SEMANTYKA | WERYFIKACJA 2021/22 — Zadanie domowe nr 1

Napisz semantyke operacyjna malych krokéw dla programéw i instrukeji nastepujacego jezykas:

Z>n == 0]1]|-1]2|-2]...
Varsz == x|y]|...
Ezproe == n|z|lei+ex|erxex|er —es
BExpr>b := true|false|e; <ey|e; ==ey|by and by | not b
Instr 51 == skip|xz:=e|I1;Io|if b then I} else I
| while b do [| atomic{I} | escape
Progs P == L || L ..|I,dlan>1

Wyrazenia arytmetyczne i logiczne majg standardowe znaczenie, dane przez funkcje
&[] : Expr — State — Z oraz B[] : BExpr — State — {tt,ff}

gdzie State = Var — Z. Semantyke instrukcji nalezy zdefiniowaé jako relacje przejécia w postaci
dogodnej dla wykorzystania w semantyce programéw. W razie potrzeby mozna rozszerzy¢ sktadnie
programéw lub instrukcji.

Program reprezentowany jest jako lista watkéw. Kazdy watek to jakas instrukcja. Program konczy
dzialanie, gdy wszystkie jego watki zakoncza swoje dziatanie. Watki wspéldziela stan (zmiana
wartosci zmiennych w jednym watku jest widoczna w pozostalych) i sa wykonywane ‘wspétbieznie’
— ‘przeplotowo’, jak opisano nizej.

Znaczenie instrukcji innych niz atomic i escape jest standardowe. Wykonanie instrukcji sktada sie
z elementarnych krokow obliczen, ktérymi sa w szczegdlnosci instrukcje przypisania i sprawdzanie
warunkéw w if i while. Elementarne kroki réznych watkéw moga sie ze soba przeplatac.

Instrukcja przypisania x := e jest wykonywana ‘atomowo’ (jako krok elementarny) wraz z obli-
czeniem wartosci e — inne watki nie mogg zmieni¢ stanu, w ktérym rozpoczeto jej wykonanie
i w ktérym obliczana jest wartos¢ wyrazenia, az do zakonczenia realizacji tej instrukcji.

W instrukcjach if oraz while sprawdzenie warunku jest krokiem elementarnym (czyli odbywa sie
‘atomowo’). Po obliczeniu warunku wybierana jest odpowiednia galaz (w przypadku if) lub to,
czy petla ma byé kontynuowana (while). Instrukcje znajdujace sie¢ w ciele galezi lub petli moga
by¢ juz dowolnie przeplatane z instrukcjami innych watkéw.

Blok atomic wymusza wykonanie calej zawartej w nim instrukcji w sposéb ‘atomowy’: gdy w ja-
kim§ watku wykonywane sa instrukcje wewnatrz bloku atomic, instrukcje z innych watkéw nie
moga by¢ z nimi przeplatane. Bloki atomic moga by¢ zagniezdzone. W takiej sytuacji dopiero
zakonczenie ‘ostatniego’ (tj. najbardziej zewnetrznego) bloku atomic pozwala na wznowienie po-
zostatych watkow.

Instrukcja escape konczy dziatanie aktualnego bloku atomic — po wykonaniu tej instrukcji dany
watek powinien kontynuowaé wykonanie od nastepnej instrukeji za tym blokiem (jesli taka istnieje,
w przeciwnym razie dany watek konczy dzialanie). Jesli bloki atomic sa zagniezdzone, to escape
koniczy dziatanie tylko najbardziej wewnetrznego bloku, w ktérym wystepuje. Wywolanie escape
poza jakimkolwiek blokiem atomic dziala jak skip.

Wymagamy, aby semantyka programéw prawidtowo realizowata wyzej opisany sposéb przeplatania
operacji — poprawne rozwiazanie musi pozwala¢ na wszystkie zgodne z tym opisem przeploty.
W szczegblnosci nie mozna po prostu tylko wykonaé watkéw jeden po drugim.

