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A b s t r a c t .  A collection of 10 "rules of thumb" is presented that helps 
to determine the decidability and complexity of a large number of Petri 
net problems. 

1 I n t r o d u c t i o n  

The topic of this paper is the decidability and complexity of verification problems 
for Petri nets. I provide answers to questions like "is there an algorithm to decide 
if two Petri nets are bisimilar?", or "how much time is it needed (in the worst 
case) to decide if a 1-safe Petri net is deadlock-free?" 

My intended audience are people who work on the development of algorithms 
and tools for the analysis of Petri net models and have some basic understanding 
of complexity theory. More precisely, I assume that the reader is familiar with 
the notion of undecidable problem, with the definitions of deterministic and 
nondeterministic complexity classes like NP or PSPACE, with the notion of hard 
and complete problems for a complexity class, and with the use of reductions 
to prove hardness and completeness results. Theoreticians acquainted with the 
topic of this paper are warned: They won't find much in it that they didn't know 
before? On the other hand, they might be interested in the paper's unified 
view of complexity questions for 1-safe and general Petri nets, and in a few 
simplifications in the presentation of some proofs. 

When I was invited to write this paper, I hesitated for a while. I remembered 
the statement of the Greek scepticist Gorgias: 

Nothing exists; 
if anything does exist, it is unknowable; 
if anything can be known, knowledge of it is incommunicable. 

and imagined a Greek chorus advising me not to write the paper because, in 
their opinion: 

* Work partially supported by the Sondefforschungsbereich 342 "Werkzeuge und 
Methoden fiir die Nutzung paralleler Rechnerarchitekturen'. 

2 Only one result has not been published before, namely a PSPACE algorithm for the 
model-checking problem of CTL and 1-safe Petri nets, presented in Section 4. 
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All results about decidability and complexity of Petri  nets were already 
obtained in the early eighties; 
if there are new results, you have included them for sure in the paper 
"Decidability issues for Petri nets - a survey" you wrote with Mogens 
Nielsen in 1994 [10]; 
if you haven't  included them in the survey, they are only of interest for 
specialists; moreover, these results just show that  all interesting problems 
are intractable - finer classifications, like NP-, PSPACE- or EXPSPACE- 
hardness have no practical relevance. 

Since, as you can see, I still decided to write the paper, I would like to  an- 
ticipate my answer to these three possible criticisms. 

• There have been important recent developments about decidability and com- 
plexity questions, o] interest for the whole Petri net community. 

During the late seventies and early eighties there was an outburst  of theoret- 
ical work on decidability and complexity problems for (Place/Transit ion) Petri  
nets. Well-known computer scientists, like Rabin, Rackoff, Lipton, Mayr, Meyer, 
and Kosaraju, just to mention a few, obtained a very impressive collection of 
results. The decidability of most problems, like boundedness, liveness, reachabil- 
ity, language equivalence, etc. was settled, and in many cases tight complexity 
bounds were obtained. 

However, while these results were being obtained, two developments in com- 
puter science opened new problems: 

• In the late seventies, temporal logic was proposed as a query language for 
the specification of reactive and distributed systems; a few years later, model- 
checking was introduced as a technique for the verification of arbi t rary temporal  
properties. Howell, Rosier, and Yen were the first to s tudy the decidability and 
complexity of model-checking problems for Petri  nets in the second half of the 
eighties [17, 19, 20]. Today most questions in this research field have been an- 
swered [9, 14]. 

• In the early eighties, process algebras were introduced for the formal de- 
scription of concurrent and reactive systems. It  was seen that  language equiv- 
alence was not an adequate equivalence notion for this class of systems, since 
for instance it may consider deadlock-free systems as equivalent to systems with 
deadlocks. New equivalence relations were introduced, like bisimulation and fail- 
ures equivalence. In the early nineties, the decidability of these equivalences for 
systems with infinite state spaces started to receive a lot of attention, and led 
to renewed interest in Petri  nets. Jan~ar proved only a few years ago a funda- 
mental result showing the undecidability for Petri  nets of all equivalence notions 
described in the literature [22, 21]. 

These two developments still had another effect. During the eighties, many 
researchers started to study the relationship of process algebras to Petri  nets. 
Net models in which a place can carry at most one token, like condit ion/event 
systems or elementary net systems, turned out to be particularly useful for these 
studies. These nets, which have by definition a finite number of states, became 
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even more interesting after the introduction of automatic model-checkers, when 
it was realised that they could be used to model a large number of interesting sys- 
tems which were within the reach of automatic verification. The questions that 
had been asked and mostly solved for Place/Transition nets were now asked again 
for these models. In the last years the complexity of classical properties (reach- 
ability, liveness . . .  ), model-checking problems for different temporal logics, and 
equivalence problems for different equivalence notions, has been completely de- 
termined [2, 23, 31]. 

• This paper has a different approach than the '94 survey paper, and has been 
written to complement it. 

Research on the decidability and complexity of verification problems for Petri 
nets has produced well over 100 papers, maybe even 150. Many of them have been 
published in well-known journals, and are thus available in any good library. My 
survey paper with Mogens Nielsen [10] summarises many results, and provides 
a rather comprehensive list of references. 

Petri net researchers often need information about the complexity of a par- 
ticular problem (the Petri net mailing list receives now and then postings with 
this kind of requests). In most cases, a similar problem has already been studied 
in the literature, and pointers to relevant papers can be found in [1t3]. If one 
is familiar with a number of basic techniques, it is easy to apply these existing 
results to the new problem. However, acquiring this familiarity is at the moment 
a rather hard task, specially for Ph. D. students: one has to go through many 
papers and distill an understanding which is not explicitly contained in the pa- 
pers themselves. The purpose of these pages is to make this task a bit easier. 
Instead of listing results and references, I concentrate on a few general results of 
broad applicability. I also provide "rules of thumb", which I think can be more 
useful than formal theorems. 

• All researchers interested in the development and implementation of analysis 
algorithms for Petri nets can greatly profit from some basic knowledge on the 
computational complexity o] analysis problems. 

All researchers are regularly confronted with the problem of having to prove 
or disprove a conjecture. Should one first try to find a proof or a counterexample? 
The wrong choice can make one lose precious time. Complexity theory can often 
help by showing that the truth or falsity of the conjecture implies an unlikely 
fact, like P=NP or NP=PSPACE. I present here some examples in the form of 
three stories taken from my personal experience: 

Story I. After graduating in Physics, I became a Ph. D. student of computer 
science. At that time I knew very little about theoretical computer science, and 
there were no theoreticians in my environment. I started to work on the analysis 
of free-choice Petri nets, a net class for which there was hope of finding efficient 
verification algorithms, and more precisely I began to investigate the liveness 
problem. My hope was to efficiently transform the problem into a set of linear 
inequations that could be solved using linear programming. 'Efficiently' meant 
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for me that  the number and size of the equations should grow quadratically, say, 
in the size of the net. 

During the next four months I could not find any encoding, but  I read some 
textbooks on theoretical computer science. I came across Garey and Johnson's 
book on the theory of NP-completeness [12], and I found the problem I was 
working on (more precisely, its complement) in the list of NP-complete prob- 
lems at the end of the book. Since there exist polynomial algorithms for Linear 
Programming but  the complement of the liveness problem for free-choice nets 
was NP-complete, the existence of an efficient encoding would imply P=NP,  and 
so it was highly unlikely. 

The NP-completeness of the non-liveness problem for free-choice Petri  nets 
is proved in Section 10. 

Story II. Some years ago I refereed a paper submitted to the Petri  net conference. 
The paper contained a conjecture on the reachability problem for Petri  nets tha t  
can be stated as follows. Let N be a net, and let M0 and M be markings of H such 
that  M is reachable from M0. Conjecture: M can be reached from M0 through 
a sequence of transition firings which only visits intermediate markings of size 
O(n + mo+ m), where n, m0, m are the sizes of.M, M0 and M, respectively. The 
author of the paper had constructed a random generator of nets and markings 
and had tested the conjecture in one thousand cases, always with a positive 
answer. 

It is certainly possible to disprove the conjecture by exhibiting a counterex- 
ample, but it is faster to use a complexity argument. I show this argument in 
Section 7. 

Story III. I have recently come across a paper containing a characterisation of 
the set of reachable markings of 1-safe Petri  nets. A simple complexity analysis 
shows that  the characterization is most probably wrong, although I haven' t  found 
a counterexample yet. In order to formulate the characterisation we need some 
definitions and notations. A siphon of a net is a subset of places R satisfying 
°R C_ R' .  A trap is a subset of places R satisfying R ° C_ °R. Given a net 
H = ( S , T , F )  and a set U C_ T, we define the net N u  as the result of first 
removing all transitions of Af not belonging to U, and then removing all places 
tha t  are not connected to any transition anymore. 

