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Classical Craig’s interpolation

In first-order logic:
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Craig’57

Fact: Any sentences φ ∈ Sen(Σp) and ψ ∈ Sen(Σc) such that φ⇒ ψ, have an

interpolant θ ∈ Sen(Σp ∩ Σc) such that φ⇒ θ and θ⇒ ψ.
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Numerous applications
in specification & development theory:
• Maibaum, Sadler, Veloso, Dimi-

trakos ’84–. . .
• Bergstra, Heering, Klint ’90
• Cengarle ’94, Borzyszkowski ’02
• . . .
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Key related properties:
• Robinson’s consistency theorem
• Beth’s definability theorem

Meta-facts:
• CI and RC are equivalent
• CI implies BD (not vice versa)

“IN ESSENCE”
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Institution
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Goguen
&
Burstall: 1980→

1992

• a category Sign of signatures

• a functor Sen : Sign → Set

− Sen(Σ) is the set of Σ-sentences, for Σ ∈ |Sign|

• a functor Mod : Signop → Class

− ModΣ is the category of Σ-models, for Σ ∈ |Sign|

• for each Σ ∈ |Sign|, Σ-satisfaction relation |=Σ ⊆ Mod(Σ)× Sen(Σ)

subject to the satisfaction condition:

M ′
σ |=Σ φ ⇐⇒ M ′ |=Σ′ σ(φ)

where σ : Σ → Σ′ in Sign, M ′ ∈ Mod(Σ′), φ ∈ Sen(Σ), and then

M ′
σ stands for Mod(σ)(M ′), and σ(φ) for Sen(σ)(φ).
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Institution: abstraction

Sen
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•φ

•M

plus satisfaction relation:

M |= φ

and so the usual Galois connection be-

tween classes of models and sets of sen-

tences, with the standard notions induced

(Mod(Φ), Th(M), Th(Φ), Φ |= φ, etc).

• Also, possibly adding (sound) conse-

quence: Φ ⊢ φ (implying Φ |= φ) to

deal with proof-theoretic aspects.
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Institution: first insight
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plus satisfaction relation, for each signa-

ture:

M |=Σ φ

and so, for each signature, the usual Ga-

lois connection between classes of models

and sets of sentences, with the standard

notions induced (ModΣ(Φ), ThΣ(M),

ThΣ(Φ), Φ |=Σ φ, etc).

• Also, possibly adding (sound) conse-

quence: Φ ⊢Σ φ (implying Φ |=Σ φ)

to deal with proof-theoretic aspects.
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Institution: key insight
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6 σ
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?σ( )

The satisfaction condition:

M ′ |=Σ′ σ(φ) iff M ′
σ |=Σ φ

Truth is invariant
under change of notation

and independent of
additional symbols around

It follows:

Φ |=Σ φ implies σ(Φ) |=Σ′ σ(φ)

If σ : Mod(Σ′) → Mod(Σ) is onto:

Φ |=Σ φ iff σ(Φ) |=Σ′ σ(φ)
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Craig’s interpolation

In INS = ⟨Sign,Sen,Mod, ⟨|=Σ⟩Σ∈|Sign|⟩:

Recall:

θ

φ⇒ θ θ⇒ ψ

φ⇒ ψ

Σp ∩ Σc

Σp

Σp ∪ Σc

Σc
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Some things don’t work in INS:
• implication?
; entailment

• individual sentences?
; sets of sentences

• union/intersection square?
; arbitrary commutative square

of signature morphisms
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Craig’s interpolation

In INS = ⟨Sign,Sen,Mod, ⟨|=Σ⟩Σ∈|Sign|⟩:

Definition: An interpolant for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) such that

σpu(Φ) |= σcu(Ψ) is Θ ⊆ Sen(Σi) such that Φ |= σip(Θ) and σic(Θ) |= Ψ.

Θ

Φ|= σip(Θ) σic(Θ) |=Ψ

σpu(Φ) |= σcu(Ψ)

Σi

Σp Σc

Σu
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σip σic

σpu σcu

(∗)
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The square (∗) admits interpolation if all

Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) such

that σpu(Φ) |= σcu(Ψ) have an interpolant.
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Tarlecki ’86, Diaconescu et al. ’00–. . .

(Roşu, Popescu, Şerbănuţă, Găină)
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• In PL (propositional logic): all signa-

ture pushouts admit interpolation.