Kilka przyktadéw

Program x := 1 || z := 2 || x := 3 moze wykona¢ trzy instrukcje przypisania w dowolnej kolejnosci,
tak ze w stanie konicowym z moze mie¢ dowolna wartosé ze zbioru {1, 2, 3}.

Program (z := 0;2 := x4+ 1) || x := 5 skonficzy dzialanie w stanie, w ktérym x ma dowolna wartosé
ze zbioru {5, 6, 1}, bo umozliwia nastepujace przeploty:

e z:=0;x:=x+1;x:=5
e z:=0x:=5zr:=x+1

e z:=5x:=0rx:=x+1

Program (z := 0;if © == 0 then = := 2 + 1 else z := = + 2) || := 10 moze zakonczy¢
dziatanie w stanie, w ktorym z ma dowolng warto$é¢ sposréd 1, 10, 11 lub 12, gdyz mozliwe sa
nastepujace przeploty:

o Najpierw x := 10, potem caly pierwszy watek (w stanie koficowym warto$¢ = to 1).

o Najpierw x := 0, potem x := 10, i dalej if (w stanie koncowym warto$¢ = to 12).

e Najpierw x := 0, potem sprawdzenie warunku w instrukcji if, ale bezposrednio po tym
sprawdzeniu, a przed wykonaniem instrukcji z wybranej gatezi wykonywane jest = := 10,
a dopiero potem galaz x := x + 1 (w stanie koicowym warto$é¢ x to 11).

o Najpierw caly pierwszy watek, potem drugi watek (w stanie konicowym wartosé x to 10).

Gdy instrukcje warunkowa obejmiemy blokiem atomic:
(x:=0; atomic{if £ ==0 then z:=x+1 else z:=xz+2}) || z:=10

to mozliwe wartoéci x w stanie koncowym zawezimy do zbioru {1, 10,12}, bo przypisanie x := 10
z drugiego watku nie moze juz ‘wples¢’ sie pomiedzy sprawdzenie warunku a wykonanie odpowied-
niej gatezi if.

Program (z := 0;y := 1;while y ==1 do z:=xz+1) || y := 0 moze sie zapetli¢, gdy drugi watek
zostanie ‘zaglodzony’ przez nieskonczone wykonanie petli pierwszego watku (instrukcja drugiego
watku nie zostanie ‘wpleciona’ w to nieskoriczone wykonanie), a moze si¢ zakonczy¢ (w stanie,
w ktérym warto$é x jest dowolna liczba naturalna), gdy drugi watek wplecie si¢ przed sprawdzenie
warunku petli (po dowolnej liczbie wykonan jej ciala).

Program atomic{x := 1;escape;x := 2} skoiczy dzialanie w stanie, gdzie warto$¢ x to 1, gdyz
escape przerwie dalsze wykonanie bloku.

Program
atomic{ atomic{x := 1;escape;x :=2}; x := z + 10}

skonczy skonczy dzialanie w stanie, gdzie wartos¢ = to 11, gdyz escape przerwie wykonanie we-
wnetrznego bloku, ale dzialanie zewnetrznego bloku bedzie kontynuowane.

Przyktadowe rozwigzanie

Semantyke wyrazen mamy dang jak w tresci zadania.

Rozszerzamy skladnie programu: watek moze by¢ instrukcja I; (jak w tresci zadania) lub specjal-

nym znacznikiem finished, oznaczajacym, ze dany watek zakoriczyt juz dziatanie!.

Nie-koricowe konfiguracje programu rozszerzamy o dodatkowy znacznik rezerwacji
rs € RS =NU{all}. Znacznik all méwi, ze mozna wykonywaé¢ dowolny watek, zas liczba ¢
w tym miejscu oznacza, ze mozna wykonywacé tylko obliczenia i-tego watku az do zwolnienia przez
niego blokady.