Now, let Af = (S, T, F )  be a net, and let M0 and M be markings of A/" such 
that  the Petri  net (24", Mo) is 1-safe. The characterization states M is reachable 
from M0 if and only if there exists a mapping X: T -~ SV satisfying the following 
three properties: 

(1) for every place s, M(s)  = Mo(s) + EteT(F(t, s) - F(s, t)) . X(t) ,  
(2) every nonempty siphon of AfTX is marked at Mo, and 
(3) every nonempty trap of AfTX is marked at M. 

where TX is the set of transitions t such that  X( t )  > O. 
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I strongly believe that the proof of this result contains a mistake, and that a 
counterexample exists. I show why in Section 3. 3 

• The classification of a problem as NP-, PSPACE- or EXPSPACE-hard does 
have practical relevance 

The complexity of Petri nets was first studied in the seventies, when NP- 
complete problems were really intractable: computer scientists were unable to 
deal even with very small instances due to the lack of computing power and of 
good theoretical results. At that time it probably didn't make so much difference 
for a practitioner whether a problem was PSPACE-hard or only NP-complete. 
In my opinion, today's picture is very different: 

- NP-complete problems are no longer "intractable". It is certainly true that all 
known algorithms that solve them have exponential worst-case complexity. 
However, today there exist commercial systems for standard NP-complete 
problems, like satisfiability of propositional logic formulas or integer linear 
programming problems, that routinely solve instances of large size. 

- The last years have witnessed a proliferation of model-checking tools, like 
COSPAN, PEP, PROD, SMV, SPIN, and others (see [11] and [30] for com- 
prehensive information). Although the problems they solve are PSPACE- 
complete, they have been successfully applied to the verification of many 
interesting finite state systems. Commercial versions are starting to appear. 

- Experimental tools for the analysis of timed-systems are starting to emerge. 
Examples are Hy-Tech, KRONOS, UPPAAL [11]. Many of the problems 
solved by these tools are EXPSPACE-complete. The size of the instances 
they can handle is certainly much smaller than in the case of model-checkers, 
but the results are very promising. 

- Theorem provers like HOL, Isabelle, PVS, and others are being applied with 
good success to the verification of systems with infinite state spaces. They 
use heuristics to try to solve particular instances of undecidable analysis 
problems. 

My conclusion is that the old "tractable - intractable" classification has 
become too rough. A finer analysis provides very valuable information about 
the size of instances that can be handled by automatic tools, and about the 
possibility of applying existing tools to a particular problem. 

O r g a n i s a t i o n  o f  t h e  paper  

The paper is divided into two parts. The first is devoted to 1-safe Petri nets, 
which are Place/Transition Petri nets having the property that no reachable 
marking puts more than one token in any place. Nearly all results hold for n- 
safe Petri nets (at most n tokens on a place) too, assuming that the algorithms 

After I wrote this paper, but before its publication, Stephan Melzer found a coun- 
terexample with 5 places and 3 transitions. 



379 

receive n as part  of the input, which implies in particular tha t  n must be known 
in advance. The second part  is devoted to general Place/Transi t ion nets. Both 
parts  are divided into the same four sections. Each section contains one or more 
"rules of thumb".  These are general informal statements which t ry  to summarise 
a number of formal results in a concise, necessarily informal, but  informative 
way. They could also be called "useful lies": statements which do not tell all the 
t ru th  and nothing but  the truth,  but  are more useful than a complicated formal 
theorem with many ifs and buts. There is a total of 10 rules of thumb in the 
paper; with their help I can solve most of the complexity questions I come across 
in my own research. 

Rules of thumb are displayed in the text  like this: 

Rule of thumb 0: 
To find the rules of thumb, look for pieces of text  within a box. 

This is only a rule of thumb, because other pieces of text are also surrounded 
by a box, in fact by a double box. They are fundamental formal results used to 
derive the rules of thumb. 

Fundamental results are displayed within a double 
box. 

The first section contains a universal lower bound for "interesting" Petri  net 
problems. The second section deals with upper bounds: for 1-safe Petri  nets it 
is possible to give an almost universal upper bound, whereas the case of general 
Petri  nets is more delicate. The third section deals with equivalence problems: 
are two given nets equivalent with respect to a given equivalence notion? Upper 
and lower bounds are considered simultaneously. Finally, the fourth section gives 
information about how far one can go with polynomial time algorithms. 

Only some of the results mentioned in the paper are proved; for others the 
reader is referred to the literature. The results with a proof are those fulfilling 
two conditions: they are very general, applicable to a variety of problems, and 
admit relatively simple, non-technical proofs. I have devoted special effort to 
presenting proofs in the simplest possible way. My goal was to produce a paper 
tha t  could be read straight through from beginning to end. I don' t  know if the 
goal has been achieved, but I tried my best. 

T a b l e  o f  C o n t e n t s  

1 Introduction 

2 Preliminaries 



380 

I 1 - s a f e  P e t r i  n e t s  

3 A universal  lower bound  

4 A near ly  universal  uppe r  b o u n d  
4.1 Linear-time propositional temporal logic 
4.2 Computation Tree Logic 
4.3 An exception 
4.4 A remark on action-based temporal logics 

5 Deciding equivalences 

6 Can  any th ing  be done in po lynomia l  t ime?  

I I  G e n e r a l  P e t r i  n e t s  

7 A universal  lower bound  

8 Uppe r  bounds  
8.1 The state-based case 
8.2 The action-based case 

9 All equivalence problems are undecidable  
9.1 Partial-order equivalences are also undecidable 

10 Can  any th ing  be done in po lynomia l  t ime?  

11 Conclusions  

2 P r e l i m i n a r i e s  

We assume that the reader is acquainted with the basic notions of net theory, 
like firing rule, reachable marking, liveness, boundedness, etc., and also with 
other basic computation models like Turing machines. This section just fixes 
some notations. 

Petri nets. A net is a triple Af = (S, T, F), where S and T are finite sets of places 
and transitions, and F C_ (S × T) U (T × S) is the flow relation. We identify F 
with its characteristic function (S x T)U (T × S) ~ {0, 1}. The preset and postset 
of a place or transition x are denoted by "x and x °, respectively. Given a set 
X c S t_J T, we denote "X = I.Jxex *x and X" = I.Jxex x°. A marking is a 
mapping M: S --+ iN. A (Place~Transition) Petri net is a pair N = (A/', M0), 
where A/" is a net and M0 is the initial marking. A transition t is enabled at a 
marking M if M(s) > 0 for every s E °t. If t is enabled at M, then it can fire 
or occur, and its firing leads to the successor marking M' which is defined for 
every place s by 

M'(s) = M(s) + f ( t ,  s) - F(s, t) 

The expression M --~ M' denotes that M enables transition t, and that the 
marking reached by the occurrence of t is M'. A finite or infinite sequence 
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Mo tl> 2~I1 t2> M2" '"  is called a firing sequence. The maximal firing sequences 
of a Petri  net (i.e., the infinite firing sequences plus the finite firing sequences 
which end with a marking that  does not enable any transition) are called runs. 
Given a sequence a = t i t2 . . ,  tn, M --g-y M' denotes tha t  there exist markings 

M1,M2, . . . ,Mn-1  such that  M t~) M1 . . .Mn-1 _L% M'. 
A Petri  net is 1-safe if M(s) < 1 for every place s and every reachable 

marking M. 
We encode a net (S, T, F )  as two ISI x ITI binary matrices Pre and Post. 

The entry Pre(s, t) is 1 if there is an arc from s to t, and 0 otherwise. The entry 
Post(s, t) is 1 if there is an arc from t to s, and 0 otherwise. The size of a net 
is the number of bits needed to write down these two matrices, and is therefore 
O(IS I • [TI). The size of a Petri net is the size of the net plus the size of its initial 
marking. Markings are encoded as vectors of natural  numbers. The size of a 
marking is defined as the number of bits needed to write it down as a vector, 
where each component is written in binary. Observe that  the size of a 1-safe 
Petri  net is O(ISI. ITI), since the initial marking has size O(ISt). 

