po prostu nadaje status reserved
(niezależnie od tego, że ten status mógł już być ustawiony przez wewnętrzny blok). Zatem status
reserved jest ustawiany zawsze, gdy ewaluacja postępuje wewnątrz co najmniej jednego bloku
atomic.

〈I, s〉 −→ 〈I ′, s′, es〉, es 6= escaping
〈atomic{I}, s〉 −→ 〈atomic{I ′}, s′, reserved〉

1Znacznik ten trzymamy po to, aby lista wątków się nigdy nie kurczyła. Wtedy dany wątek możemy zawsze
identyfikować po numerze jego pozycji na tej liście. Oczywiście równie dobrze można jakoś inaczej przypisać
wątkom unikalne nazwy i wtedy pozwolić na kurczenie listy. Można też pozwolić sobie na to, by w trakcie
programu numer wątku zmieniał się (gdy inny ‘zniknie’) – tylko wtedy trzeba uważać, żeby to nic nie psuło, a jak
zapewniamy, że numery są stałe, to nie trzeba się tym w ogóle przejmować.

3

〈I, s〉 −→ 〈s′, es〉
〈atomic{I}, s〉 −→ 〈s′,⊥〉

Instrukcja escape nadaje status escaping, który jest wykrywany przez atomic. Po złapaniu ‘prze-
rwania’ przez atomic, dany blok nie jest już dalej wykonywany, ale przerwanie nie jest propagowane
dalej – bo escape kończy realizację tylko jednego bloku atomic.

〈escape, s〉 −→ 〈s, escaping〉

〈I, s〉 −→ 〈I ′, s′, escaping〉
〈atomic{I}, s〉 −→ 〈s′,⊥〉

Status escaping nie wpływa na wykonanie innych instrukcji i programów, zatem nadanie go poza
blokiem atomic nie ma znaczenia – escape poza blokiem atomic działa więc jak skip.

Program ma dwa tryby ewaluacji: tryb all, gdzie wszystkie wątki mogą się przeplatać, i tryb
‘zarezerwowany’, gdzie tylko jeden wątek ma prawo kontynuować.

W trybie all może być realizowany dowolny z wątków. Jeśli taki wątek zaczął wykonywać swój
blok atomic, zgłasza on ‘rezerwację’ i jest ona zapisywana w konfiguracji. Aż do momentu, gdy
po wykonaniu danej operacji wątek ten przestanie zgłaszać rezerwację (co będzie oznaczało opusz-
czenie bloku atomic), tylko ten wątek będzie mógł być wykonywany.

dla dowolnego i ∈ {1, ..., n} 〈Ii, s〉 −→ 〈I ′i, s′, es〉
gdzie rs =

{
i, jeśli es = reserved

all, w p.p.〈I1 ‖ ... ‖ In, s, all〉 ⇒ 〈I1 ‖ ... ‖ Ii−1 ‖ I ′i ‖ Ii+1 ‖ ... ‖ In, s′, rs〉

W trybie rezerwacji tylko wskazany wątek może być wykonywany. Jeśli wykonanie bloku atomic
trwa w nim nadal, to nadal zgłasza on rezerwację i jest ona utrzymywana.

〈Ii, s〉 −→ 〈I ′i, s′, es〉
gdzie rs =

{
i, jeśli es = reserved

all, w p.p.〈I1 ‖ ... ‖ In, s, i〉 ⇒ 〈I1 ‖ ... ‖ Ii−1 ‖ I ′i ‖ Ii+1 ‖ ... ‖ In, s′, rs〉

Zwróćmy uwagę, że wątek postaci atomic{I1}; atomic{I2} pozwala na wplecenie instrukcji z in-
nych wątków pomiędzy sąsiadujące bloki. Ostatni krok wykonania bloku atomic (ten, po którym
osiąga stan końcowy bez instrukcji) nie zwraca już rezerwacji – zatem również krok programu
‘zdejmie’ rezerwację, pozwalając na wznowienie także pozostałych wątków zanim tu rozpocznie się
wykonywanie drugiego bloku atomic.

Pozostaje opisać sytuację, gdy wykonanie danego wątku kończy się.

dla dowolnego i ∈ {1, ..., n} 〈Ii, s〉 −→ 〈s′, es〉
〈I1 ‖ ... ‖ In, s, all〉 ⇒ 〈I1 ‖ ... ‖ Ii−1 ‖ finished ‖ Ii+1 ‖ ... ‖ In, s′, all〉

4

〈Ii, s〉 −→ 〈s′, es〉
〈I1 ‖ ... ‖ In, s, i〉 ⇒ 〈I1 ‖ ... ‖ Ii−1 ‖ finished ‖ Ii+1 ‖ ... ‖ In, s′, all〉

Dla kompletności reguł dla programów pozostaje dodać regułę obsługującą zakończenie wszystkich
wątków.

〈finished ‖ ... ‖ finished, s, rs〉 ⇒ s

Poza tym zwykłe instrukcje są standardowe, jedyna ważna zmiana to potrzeba ‘propagowania’
znaczników es przy średniku. Musimy zapewnić, że jeśli zagnieżdżona instrukcja rzuci escaping
lub jeśli aktualnie wykonywana jest zagnieżdżona instrukcja atomic to jej reserved zostanie roz-
propagowane ‘w dół’ aż do przejścia dla programów. Dlatego średnik propaguje es, który zwróciła
aktualnie wykonywana zagnieżdżona instrukcja.

〈I1, s〉 −→ 〈I ′1, s′, es〉
〈I1; I2, s〉 −→ 〈I ′1; I2, s′, es〉

〈I1, s〉 −→ 〈s′, es〉
〈I1; I2, s〉 −→ 〈I2, s′, es〉

Pozostałe instrukcje są już całkowicie standardowe, zwracają zawsze znacznik es ustawiony na ⊥.
Są wypisane poniżej jedynie dla przejrzystości.

〈skip, s〉 −→ 〈s,⊥〉

〈x := e, s〉 −→ 〈s[x 7→ (EJeKs)],⊥〉

BJbKs = tt
〈if b then I1 else I2, s〉 −→ 〈I1, s,⊥〉

BJbKs = ff
〈if b then I1 else I2, s〉 −→ 〈I2, s,⊥〉

BJbKs = tt
〈while b do I, s〉 −→ 〈I; while b do I, s,⊥〉

BJbKs = ff
〈while b do I, s〉 −→ 〈s,⊥〉

5