Przejécia programu maja wiec postaé: (P, s,rs) = (P, s',rs’) lub (P, s,rs) = §', gdzie s, s’ € State
i P,P' € Prog. Ta druga forma oznacza zakoriczenie wykonywania calego programu — wszystkie
watki sie zakoriczyly. Ewaluacje programu P zaczynamy od konfiguracji ze znacznikiem all. Wy-
konanie programu jest reprezentowane przez kroki w relacji

= C (Prog x State x RS) x ((Prog x State x RS) U State)

gdzie konfiguracje koncowe to State. Zatem konfiguracja poczatkowa dla programu P to
<Pa (DVar—>Z> all>'

Dodatkowo definiujemy pomocniczg relacje — opisujaca wykonanie instrukcji. Relacja ta prowa-
dzi od instrukcji i pewnego stanu do pozostalej do wykonania instrukcji (jesli nie nastapit koniec
wykonania), nowego stanu oraz dodatkowego znacznika es € ES = {1, escaping,reserved}.
Znacznik reserved informuje, ze jesteSmy w trakcie wykonywania jakiego$ bloku atomic, a znacz-
nik escaping, ze nastapito ‘przerwanie’ bloku za pomoca escape. Zatem relacja ma postac:

— C (Instr x State) x ((Instr x State x ES) U (State x ES))

Czyli ‘przejscia’ dla instrukeji maja postaé (I,s) — (I’,s',es) lub (I,s) — (s, es). Tylko z
pozoru moze wydawac sie problematyczne, ze nie opisujemy tutaj niezaleznej semantyki operacyjnej
instrukeji (przej$é relacji — nie mozna sktadaé¢ po sobie, bo ‘ksztalt’ wyjécia nie zgadza sie z
‘ksztaltem’ wejscia — réznia sie o dodatkowy znacznik rezerwacji). Opisujemy bowiem obliczenia
programoéw, ktérych kroki definiuje relacja =, zas — jest tylko pomocnicza konstrukcja. Relacja
= bedzie zdefiniowana korzystajac z — w powyzszej postaci.

Instrukcja atomic normalnie wykonuje swoje kroki, ale po kazdym kroku, gdy jeszcze jest co$ do
zrobienia, ustawia status reserved. Reguly przejicia dla programéw zapewnia, ze do czasu zwol-
nienia blokady jedynie ten watek bedzie wykonywany. W przypadku, gdy instrukcja wewnatrz
atomic ustawi status escaping, blok konczy wywolanie, nawet jesli pozostaly w nim jeszcze ja-
kie$ instrukcje. Zagniezdzanie blokéw dziala trywialnie: blok po prostu nadaje status reserved
(niezaleznie od tego, ze ten status moégl juz by¢ ustawiony przez wewnetrzny blok). Zatem status
reserved jest ustawiany zawsze, gdy ewaluacja postepuje wewnatrz co najmniej jednego bloku
atomic.

(I,s) — (I',s,es), es # escaping
(atomic{I},s) — (atomic{I'}, s, reserved)
1Znacznik ten trzymamy po to, aby lista watkéw sie nigdy nie kurczyta. Wtedy dany watek mozemy zawsze
identyfikowa¢ po numerze jego pozycji na tej lidcie. Oczywidcie rownie dobrze mozna jako$ inaczej przypisac
watkom unikalne nazwy i wtedy pozwoli¢ na kurczenie listy. Mozna tez pozwoli¢ sobie na to, by w trakcie
programu numer watku zmienial sie (gdy inny ‘zniknie’) — tylko wtedy trzeba uwazaé, zeby to nic nie psuto, a jak
zapewniamy, ze numery sg stale, to nie trzeba si¢ tym w ogdle przejmowac.

(I,s) — (s, es)
(atomic{I},s) — (s, L)

Instrukcja escape nadaje status escaping, ktéry jest wykrywany przez atomic. Po zlapaniu ‘prze-
rwania’ przez atomic, dany blok nie jest juz dalej wykonywany, ale przerwanie nie jest propagowane
dalej — bo escape konczy realizacje tylko jednego bloku atomic.