A labelled net is a fourtuple (S,T, F, ~), where (S ,T ,F)  is a net and )~ is a 
mapping that  associates to each transition t a label A(t) taken from some given 

set of actions Act. Given a E Act, we denote by M a > M '  tha t  there is some 

transition t such that  M t > M'  and ~(t) = a. A labelled Petri net is a pair 
(Af, 114o), where Af is a labelled net and Mo is the initial marking. 

Turing machines. In the paper we use single tape Turing machines with one-way 
infinite tapes, i.e., the tape has a first but not a last cell. For our purposes it 
suffices to consider Turing machines starting on empty tape, i.e., on tape con- 
taining only blank symbols. So we define a (nondeterministic) Turing machine 
as a tuple M = (Q, F, 6, q0, F) ,  where Q is the set of states, F the set of tape 
symbols (containing a special blank symbol), 5: (Q x F) -+ T'(Q x F x {R, L}) 
the transition function, qo the initial state, and F the set of final states. The 
size o] a Turing machine is the number of bits needed to encode its transition 
relation. 

Linearly and exponentially bounded automata. We work several times with Tur- 
ing machines that  can only use a finite tape fragment, or equivalently, with Tur- 
ing machines whose tape has both a first and a last cell. We call them bounded 
automata. If a bounded automaton tries to move to the right from the last tape 
cell it just stays in the last cell. 

A function f :  SV -~ ~v" induces the class of f(n)-bounded automata, which 
contains for all k _> 0 the bounded automata  of size k that  can use f (k)  tape 
cells. Notice that  we deviate from the standard definition, which says that  an 
automaton is f (n) -bounded if it can use at most f (k)  tape cells for an input 
word of length k. Since we only consider bounded automata  working on empty 
tape, the standard definition is not appropriate for us. When f (n)  = n and 
f (n)  = 2 n we get the classes of linearly bounded and exponentially bounded 
automata, respectively. 
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Complexity classes and reductions. In the paper we use some of the most basic 
complexity classes, like P, NP, and PSPACE. We also use the class EXPSPACE, 
defined by 4 

EXPSPACE = U DSPACE(2nk) 
k>O 

We always work with polynomial reductions, i.e., given an instance x of a problem 
A we construct in polynomial time an instance y of a problem B. Many of the 
results also hold for logspace reductions, or even log-lin reductions, but we do 
not address this point. 

P a r t I  

1-safe Petr i  ne ts  
We study the complexity of analysis problems for 1-safe Petri nets. Given a 1- 
safe Petri net (Af, M01~ where Af = (S, T, F),  we say that  the possible markings 
of Af or just the markings of IV" are the set of markings that  put at most one 
token in a place. Clearly, there are 21sl possible markings. Each of the markings 
can be identified with the set of places marked at it. Observe that  the size of a 
marking is linear in the size of the net. 

3 A u n i v e r s a l  l o w e r  b o u n d  

In this section we obtain a universal lower bound for the complexity of deciding 
whether a 1-safe Petri net satisfies an interesting behavioural property: 

I Rule of thumb 1: 
All interesting questions about the behaviour of 1-safe Petri nets 
are PSPACE-hard. 

Notice that  a rule of thumb is not a theorem. There are behavioural properties 
of 1-safe Petri nets that  can be solved in polynomial time. For instance, the 
question "Is the initial marking a deadlock?" can be answered very efficiently; 
however, it is so trivial that  hardly anybody would consider it really interesting. 
So a more careful formulation of the rule of thumb would be tha t  all questions 
described in the literature as interesting are at least PSPACE-hard. Here are 14 
examples: 

- Is the Petri net live? 
- Is some reachable marking a deadlock? 
- Is a given marking reachable from the initial marking? 

4 Notice that some books (for instance [1]) define 
EXPSPACE = Uk>o DSPACE(k • 2~). 



383 

- I s  

- I s  

- I s  

- I s  
- I s  
- I s  

- I s  

- I s  

- I s  

- I s  

there a reachable marking that  puts a token in a given place? 
there a reachable marking that  does not put  a token in a given place? 
there a reachable marking that  enables a given transition? 
there a reachable marking that  enables more than one transition? 
the initial marking reachable from every reachable marking? 
there an infinite run? 
there exactly one run? 
there a run containing a given transition? 
there a run that  does not contain a given transition? 
there a run containing a given transition infinitely often? 

- Is there a run which enables a transition infinitely often but  contains it only 
finitely often? 

The PSPACE-hardness of all these problems is a consequence of one single 
fundamental fact, first observed by Jones, Landweber and Lien in 1977 [24]: 

A linearly bounded automaton of size n can be simulated by a 1- 
safe Petri  net of size O(n2). Moreover, there is a polynomial time 
procedure which constructs this net. 

The notion of simulation used here is very strong: a 1-safe Petri  net simulates 
a rlhring machine if there is bijection f between configurations of the machine 
and markings of the net such that  the machine can move from a configuration Cl 
to a configuration c2 in one step if and only if the Petri net can move from the 
marking f(cl) to the marking f(c2) through the firing of exactly one transition. 

Let A = (Q,/7, Z,  5,q0, F)  be a linearly bounded automaton of size n. The 
computations of M visit at most the cells C l , . . . ,  ca. Let C be this set of cells. 
The simulating Petri net N(A) contains a place s(q) for each state q C Q, a 
place s(c) for each cell c E C, and a place s(a, c) for each symbol a C F and for 
each cell c E C. A token on s(q) signals that  the machine is in state q. A token 
on s(c) signals tha t  the machine reads the cell c. A token on s(a, c) signals tha t  
the cell c contains the symbol a. The total  number of places is IQ1 + n .  (1 + IZI). 

The transitions of N(A) are determined by the state transition relation of 
A. If (qJ, a', R) E 5(q, a), then we have for each cell c a transition t(q, a, c) whose 
input places are s(q), s(c), and s(a, c) and whose output  places are s(q'), s(a', c) 
and s(d) ,  where d is the cell to the right of c (this signals tha t  the tape head 
has moved to the right) unless c is the last cell, in which case c ~ = c. The last cell 
is an exception, because by assumption the machine cannot move to the right 
from there. If (q~, a ~, L) E 6(q, a) then we add a similar set of transitions; this 
t ime the first cell is the exception. The total number of transitions is at most 
2.  [Vl 2- IF[ 2 .n ,  and so O(n2), because the size of A is O([Q[ 2. IF[2). 

The initial marking of N(A) puts one token on s(qo), on s(cl),  and on the 
place s(B, ci) for 1 < i < n, where B denotes the blank symbol. The  total  size 
of the Petri net is O(n2). 
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It follows immediately from this definition that  each move of A corresponds to 
the firing of one transition. The configurations reached by A along a computation 
correspond to the markings reached along its corresponding run. These markings 
put one token in exactly one of the places {s(q) I q E Q}, in exactly one of the 
places {s(c) I c E C}, and in exactly one of the places {s(a, c) I a E ~} for each 
cell c E C. So N(A) is 1-safe. 

In order to answer a question about a linearly bounded automaton A we can 
construct the net N(A), which is only polynomially larger than A, and solve the 
corresponding question about the runs of A. For instance, the question "does 
any of the computations of A terminate?" corresponds to "has the Petri net 
N(A) a deadlock?" 

It turns out that  most questions about the computations of linearly bounded 
automata  are PSPACE-hard. To begin with, the (empty tape) acceptance problem 
is PSPACE-complete: 

Given: a linearly bounded automaton A. 
To decide: if A accepts the empty input. 

Moreover, the PSPACE-hardness of this problem is very robust: it remains 
PSPACE-complete if we restrict it to 

- deterministic bounded automata, 
- bounded automata having one single accepting state, 
- bounded automata  having one single accepting configuration. 

Many other problems can be easily reduced to the acceptance problem in 
polynomial time, and so are PSPACE-hard too. Examples are: 

- does A halt?, 
- does A visit a given state?, 
- does A visit a given configuration? 
- does A visit a given configuration infinitely often? 

We obtain in this way a large variety of PSPACE-hard problems. Since N(A) 
is only polynomially larger than A, all the corresponding Petri net problems are 
PSPACE-hard as well. For instance, a reduction from the problem "does A 
ever visit a given configuration?" proves PSPACE-hardness of the reachability 
problem for 1-safe Petri nets. Furthermore, once we have some PSPACE-hard 
problems for 1-safe Petri nets we can use them to obtain new ones by reduction. 
For instance, the following problems can be easily reduced to the problem of 
deciding if there is a reachable marking that  puts a token on a given place: 

- is there a reachable marking that  concurrently enables two given transitions 
tl and t2? 