• In FO (many-sorted first-order logic):

all signature pushouts with σip or σic

injective on sorts admit interpolation.

• In EQ (many-sorted equational logic):

all signature pushouts with injective σic

admit interpolation.�
 �	Warning: nonempty carrier sets
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Interpolation in CASL sublogics

A pushout (∗) admits interpolation in: empty carriers permitted!

• EQ: σic injective on sorts

and does not force any old sort to be non-empty

• FO: σip or σic injective on sorts

and no other conditions — BUT: proofs to be redone!

• FO plus partiality: as for FO

• FO plus subsorting: as for FO and

each new subsorting is introduced either by σip or by σic (but not both)

• FO plus partiality and subsorting: as above

• FO plus reachability constraints (with or without partiality and subsorting):

one of σip or σic is an isomorphism (trivial cases)
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Two separate problems

When building and using heterogeneous logical environments — a number of

institutions linked by institution (co)morphisms or similar maps — two problems arise:

• Can interpolation properties be preserved when moving from one institution to

another?

; how can we “borrow” interpolation along institution (co)morphisms?

• Can interpolation properties be spoiled when moving from one institution to

another?

; how can we “spoil” interpolation along institution (co)morphisms?

In this work: we address the latter!
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Simple institution extensions

Let INS = ⟨Sign,Sen,Mod, ⟨|=Σ⟩Σ∈|Sign|⟩

• Extending INS by a new “abstract” Σ-model M with Th(M) ⊆ Sen(Σ),

Σ ∈ |Sign|, results in INS+ = ⟨Sign,Sen,Mod+, ⟨|=+
Σ′⟩Σ′∈|Sign|⟩:

− Mod+(Σ′) = Mod(Σ′) ∪ {⌈M τ⌉ | τ : Σ′ → Σ}
�
 �	M added as ⌈M id⌉

− ⌈M τ⌉ |=+
Σ′ φ′ iff τ(φ′) ∈ Th(M), for τ : Σ′ → Σ, φ′ ∈ Sen(Σ′)
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τ ∈ Mod(φ), for τ : Σ → Σ′, M ′ ∈ Mod(Σ′)
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Spoiling an interpolant by new models – easy?

Consider an interpolant Θ ⊆ Sen(Σi) for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc),

σpu(Φ) |= σcu(Ψ). Apparently: any interpolant should be always easy to spoil:

• add a new Σp-model M such that Φ ⊆ Th(M) but σip(Θ) ̸⊆ Th(M),

then Φ ̸|= σip(Θ); or

• add a new Σc-model N such that Ψ ̸⊆ Th(N) but σic(Θ) ⊆ Th(N),

then σic(Θ) ̸|= Ψ.

BUT:

?

τ

?

τ ′

Σi

Σp Σc

Σu

@
@

@I

�
�
��

�
�
��

@
@

@I

σip σic

σpu σcu

(∗) • ⌈M τ⌉ ∈ Mod+(Σu) for τ : Σu → Σp

• ⌈N τ ′⌉ ∈ Mod+(Σu) for τ
′ : Σu → Σc

may spoil σpu(Φ) |= σcu(Ψ) . . .
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Spoiling an interpolant by new models

Fact: An interpolant Θ ⊆ Sen(Σi) for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc),

σpu(Φ) |= σcu(Ψ), may be spoiled by extending INS by new models if

• there is Φ• ⊆ Sen(Σp) such that:

− Φ ⊆ Φ•, σip(Θ) ̸⊆ Φ• and

− for all τ : Σu → Σp , if τ(σpu(Φ)) ⊆ Φ• then τ(σcu(Ψ)) ⊆ Φ•

or

• there is Ψ◦ ⊆ Sen(Σc) such that:

− σic(Θ) ⊆ Ψ◦, Ψ ̸⊆ Ψ◦ and

− for all τ ′ : Σu → Σc , if τ
′(σpu(Φ)) ⊆ Ψ◦ then τ ′(σcu(Ψ)) ⊆ Ψ◦
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Spoiling an interpolant by new models

Syntactic separation

• Φ• ⊆ Sen(Σ) never separates Φ′ ⊆ Sen(Σ′) from Ψ′ ⊆ Sen(Σ′)

when for all τ : Σ′ → Σ, if τ(Φ′) ⊆ Φ• then τ(Ψ′) ⊆ Φ•.