(escape, s) —» (s, escaping)

(I,s) — (I', s', escaping)
(atomic{I},s) — (s, L)

Status escaping nie wplywa na wykonanie innych instrukcji i programéw, zatem nadanie go poza
blokiem atomic nie ma znaczenia — escape poza blokiem atomic dziala wiec jak skip.

Program ma dwa tryby ewaluacji: tryb all, gdzie wszystkie watki moga sie przeplataé, i tryb
‘zarezerwowany’, gdzie tylko jeden watek ma prawo kontynuowac.

W trybie all moze by¢ realizowany dowolny z watkéw. Jedli taki watek zaczal wykonywaé swéj
blok atomic, zglasza on ‘rezerwacje’ i jest ona zapisywana w konfiguracji. Az do momentu, gdy
po wykonaniu danej operacji watek ten przestanie zglaszaé rezerwacje (co bedzie oznaczalo opusz-
czenie bloku atomic), tylko ten watek bedzie mégt by¢ wykonywany.

dla dowolnego i € {1, ...,n} (I, s) — (I, ¢, es) i, jesli es = reserved

(L[oo Zos 5 20L) = (T [oo | Dot | 2 Tt || oo || I 8, 75)

gdzie rs =
all, w p.p.

W trybie rezerwacji tylko wskazany watek moze byé¢ wykonywany. Jesli wykonanie bloku atomic
trwa w nim nadal, to nadal zglasza on rezerwacje i jest ona utrzymywana.

(I, sy — (Il, ¢, es) i, jesli es = reserved

Ol oo U 508) = (I o | Lot NI N Tt | [T ')

gdzie rs =
all, w p.p.

Zwr6émy uwage, ze watek postaci atomic{/l;};atomic{ls} pozwala na wplecenie instrukcji z in-
nych watkéw pomiedzy sasiadujace bloki. Ostatni krok wykonania bloku atomic (ten, po ktérym
osiaga stan konicowy bez instrukcji) nie zwraca juz rezerwacji — zatem réwniez krok programu
‘zdejmie’ rezerwacje, pozwalajac na wznowienie takze pozostalych watkéw zanim tu rozpocznie sie
wykonywanie drugiego bloku atomic.

Pozostaje opisaé¢ sytuacje, gdy wykonanie danego watku konczy sie.

dla dowolnego i € {1,...,n} (I;,s) — (s, es)
(I || ... || Iny 8,211) = (Iy || ... || Li—1 || finished || Li+1 || .. || In, 8’, 211)

(Li,s) — (', es)
(I ” H In,S,i> = <Il H vl Lica H finished || [j+1 H el In,s’,a11>

Dla kompletnosci regut dla programoéw pozostaje dodaé regute obstugujaca zakonczenie wszystkich
watkow.

(finished || ... || finished, s, rs) = s

Poza tym zwykle instrukcje sa standardowe, jedyna wazna zmiana to potrzeba ‘propagowania’
znacznikéw es przy sredniku. Musimy zapewnié, ze jesli zagniezdzona instrukcja rzuci escaping
lub jesli aktualnie wykonywana jest zagniezdzona instrukcja atomic to jej reserved zostanie roz-
propagowane ‘w dot’ az do przejécia dla programéw. Dlatego Srednik propaguje es, ktéry zwrdcita
aktualnie wykonywana zagniezdzona instrukcja.

(I,s) — (I, ¢, es) (I,s) — (¢, es)
<Il;I27S> — <I151273/768> <Il;1278> — <1278/763>

Pozostale instrukcje sa juz catkowicie standardowe, zwracaja zawsze znacznik es ustawiony na L.
Sa wypisane ponizej jedynie dla przejrzystodci.

(skip, s) — (s, L)

B[b]s = tt B[b]s = ££f
(if b then I; else I, s) — (I1,s,1) (if b then I; else I, s) — (Ia,s,1)
B[b]s = tt B[b]s = ££f
(while b do I,s) — (I;while b do I,s, 1) (while b do I,s) — (s, L)