- can a given transition t ever occur? 
- is there a run containing a given transition t infinitely often? 
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13 out of the 14 problems at the beginning of the section (and many others) 
can be easily proved PSPACE-hard using these techniques. The liveness problem, 
the first in our list, is a bit more complicated. The interested reader can find the 
reduction in [2]. 

The  so lu t ion  to Story  III 

Recall the conjecture of Story III: Let Af = (S, T, F) be a net, and let Mo and 
M be markings of Af such that the Petri net(H, Mo) is 1-safe. M is reachable 
from Mo in Af if and only if there exists a mapping X: T -+ ~ satisfying the 
following three properties: 

(1) for every place s, M(s)  = Mo(s) + ~ t ~ T ( F ( t ,  s) -- F(s ,  t)) . X ( t ) ,  
(2) every nonempty siphon of J~fTX is marked at M0, and 
(3) every nonempty trap of JVTX is marked at M. 

where T X  is the set of transitions t such that X (t) > 0. 
We show that if the conjecture is true, then the reachability problem for 

1-safe Petri nets belongs to NP. Since we know that this problem is PSPACE- 
hard, the truth of the conjecture implies NP=PSPACE, which is highly unlikely. 
So, very probably, the conjecture is false; one should look for a counterexample 
instead of trying to prove it. 

We need a well-known result (see for instance [16]): 

11 
There is a polynomial time nondeterministic algorithm Feasible(S) fort[ 
the problem of deciding if a system of linear equations S with integer/[ 
coefficients has a solution in the natural numbers. ]l 

It is easy to decide if every siphon of a net Af is marked at a given marking 
M. The following (deterministic) algorithm, due to Starke [33, 5], does it for 
you. It first computes the largest siphon R contained in the set of places not 
marked at M. Clearly, all nonempty siphons are marked at M if and only if R 
is empty. 

Algorithm All_Siphons_Marked(N, M): 

variable: R of type set of places; 

begin  
R := set of places of N unmarked under M; 
while there is s E R and t E "s such that t ~ R" do 

R: = R \ {8} 
od; 
if R = 0 then  r e tu rn  true 
else r e tu rn  false 

end 
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The algorithm All_Traps_Marked is very similar: just change the loop condi- 
tion to: there is s E R and t E s" such that t ~ "R. Clearly, these two algorithms 
run in polynomial time. 

The following nondeterministic algorithm checks conditions (1), (2) and (3). 
It first guesses the set TX of transitions, and checks that (2) and (3) hold. Then, 
it checks if condition (1) holds for a vector X such that TX = {t E T 1 X ( t )  > 0}. 
For that, it checks if the system of equations S containing the equations of 
condition (1) plus the equation X( t )  _> 1 for every t E TX,  and the equation 
X ( t ) = 0 for every t E T \ TX has a solution. 

Algorithm Check_Conditions(N, Mo, M): 

beg in  
guess a subset of transitions TX of Af; 
if All_Siphons_Marked(AfTX, M0) 

and All_TrapsAViarked(A/'TX, M) 
and Feasible(S) 

t hen  r e t u r n  t rue  fi 
end 

Since the system of equations S has linear size in the net N, Feasible(S) runs in 
polynomial time in the size of the net. So Check_Conditions runs in polynomial 
time, and the problem of checking if conditions (1), (2), and (3) hold belongs to 
NP. 

Remark Even if we didn't know about the All_Siphons.Marked algorithm, we 
could still conclude that the conjecture is probably false. Only from the exis- 
tence of the procedure Feasible(S) we can already conclude that the teachability 
problem for 1-safe nets belongs to E P, the second level of the polynomial-time 
hierarchy (see for instance [1]). The general opinion of complexity theorists is 
that Z P = PSPACE is almost as unlikely as NP=PSPACE. 

4 A n e a r l y  u n i v e r s a l  u p p e r  b o u n d  

In this section we obtain a nearly universal upper bound matching the PSPACE- 
hard lower bound of the last section: 

Rule of thumb 2: l 
Nearly all interesting questions about the behaviour of 1-safe Petri t nets can be decided in polynomial space. 

Observe that the rule of thumb says "nearly all" and no longer "all". The 
reason is that the literature contains at least one interesting question requiring 
more than polynomial space. This exception to the rule is described at the end 
of the section. 
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We substantiate the rule of thumb with the help of temporal logics. Since 
their first application to computer science in the late seventies by Pnueli and 
others, temporal logics have become the standard query languages used to ex- 
press properties of reactive and distributed systems. A good introduction to the 
application of temporal logics to computer science can be found in [6]. 

Temporal logics can be linear-time and branching-time: linear-time logics are 
interpreted on the single computations of a system, while branching-time logics 
are interpreted on the tree of all its possible computations. The most popular 
linear and branching-time temporal logics axe LTL (linear-time propositional 
temporal logic) and CTL (computation tree logic). Most of the safety and live- 
ness properties of interest for practitioners, like deadlock-freedom, reachability, 
liveness (in the Petri net sense), starvation-freedom, strong and weak fairness, 
etc. can be expressed in LTL or in CTL (often in both). 

We show that  all the properties expressible in LTL and CTL can be decided 
in polynomial space. Actually, we even show that  they can be uniformly decided 
in polynomial space, i.e., we prove that  the degree of the polynomial does not 
depend on the property we consider. More precisely, let INI denote the size of a 
Petri net N, and let I¢1 denote the length of a formula ¢ (its number of symbols). 
For each of LTL and CTL we give an algorithm that  accepts as input a Petri 
net N and a formula ¢, and answers "yes" or "no" according to whether the net 
satisfies the formula or not; the algorithm uses O(p(IN I + I¢l)) space, where p is 
a polynomial independent of N and ¢. 

4.1 Linear-time propositional temporal logic 

The formulas of LTL are built from a set Prop of atomic propositions, and have 
the following syntax: 

¢ ::= p E Prop 
~¢ 
¢: ^ ¢5 
x¢  
¢1U¢2 

(¢ holds at the next state) 
(¢t holds until ¢2 holds) 

Usual abbreviations are true = p V -~p, F¢  = trueU¢ (eventually ¢), and 
a ¢  = -~F-~¢ (always ¢). 

LTL formulas are interpreted o n  computations. A computation is a finite or 
infinite sequence ~ = P(O)P(1)P(2).. .  of sets of atomic propositions. Intuitively, 
P(i) is the set of propositions that  hold in the computation after i steps. For a 
computation ~r and a point i in the computation, we have that:  
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~ r , i ~ p  
. , i  

iff p e P(i) 
iff not(r ,  i ¢) 
iff ~r, i ~ ¢1 and r ,  i ~ ¢2 
iff there exists a point i + 1 in the computation, and 

~ r , i + l  ~ ¢  
iff for some j _> i, we have ~r, j ~ ¢2 and 

for all k, i < k < j ,  we have ~, k ~ ¢1 

We say that  a computation r satisfies a formula ¢, denoted iv ~ ¢, if ~, 0 ~ ¢. 
The atomic propositions are intended to be propositions on the states of a 

system. They can only be chosen after the class of systems on which the logic is to 
be applied has been fixed. In the case of 1-safe Petri nets the states of the system 
are the markings, and so the atomic propositions are predicates on the possible 
markings of the net. It is then natural to have one atomic proposition per place. 
The markings satisfying the atomic proposition s are those that  put a token 
in s. Observe that  a computation is now a sequence of sets of places, and so a 
sequence of markings. In particular, the sequences of markings obtained from the 
runs of N by removing the intermediate transitions are computations. Abusing 
language, we also call these particular computations runs. We now define that  
a Petri net N satisfies ¢ if all its runs satisfy ¢. Here are some LTL formulas 
that  can be interpreted on the Petri net of Figure 1, which models a variation 
of Lamport 's  1-bit mutual exclusion algorithm for two processes [26]: 

(1) All runs are infinite (true for the net of Figure 1): GXtrue.  
(2) All runs mark place csl infinitely often (false): GFcsl.  
(3) In all runs, if place reql becomes marked then place csl wilt eventually 

become marked (true): G(reqt ~ Fcsl). 

Formula (1) expresses deadlock-freedom; formula (3) expresses that  the re- 
quests of the first process to the critical section are eventually granted. 

The model-checking problem for LTL and 1-safe Petri nets consists of, given 
a 1-safe Petri net N and a formula ¢, deciding whether N satisfies ¢ or not. 