• for Φ ⊆ Sen(Σ) and Φ′,Ψ′ ⊆ Sen(Σ′), let

[Φ′ Σ′

;
Σ
Ψ′](Φ)

be the least set of Σ-sentences that contains Φ and never separates Φ′ from Ψ′.

Fact: An interpolant Θ ⊆ Sen(Σi) for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc),

σpu(Φ) |= σcu(Ψ), may be spoiled by extending INS by new models

• σip(Θ) ̸⊆ [σpu(Φ)
Σu
;
Σp

σcu(Ψ)](Φ) or

• Ψ ̸⊆ [σpu(Φ)
Σu
;
Σc

σcu(Ψ)](σic(Θ))
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In propositional logic: examples

Σp ∩ Σc

Σp

Σp ∪ Σc

Σc

@
@@I

�
���

@
@@I

�
���

Put:

− Σp = {p, r}, φ = r ∧ p

− Σc = {p, q}, ψ = q ∨ p

Clearly, φ |= ψ. Interpolants for φ and ψ include:

p, p ∨ p, p ∧ p, (p ∨ p) ∧ (p ∨ ¬p), . . .

Fact: No interpolant for φ and ψ is stable under extensions of PL by new models.

This follows since:

• [r ∧ pΣp∪Σc
;
Σp

q ∨ p](r ∧ p) = {r ∧ p, r ∨ p, p ∨ p}, and

• [r ∧ pΣp∪Σc
;
Σc

q ∨ p](p ∨ p) = {p ∨ p}
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Examples in propositional logic
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Clearly, φ |= ψ. Interpolants for φ and ψ include:

p, p ∨ p, p ∧ p, (p ∨ p) ∧ (p ∨ ¬p), . . .

Fact: The interpolant (p ∨ p) ∧ (p ∨ ¬p) is stable under extensions of PL by new

models.

This follows since:

• (p ∨ p) ∧ (p ∨ ¬p) ∈ [φ
Σp∪Σc
;
Σp

ψ]((p ∨ r) ∧ (p ∨ ¬r)), and

• (p ∨ q) ∧ (p ∨ ¬q) ∈ [φ
Σp∪Σc
;
Σc
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Spoiling interpolation by new models

Σi

Σp Σc

Σu

@
@

@I

�
�
��

�
�
��

@
@

@I

σip σic

σpu σcu

(∗)

Consider Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc), σpu(Φ) |= σcu(Ψ).

Can all interpolants for Φ and Ψ be spoiled by new models?

Fact: Φ and Ψ have no interpolant in some extension of INS

by new models if Ψ ̸⊆ σic(σ
−1
ip ([σpu(Φ)

Σu
;
Σp

σcu(Ψ)](Φ))).

Define:

Θ∗ = σ−1
ip

(
[σpu(Φ)

Σu
;
Σp

σcu(Ψ)](Φ) ∩ Th(Φ)

)
⊆ Sen(Σi)

Fact: Φ and Ψ have an interpolant in every extension of INS by new models iff

Ψ ⊆ [σpu(Φ)
Σu
;
Σc

σcu(Ψ)](σic(Θ
∗)) and σic(Θ

∗) |= Ψ
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Can all interpolants for Φ and Ψ be spoiled by new models?

Fact: Φ and Ψ have no interpolant in some extension of INS

by new models if Ψ ̸⊆ σic(σ
−1
ip ([σpu(Φ)

Σu
;
Σp

σcu(Ψ)](Φ))).

Define:

Θ∗ = σ−1
ip

(
[σpu(Φ)

Σu
;
Σp

σcu(Ψ)](Φ) ∩ Th(Φ)

)
⊆ Sen(Σi)

Fact: Φ and Ψ have an interpolant in every extension of INS by new models iff

Ψ ⊆ [σpu(Φ)
Σu
;
Σc

σcu(Ψ)](σic(Θ
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Spoiling interpolation by new sentences

Σi

Σp Σc
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σip σic

σpu σcu

(∗)

-τ � τ ′

Fact: (∗) admits interpolation in every extension of INS

by new sentences iff for all classes M ⊆ Mod(Σp) and

N ⊆ Mod(Σc) such that M −1
σpu ⊆ N −1

σcu there is a class

K ⊆ Mod(Σi) such that M σip ⊆ K and K −1
σic ⊆ N , i.e.