The solution to the model-checking problem we give here makes use of au- 
tomata  theory. We have to introduce automata on infinite words. Let A -- 
(Z,  Q, qo, 5, F)  be a nondeterministic automaton, where Z is a finite alphabet, 
Q is a finite set of states, qo is the initial state, (f C_ Q x ~ x Q is the transition 
relation, and F is a set of finite states. The language of A, denoted by L(A), is 
defined as the set of finite words accepted by A. We define now the language of 
infinite words accepted by A, which we denote by L~(A). A word w = aoala2...  
belongs to L~(A) if there is an infinite sequence of states qoqlq2.., such tha t  
(qiaiqi+l) e 5 for every i > 0. 

When we are interested in the language of infinite words of an automaton, 
then we call it Biichi automaton. 

We have the following important result: 
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First process Second process 

Fig. 1. A Petri net model of Lamport's 1-bit mutex algorithm 

Given an LTL formula ¢, one can build a finite au tomaton  A¢ 
and a Biichi au tomaton Be such tha t  L(A¢) U L~(B¢) is exactly 
the set of computat ions satisfying the formula ¢. 

Since computat ions are sequences of sets of atomic propositions, the alphabet  
of the au toma ta  A¢ and Be is the set 2Pr°P. In our case Prop is the set of places 
of the net, and so the alphabet  of the au tomata  is the set of all markings. 

The construction of A¢ and Be exceeds the scope of this paper  (see for 
instance [37]). For our purposes, it suffices to know the following facts: 

- The states of A¢ are sets of subformulas of ¢; the states of Be are pairs of sets 
of subformulas of ¢. Since there are exponentially many  sets of subformulas, 
A¢ and Be may have exponentially many  states in [¢1. 

- Given two states ql, q2 of A¢ or Be and a marking M,  there is an algori thm 
which decides using polynomial space whether (ql, M, q2) 6 6¢. 

We also need two automata A2v = (2 s, Qlv, q0N, 6~v, FN A) and BN = (2 s, QN, qoN, 5N, F B) 
obtained from the Petri net N, as follows: 

- QN is the set of reachable markings of N;  
- -  qON is the initial marking M0; 

- 5N contains the triples of markings (M1, M1, M2) such tha t  M1 ~ > M2 for 
some transit ion t; 
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- F A is the set of deadlocked reachable markings of N; 
- F B = Q, i.e., FN B is the set of reachable markings of N. 

Loosely speaking, both automata correspond to the reachability graph of N, 
with the peculiarity that edges are labelled with the marking they come from. 
AN and BN differ only in their final states. Clearly, L(AN) is the set of all finite 
runs of N, and L~(BN) the set of all infinite runs. 

In order to solve the model-checking problem for input N, ¢, let A be 
the product of the automata A~¢ and AN, and let B be the product of the 
automata B-~¢ and BN, where the product (Z ,Q,  qo, 5, F) of two automata 
(Z, Q1, q01,51, F1) and (E, Q2, q02,52, F2) is defined in the usual way: 

Q = Q1 x Q2 

qo = (qol,q02) 
5 = {((ql,q2),a,(ql,q'2))J(ql,a, ql) ~ 51 and (q2,a,q~) E 52} 

F = Fl  × F2 

Clearly, we have L(A) = L(A~¢) N L(AN) and L~(B) = L~(B~¢) N L~(BN). 5 
So the union of L(A) and L~(B) is the set of runs of N that do not satisfy ¢; in 
other words, N satisfies ¢ ff and only if L(A) = 0 and L~ (B) = 0. 

We have reduced the model checking problem to the following one: Given N 
and ¢, decide if L(A) and L~ (B) are empty. We have to solve this problem using 
only polynomial storage space in the size of N and ¢. The first natural idea is 
to construct A and B, and then use the standard algorithms for emptiness of 
automata for finite and infinite words. Unfortunately, both A and B may have 
exponentially many states in [N[ and [¢[. 

At this point, complexity theory helps us by means of Savitch's construction. 
Recall that a nondeterministic decision procedure for a problem is an algorithm 
which can return "yes" or fail, and satisfies the following property: the answer 
to the problem is "yes" if and only if some (not necessarily all) execution of 
the algorithm returns "yes". A deterministic decision procedure always answers 
"yes" or "no". 

Savitch's construction: 
Given a nondeterministic decision procedure for a given problem 
using f (n)  space, Savitch's construction yields a deterministic pro- 
cedure for the same problem using f2(n) space. 

This construction makes our life easier: it suffices to give a nondeterministic 
algorithm for the emptiness problem of A and B running in polynomial space. 
Actually, it also suffices to give a nondeterministic algorithm for the nonempti- 
ness problem: by Savitch's construction there exists a deterministic algorithm 

5 The product of two Biichi automata doesn't always accept the intersection of the 
languages, but this is so in our case. 
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for the nonemptiness problem, and by reversing the answer of this algorithm we 
obtain another one for the emptiness problem. 

The nondeterministic algorithm for the nonemptiness problem constructs A 
and B "on the fly". The algorithm keeps track of a current state of A or B, 
which is initially set to the initial state. The algorithm repeatedly guesses a next 
state, checks that  there is a transition leading from the current state to the next 
state, and updates the current state. In the case of A, the algorithm returns 
"true" when (and if) it reaches a final state: 

Algorithm Nonempty_A(N, ¢) 

var iables :  q of type state of A~¢; 
M of type state of AN (i.e., of type marking); 

beg in  
(q, M) := (qo~¢, Mo); 
whi le  (q, M) is not a final state of A do  

choose a state qt of A~¢ such that  (q, M, q') E (f-.¢ 
and a marking M ~ such that  M t > M ~ for some transition t; 
(q, M) := (q', M');  

od; 
r e t u r n  t r u e  

e n d  

In order to estimate the space used by Nonempty_A, observe that  all the 
operations and tests can be performed in polynomial space. For that,  recall that  
given two states ql,q2 E Q..¢ and M E 2 S, there is an algorithm which decides 
using polynomial space whether (ql, M, q~) E (f~¢. The algorithm needs to store 
one state q of A~¢ and a marking M of N. Since the states of A~¢ are sets of 
subformulas of ¢, q has quadratic size in ]¢1- Since M has linear size in INI, 
polynomial space suffices. 

The case of B is a bit more complicated. Since B has finitely many states, 
L~ (B) is nonempty if and only if there exists a reachable final state q such that  
there is a loop from q to itself. So the algorithm proceeds as in the case of A, 
but, at some point, it guesses that  the current final state will be revisited; it 
then stores the current state to be able to check if the guess is true. The rest of 
the algorithm checks the guess nondeterministically. 

Algorithm Nonempty_B(N, ¢): 

var iables :  M, Mr of type state of BN (i.e., of type marking); 
q, qr of type state of B-~¢; 
flag of type boolean; 
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begin 
(q, M ) : =  (q0~¢, M0); flag :--false; 
while  flag = false do  

choose a state q' of A-~¢ such that  (q, M, q') E 59¢ 
and a marking M ' such that  M t ~ M ~ for some t; 
(q, M) := (q', M') ;  
i f  (q, M) is a final state then 

choose between flag := false and flag := true 
fi 

od;  
(qr, M r ) : =  (q,M); 
repeat 

choose a state q~ of A-~¢ such that  (q, M, q') E 5.¢ 

and a marking M '  such that  M t ,~ M ~ for some t; 
(q, M) := (q', M')  

until (q, M) = (qr, Mr); 
return true 

end 

Again, Nonempty_B(N, ¢) uses only polynomial space. Since the deter- 
ministic algorithm obtained after the application of Savitch's construction to 
Nonempty_A and Nonempty_B also needs polynomial space, the model-checking 
problem for LTL belongs to PSPACE. 

Observe that  the only properties of 1-safe nets we have used in order to 
obtain this result are: 

- a state has polynomial size (actually, even linear) in IN[, and 

- given two markings M, M' ,  it can be decided in polynomial space if M 
M t for some transition t. 

t 
) 

These conditions are very weak, and so the PSPACE result can be extended 
to a number of other models. As observed in [35], conditions (1) and (2) hold 
for other Petri net classes, like condition/event systems, elementary net systems, 
but  also for process algebras with certain limitations to recursion, and for several 
other models based on a finite number of state machines communicating by 
finite means. The conditions also hold for bounded Petri nets, assuming that  the 
bound is also given to Nonempty_A and NonemptyA] as part of the input. This 
assumption is necessary, because the bound of a bounded Petri net (the maximal 
number of tokens a place can contain under a reachable marking) can be much 
bigger than the size of the net, and so we may need more than polynomial space 
in order to just write down a reachable marking. 

The PSPACE result can also be extended to more general logics, like the 
linear-time mu-calculus, for which the translation into automata still works (see 
for instance [4]). 
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4.2 Computation Tree Logic 

Some interesting properties of Petri nets cannot be expressed in LTL. An ex- 
ample is liveness (in the Petri net sense). Recall that  a transition is live if it 
can always occur again. One possibility to express this to allow existential or 
universal quantification on the set of computations start ing at a marking. CTL 
introduces this quantification on top of LTL's syntax The syntax of CTL is 

¢ ::= p E Prop 
-,¢ 
¢1 A ~  
EX¢ 
AXe 
E[¢IU¢2] 
A[¢IU¢2] 

existential next operator  
universal next operator  
existential until operator  
universal until operator  

and a node n we have that: 

T , n ~ p  
T,n ~ -~¢ 
r ,n ~ ¢1 A ¢2 
T,n ~ A X ¢  
T, n ~ EX¢ 

T, n ~ A[¢1 Gee] 

T,n ~ E[¢IU¢2] 

iff p E P(n) 
iff not(T, n ~ ¢) 
iff r ,n ~ ¢1 and T,n ~ ¢~ 
iff for every child n ~ of n, T, n ~ ~ ¢ 
iff for some child n t of n, T, n'  ~ ¢ 

(n must have at least one child) 
iff for all computations n = nonln2. . .  

there exists i > 0 such tha t  ni ~ ¢2 
and for every j,  0 <_ j < i, nj ~ ¢1 

iff for some computation n = nonln2. . .  
there exists i > 0 such that  ni ~ ¢2 
and for every j ,  0 _< j < i, nj  ~ ¢1 

If the tree r is clear from the context we shorten T, n ~ ¢ to n ~ ¢. We say 
that  a tree T satisfies a formula ¢ if root(T) ~ ¢. 

Observe that  A X e  is equivalent to - ,EX-,¢,  i.e., E X  and A X  are dual 
operators. So actually we could remove A X  from the syntax without losing 
expressive power. It might seem that  the existential and universal until operators 
are also dual of each other, but  this is not true. The dual operator  of the universal 

Disjunction and implication are defined as usual. Other  abbreviations are 
true = p V-.p, E F ¢  = E[trueU¢] (possibly ¢), AGe = -.EF-.¢ (always ¢), 
AF¢  = A[trueU¢] (eventually ¢) and EG¢ = -~AF-,¢ (¢ holds at every state 
of some computation). 

CTL formulas are interpreted on computation trees, which are possibly infi- 
nite trees where each node n is labelled with a set of atomic propositions P(n). 
A path of a computation tree that  cannot be extended to a larger path is called 
a computation; notice that  it is a computation in the LTL sense. The intuition 
is that  the nodes of the tree correspond to the states of a system; a state may 
have an arbitrary number of successors, corresponding to different computations. 
P(n) is the set of atomic propositions that  hold at  node (state) n. For a tree T 
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until is the existential weak until, with syntax E[¢:  WU¢2], and the following 
semantics: 

It holds that  

~-,n ~ E[¢:  WU¢2] iff r , n  ~ E[¢IU¢2] V E G ( ¢ : )  

A[¢I U¢2] = -~E[-¢2 WU-~¢I] 

In order to use CTL to specify properties of a 1-safe Petri net N,  we choose 
again the places of N as atomic propositions. With this choice a computation 
tree is a tree of sets of places, and so a set of markings. We can associate to N a 
computation tree T N as follows: the root is labelled with the initial marking Mo; 
the children of a node labelled by M are labelled with the markings M' such 

that  M • t ~ M'  for some transition t. We say that  N satisfies ¢ if the tree 7N 
satisfies ¢. 

The computat ion tree corresponding to the the net of Figure 1 is shown in 
Figure 2. Essentially, the tree is just  the unfolding into a tree of the reachability 
graph of the net. Different nodes in the tree can be labelled with the same 

{idle l,id_l,idle_2,id_2} 

{ req_l, hid_l, idle_2, id_2 } / \  
{ CS_I, nid_l, { req_l, hid_l, 
idle_2 ~ id_2 } req_2, nid_2 ) 

{idle_l, id_2, reel_2, nid_2 } / \  
{ reci_l, nid_l, { idle_l, id_l, 
req__2, nid_2 } cs_2, nid_2 } 

Fig. 2. Computation tree of the Petri net of Figure 1 

marking, but  all subtrees whose roots are labelled with the same marking are 
isomorphic. Given a formula ¢ and a marking M, either all or none of the nodes 
labelled by M satisfy ¢. So it makes sense to say that  M satisfies ¢, meaning 
that  all nodes labelled by M satisfy ¢. 

Here are some CTL queries on the Petri  net of Figure 1: 

- No reachable marking puts tokens in cs: and cs2 (true): AG(-~cs: V -~cs2). 
- The output  transition of the place reql is live (true): AGEF(req: A id2). 
- The initial marking is reachable from every reachable marking (true): 

AGEF(idlel  A id~ A id~ A idle~)) 
- Eventually place csl becomes marked (false): AFcs: 
- There  is a run tha t  never marks cs2 (true): EG-~cs2 
- If req2 becomes marked, then eventually cs2 becomes marked (false): 

AG(req2 ~ AFcs2) 
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We show that the model checking problem for CTL is in PSPACE. It follows 
from the discussion above that it suffices to give a polynomial space algorithm 
for the syntax 

¢ ::-- s I ~¢1 I ¢1 A ¢2 I EX~) I E[¢zU¢2] I E[¢I WV¢2] 

We give a (deterministic) algorithm Check(M, ¢) with a marking M and a 
formula ¢ as parameters which answers "true" if M satisfies ¢, and "false" 
otherwise. The model-checking problem is then solved by Check(Mo, ¢). 

Check(M, ¢) is a recursive procedure on the structure of ¢, i.e., Check(M, 
0 p ( ¢ 1 , . . . ,  Ca)), where Op is some operator of the logic, calls Check(M, ¢1), 
. . . ,  Check(M, Ca). 

Algorithm Check(M, ¢): 

beg in  
if  ¢ = s t hen  

if  M(s)  = 1 then  r e tu rn  t rue  else r e t u r n  false fi 
elseif  ¢ = -~¢1 then  r e t u r n  not  Check(M, ¢1) 
elseif  ¢ = ¢1 A ¢2 then  r e t u r n  Check(M, ¢1) and Check(M, ¢2)) 
elseif  ¢ = E X ¢ I  then  

for every M' such that M --~ M' for some transition t do 
if  Check(M', Cz) then  r e t u r n  t rue  fi 

od  
else i f  ¢ : E[¢zU¢2] t h e n  r e t u r n  EU(M, ¢1, ¢2) 
elseif  ¢ = E[¢IWU¢2] then  r e t u r n  EWU(M, ¢1, ¢2) 
fi 

end 

It remains to define the procedures EU(M, ¢1, ¢2) and EWU(M, ¢1, ¢2). We 
start with EU(M, ¢1, ¢2). 

It is not possible to deterministically explore the infinitely many computa- 
tions starting at M, and check directly if one of them satisfies ¢1 U¢2. The reader 
might feel tempted to give a nondeterministic algorithm which explores one of 
the computations, and then apply Savitch's technique. This seems to be a good 
idea, but in fact doesn't work! There is a rather subtle problem. Consider the 
formulas 

Cn = E[E .  . . E[soVsz] . . .]Usn-z]Us,~] 

where S l , . . . ,  s,~ are places. We obtain a checking algorithm Cn through n appli- 
cations of Savitch's technique. It is easy to give a C2(]N[)-space nondeterministic 
algorithm for E[soUsl]. Unfortunately, the deterministic algorithm obtained by 
Savitch's technique requires ST([NI 2) space, the algorithm for E[E[soUsl]Us2] 
~([NI 4) space, and the algorithm for Cn no less than ~(INI 2~) space. So the 
degree of the polynomial in tNt depends on the formula we axe considering. 

We proceed in a different way. In a fist step we reduce the problem to the 
exploration of a finite number of finite paths. We extend the syntax of CTL with 
new operators E[¢IUb¢2], one for each natural number b. Loosely speaking, a 
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node satisfies E[¢IUb¢2] if in at least one of the computations starting at it we 
find a node satisfying ¢2 after at mos t  b steps, and all nodes before it satisfy ¢1. 
Formally: 

7-,n ~ E[¢IUb¢2] iff for some computation n = n o n l n 2 . . .  
there exists i, 0 < i < b - 1 such that 
ni ~ ¢9. and nj ~ ¢1 for every j ,  0 < j < i 

It follows immediately from this definition that if r, n satisfies E[¢IUb¢2] for 
some number b then it also satisfies E[¢IU¢2]. 