M σip ⊆ K ⊆ (Mod(Σi) \ (Mod(Σc) \ N ) σic )

that is definable in INS from {⟨Σp ,M⟩, ⟨Σc ,N⟩}.

K ⊆ Mod(Σi) is definable in INS from {⟨Σp ,M⟩, ⟨Σc ,N⟩} if there are

Θ ⊆ Sen(Σi), τj : Σp → Σi , j ∈ Jp , and τ
′
j : Σc → Σi , j ∈ Jc such that

K =
⋂

j∈Jp
M −1

τj ∩
⋂

j∈Jc
N −1

τ ′
j
∩Mod(Θ)
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Spoiling interpolation by new models and sentences

Σi

Σp Σc

Σu
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@I

σip σic

σpu σcu

(∗)

- �

? ?

Fact: (∗) admits interpolation in INS if

• σip : Sen(Σi) → Sen(Σp) is surjective and σcu : Σc → Σu is

conservative ( σcu : Mod(Σu) → Mod(Σc) is surjective),

or

• σic : Sen(Σi) → Sen(Σc) is surjective and σpu : Σp → Σu is

conservative ( σpu : Mod(Σu) → Mod(Σp) is surjective).

Fact: (∗) admits interpolation in INS and in all its extensions by new models and

sentences

• σip : Σi → Σp is a retraction and σcu : Σc → Σu is a coretraction, or

• σic : Σi → Σc is a retraction and σpu : Σp → Σu is a coretraction.
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Spoiling interpolation by new models and sentences
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Fact: (∗) admits interpolation in INS if

• σip : Sen(Σi) → Sen(Σp) is surjective and σcu : Σc → Σu is

conservative ( σcu : Mod(Σu) → Mod(Σc) is surjective),

or

• σic : Sen(Σi) → Sen(Σc) is surjective and σpu : Σp → Σu is

conservative ( σpu : Mod(Σu) → Mod(Σp) is surjective).

Fact: (∗) admits interpolation in INS and in all its extensions by new models and

sentences iff

• σip : Σi → Σp is a retraction and σcu : Σc → Σu is a coretraction, or

• σic : Σi → Σc is a retraction and σpu : Σp → Σu is a coretraction.
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Conclusion

Interpolation is fragile – almost always!
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Example in first-order logic

ΣNat

Σp

Σp ∪ Σc

Σc

@
@@I

�
���

@
@@I

�
���

-τ

− ΣNat = sort Nat opns 0: Nat , s : Nat → Nat
− Σp = ΣNat then bop : Nat×Nat → Nat
• add a new Σp-sentence φ (“data constraint”) with

Mod(φ) = M = {A ∈ Mod(Σp) | A ΣNat
= IN}

− Σc = ΣNat then + : Nat×Nat → Nat
• N = Mod(ψ), where

ψ ≡ (∀x, y:Nat . x+ 0 = x ∧ x+ s(y) = s(x+ y))⇒
∀x, y:Nat . x+ y = y + x

Clearly: φ |=Σp∪Σc ψ.

But: there is no interpolant for φ and ψ!

(since there is no morphism from Σp to ΣNat and Th(IN) ̸|= ψ)
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Can we spoil interpolation in propositional logic?

Amalgamation and interpolation

Σi

Σp Σc

Σu

@
@

@I

�
�
��

�
�
��

@
@

@I

σip σic

σpu σcu

(∗)

(∗) admits weak amalgamation when

for all M ∈ Mod(Σp), N ∈ Mod(Σc) with M σip = N σic

there is K ∈ Mod(Σu) such that K σpu =M and K σcu = N .

• In FO, EQ, PL, and many other standard institutions:

all signature pushouts admit amalgamation.

Fact: If (∗) admits weak amalgamation and all classes of Σi -models are definable

then (∗) admits interpolation (in INS and in every its extension by new sentences).

Fact: If (∗) does not admit weak amalgamation then (∗) does not admit

interpolation in an extension of INS by new sentences, and in any further its

extension by new sentences.
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Further work
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J. Symbolic Logic’24

• Repeat similar characterisations for Craig-Robinson (or parameterised)

interpolation:

− concepts and techniques carry over, results can be adjusted easily.

• Apply the results in the context of special commutative squares of signature

morphisms used in particular applications.
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