Now, let n be an arbitrary node of TN, and let k be the number of places of 
N. We prove 

n ~ E[¢IU¢2] ¢=~ E[¢lU2~¢2] 

It suffices to prove that n ~ E[¢IU¢2] implies n ~ E[¢lU2~¢2]. Assume that n 
satisfies E[¢IU¢2]. Then, T N contains a computation n = n o n l n 2 . . ,  satisfying 
¢1U¢2: ni ~ ¢1 for some i _ 0 and nj ~ ¢1 for every j ,  0 <_ j < i. If 
i < 2 k - 1, then this computation satisfies ¢1U2h¢2, and so n ~ ¢1U2~¢2. Let 
us now consider the case i > 2 a. Let M o M 1 M 2 . . .  be the sequence of markings 
corresponding to nonln2  . . . .  Since N is 1-safe and has k places, it has at most 
2 ~ reachable markings. So there are indices j l  and j2, 0 _< j l  < j2 _< i, such 
that Mjl = Mj2. Since the markings labelling the successors of a node are 
completely determined but the marking labelling the node itself, T N contains 
another computation starting at no and labelled by 

M0. . .  Mjl Mj2+I Mj2+2 • • • 

Loosely speaking, the sequence of markings of the new computation is obtained 
from the old sequence by "cutting out" the piece MjI+I . . .  Mj2 and "glueing" the 
two ends Mjl and Mj2+I. In this new sequence the marking Mi appears at the 
position i - (j2 - j l ) ,  and so closer to Mo than in the original computation. We 
now iterate the "cutting and glueing" procedure until Mi appears before the 2 k - 
th position. The computation so obtained satisfies ¢1U2~ ¢2, and so n ~ ¢1 U2~ ¢2. 

So we have solved our first problem: instead of a potentially infinite number 
of computations, it suffices to explore finitely many paths containing at most 
2 k nodes, and check that at least one of them satisfies ¢1 U2~ ¢2 (more precisely, 
that at least one of them can be extended to a computation satisfying ¢1 U2k ¢2)- 

We construct EU(M, ¢1, ¢2) with the help of another algorithm Path(M, 
M', ¢, ¢, l), still to be designed, with the following specification: 

Path(M, M', ¢, ¢, l) returns "true" if and only if ~'N has a path no . . .  nz 
such that 

- no is labelled by M and nt is labelled by M', 
- n i ~ ¢ f o r e v e r y i ,  0 < i < l ,  and 
- n i c e .  

We can take: 
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Algorithm EU(M, ¢1, ¢2) 

constant :  k = number of places of N; 

begin  
for every marking M' of N and every 0 < l < 2 k do 

if  Path(M, M', ¢i, ¢2, l) t hen  r e t u r n  t r u e  
od; 
r e t u r n  false 

end 

Since each iteration of the for loop can reuse the same space, the space used 
by EU(M, ¢1, ¢2) is the space used by Path(M, M', ¢1, l) plus the space needed 
to store M'  and l. So Path(M, M r, ¢1, l) should use at most polynomial space for 
every I < 2 k. A backtracking algorithm, which would be the obvious choice, does 
not meet this requirement, because it stores all the nodes of the computation 
being currently explored having still unexplored branches, and there can be 
exponentially many of those. 

A trick frequently applied in complexity theory 6 helps us out of the problem. 
Loosely speaking, for each reachable marking M ' ,  we explore all paths leading 
from M to M" and containing [~] + 1 nodes, and then, reusing the same space, 
all paths leading from M" to M ~ and containing [~J + 1 nodes. This trick of 
splitting the paths into two parts is applied recursively until paths having at 
most 2 nodes are reached. 

Algorithm Path(M, M', ¢, ¢, l) 

constant :  k = number of places of N; 

begin  
if l = 0 then  

if M = M' and Check(M, ¢) 
then  r e t u r n  t rue  fi 

fi; 
if  1 = 1 then  

if M t ) M'  for some transition t 
and Check(M, ¢) and Check(M', ¢) 

t hen  r e t u r n  t rue  fi 
fi; 
for every marking M" of N do 

if  Path(M, M ' ,  ¢, true, l r3]) and Path(M", M, ¢, ¢, [~J) 
t hen  r e t u r n  t rue  fi 

od; 
r e t u r n  false 

end  

In order to estimate the space complexity of Path(M, M r, ¢ , / ) ,  let c(¢) be 
the maximum over all markings M of the space needed by Check(M, ¢), and let 

6 In fact, this trick lies at the heart of Savitch's technique. 
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p(¢, ¢, l) be the maximum over all pairs of markings M, M r of the space needed 
by Path(M, M', ¢, ¢, l). Then we have 

p(¢, ¢, 0) = o(~(¢)) 
p(¢, ¢, 1) = O(max{c(¢), c(¢)}lgl) 

p(¢, ¢,I) = O(max{p(¢, ¢, l [~]),p(¢,¢, L~J)}INI) 

and so, in particular 

p(¢, ¢, 2 k) = O(max{c(¢), c(¢)} + k. IYl) = O(max{c(¢), c(¢)} + tYl 2) 

It remains to construct EWU(M, ¢1, ¢2). The interested reader can easily 
prove that for every node n of TN 

n ~ E[¢1 WU¢2] -' '.- E[¢1 WU~¢2] 

where the semantics of E[¢I WUb¢2] is given by 

T, n ~ E[¢1 WUb¢2] 

So we can take 

iff n ~ E[¢IUb¢2] or 
there exists a path n = non ln2  . . .  nb 
such that ni ~ ¢1 for every 0 < i < b 

Algorithm EWU(M, ¢1, ¢2) 

cons tant :  k = number of places of N; 

beg in  
if  EU(M, ¢1, ¢2) t h e n  r e t u r n  t r u e  
else 

for every marking M' of N do 
if Path(M, M', ¢1, true,  2 k) t h e n  r e t u r n  t rue  

od; 
r e t u r n  false 

end  

This completes the definition of Check(M, ¢). It is easy to see that it runs 
in polynomial space in IN I and I¢1, but let us determine the space complexity a 
bit more precisely. We have: 

c(8) = 
c(¢1 A ¢2) = 

c(~¢) = 
c(E[¢IU¢2])  = 

c(E[¢lV~¢2]) = 

and so we finally get c(¢) 

O(INI) 
O(max{c(¢l), c(¢2)} + }NI) 
O(c(¢)) 
O(p(¢1, ¢2,2 k) + INt) 
O(max{c(¢l), c(¢2)} + Igl 2) 
O(max{c(E[¢lV¢2]),p(¢l, true, 2k)} + fNI) 
O(max{c(¢l), c(¢2)} + Igl 2) 

= o( l¢ l .  Igl~). 
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4.3 A n  except ion 

The most  interesting exception to Rule of Thumb 2 is the controllability property. 
Let To be a subset of transitions of a 1-safe Petri  net N = (S, T, F, M0), and let 
t E T \ To. We say tha t  To controls t by a sequence a E T~ if for every occurrence 

sequence M0 _L+ M such that  the projection of T onto To is a,  the transit ion t 
cannot occur at M.  The intuition is tha t  To can control t in the sense tha t  once 
the sequence a has occurred, possibly interleaved with transitions of T \ To, t 
cannot occur until transitions of To occur again. We say tha t  To can control t if 
To can control t by at least one sequence a. 

The controllability problem is defined as follows: 

Given: a 1-safe Petri  net with a set T of transitions, To C_ T, t E T \ To 
To decide: if To can control t. 

Jones, Landweber and Lien show in [24] tha t  controllability is EXPSPACE-  
complete. 

4.4 A remark on action-based temporal  logics 

We have defined LTL and CTL as state-based logics, because in order to know 
if a run satisfies a property one only needs information about  the states - the 
markings - visited during its execution, and not about  which transitions lead 
from a marking to the next. I t  is possible to define action-based versions of these 
logics, in which the identities of the markings visited during the execution of a 
run is irrelevant, while the information is carried by the sequence of transit ions 
tha t  occur. These action-based versions are particularly useful for labelled Petr i  
nets. 

The action-based version of LTL - tailored for labelled Petri  nets looks 
as follows: the set of basic propositions contains only one element, namely the 
proposition true. The operators X and U are replaced by a set of relativised 
operators  XK,  UK, where k is a subset of a certain finite set of actions Act. A 
computation is now a finite or infinite sequence 7r = aoala2. . ,  of actions. Let 
7r (i) = aiai+l . . . .  We have: 

7r ~ true 
7r ~ X K ¢  iff 
7~ ~ ~)l Vg¢2 iff 

always 
lr 74 e, a0 E k, and 7r (1) ~ ¢ 
for some j > 0 we have 7r(J) ~ ¢2 and 
for all k, 0 < k < j ,  we have ai E k and 7r (k) ~ ¢1 

In order to interpret the logic on a 1-safe labelled Petri  net N,  we choose Act 
as the set of labels carried by the transitions of N.  We say that  N satisfies a 
formula ¢ if all the sequences of transition labels obtained from the runs of N 
by removing the markings satisfy ¢. 

Similarly, in the action-based version of CTL the operators  of the logic E X ,  
A X ,  E[ . . .  U . . . ] ,  and A[. . .  U . . . ]  are replaced by sets of relativised operators  
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E X K ,  AXK,  E[.. .  UK...], and A[... UK...]. Computation trees are now trees 
whose edges are labelled with actions. The semantics is exactly what one expects. 

It is easy to prove that the model-checking problem for these two new logics 
can be reduced to the model-checking problem for their state-based versions. 
More precisely: given a labelled 1-safe Petri net N and a formula ¢ of action- 
based LTL (CTL), one can construct in polynomial time an unlabelled 1-safe 
Petri net N'  and a formula ¢' of state-based LTL (CTL) such that N satisfies ¢ 
if and only if N' satisfies ¢'. It follows that the model-checking problem for the 
action-based LTL and CTL is also in PSPACE. 

In Section 8 we study the model checking problems for temporal logics and 
arbitrary Petri nets. There, the distinction between state-based and action-based 
logics plays a much more important r61e. 

5 Deciding equivalences 

In this section we investigate the complexity of deciding if two labelled 1-safe 
Petri nets are equivalent with respect to a given equivalence notion. 

Since the early eighties many different equivalence notions have been pre- 
sented in the literature. Van Glabbeek has classified them in several papers, e.g. 
[36]. Most of these equivalences fit between the so-called trace equivalence, which 
is a process theory counterpart of the classical language equivalence used in for- 
mal language theory, and bisimulation equivalence. An equivalence notion X fits 
between trace and bisimulation equivalence if bisimilar systems are X-equivalent, 
and X-equivalent systems are trace equivalent. 

Trace and bisimulation equivalences are defined as follows. Let N be a la- 
belled Petri net, where transitions are labelled with the elements of a set of 
actions Act. The set of traces of N, denoted by T(N)  is the set of words 
al . . .an  E Act* such that there exist markings M1, . . .Mn  satisfying M0 al> 
M1 ~2> . . .  aN; M J .  Two Petri nets N1 and N~ are trace equivalent if T(N1) = 

A relation T¢ between the sets of markings of two nets is a (strong) bisimu- 
lation if for every pair (M1, M2) E T~ and for every action a E Act, 

- if M1 - ~  M~, then M2 a > M~ for some marking M~ such that (M~, M~) E 
TO, and 

- if M2 --~ M~, then M1 --%t M~ for some marking M~ such that (M~, M~) E 
TO. 

Two Petri nets N1 and N2 are (strongly) bisimilar if there exists a (strong) 
bisimulation T~ containing the pair (Mol, Mo2) of initial markings of N1 and N2. 

We have the following 

7 Recall: M ~ ; M' denotes that there is a transition t labelled by a such that M --~ 
M'. 
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Rule of thumb 3: 
Equivalence problems for 1-safe Petri  nets are harder to solve 
than model-checking problems, but  they need at most exponential 
space. 

We provide a first piece of evidence for this rule of thumb by showing that  
the equivalence problem for 1-safe Petri nets and any equivalence notion fitting 
between trace and bisimulation equivalence is PSPACE-hard.  It turns out that  all 
the concrete equivalences mentioned in the literature have at least DEXPTIME-  
hard equivalence problems, and so this general PSPACE-hardness lower bound 
can possibly be improved. 

We proceed by reduction from the following PSPACE-hard problem 

Given: a 1-safe Petri  net N, a place s of N 
To decide: if some reachable marking of N puts a token on s. 

We start  by labelling each transition of N with the same label, say a. N is 
now a labelled net. We put N side by side with the labelled net N '  consisting of a 
loop containing one single place marked with one token and one single transition 
labelled by a. We denote the resulting Petri  net by N !1 N' .  

Now, we consider two labelled nets. The first one is N t l  N' ;  the second is a 
small modification of it obtained by adding a new output  transition to the place 
s of N. The new transition has s as unique input place, no output  places, and 
carries a label different from a, say b. 

The following holds: 

- If some reachable marking puts a token on s, then the two nets are not trace 
equivalent: the second one can do a b, while the first one can't. 

- If no reachable marking puts a token on s, then the two nets are bisimilar: 
the relation containing all pairs (M1, M2), where M1 is a reachable marking 
of the first net and M2 a reachable marking of the second net, is clearly a 
bisimulation. 

Therefore, given any equivalence notion X fitting between trace and bisimula- 
tion equivalence, we can solve the PSPACE-hard problem above by constructing 
the two nets and deciding if they are X-equivalent. So the equivalence problem 
for any such notion is PSPACE-hard. 

Apart  from this little result, the real evidence supporting the rule of thumb 
above is the work of Rabinovich [31] and Jategaonkar and Meyer [23]. This last 
paper contains a table with the complexity of 18 equivalence notions. Bisimilarity 
and many variants of it are DEXPTIME-complete,  while trace equivalence, fail- 
ures equivalence, and several variants of them are EXPSPACE-complete.  They 
also consider so-called partial order equivalences, for which the concurrent execu- 
tion of two actions is not equivalent to their interleaved execution (i.e., a system 
that  executes a and b in parallel is not considered to be equivalent to a system 
which chooses between executing a and then b, or b and then a). The  complexity 
results (up to some open problems) are similar. 
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6 C a n  a n y t h i n g  b e  d o n e  i n  p o l y n o m i a l  t i m e ?  

We have seen that all interesting problems for arbitrary 1-safe Petri nets are at 
least PSPACE-hard, and so that there is very little hope of finding polynomial 
algorithms for them. The natural question to ask is if there are important sub- 
classes of 1-safe Petri nets for which one could solve at least some problems in 
polynomial time. In this section we get some general answers in the form of rules 
of thumb. 

A first rule, which tends to be surprising for many people is 

t Rule of thumb 4: 
Most interesting questions about the behaviour of acyclic 1-safe 
Petri nets are NP-hard. 

Here, as in Section 3, a word of warning is required about the meaning of 
"interesting". Liveness is certainly an interesting question for arbitrary 1-safe 
nets, but not for the acyclic ones: 1-safe acyclic Petri nets are always non-live, 
because no transition can fire more than once. Interesting questions for 1-safe 
acyclic Petri nets, all of them NP-hard, are 

- Is a given marking reachable from the initial marking? 
- Is there a reachable marking which marks a given place? 
- Is there a reachable marking which does not mark a given place? 
- Is there a reachable marking which enables a given transition? 
- Is the initial marking reachable from every reachable marking? 
- Is there a run containing a given transition? 
- Is there a run that does not contain a given transition? 

Let us prove NP-hardness of the second problem: Is there a reachable marking 
which marks a given place? We present a polynomial time construction which 
associates to a boolean formula in conjunctive normal form an acyclic 1-safe Petri 
net. The net nondeterministically selects a truth assignment for the variables of 
the formula, and then checks if the formula is true under the assignment. The 
construction is illustrated in Figure 3 by means of an example. 

It seems s that in order to obtain classes with polynomial decision algorithms 
one has to impose local constraints on the net's structure. Here "local constraint" 
means a constraint which can be shown not to hold by looking at only a small 
part of the net. For instance, "every transition has exactly one input place" is 
a local constraint; if the constraint does not hold, then one can always point at 
a particular transition in the net, together with its input places, and show that 
the constraint is not satisfied because of this transition. A constraint like "the 
net is acyclic" is not local, because the smallest circuit of the net may be the 
net itself. 

The two following local constraints have been very intensely studied in the 
literature: 

s Although I don't know of any formal proof. 
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A1 A2 A 3 

~3 

CI ~ C3 

True 
Fig. 3. Acyclic net corresponding to the formula (xl V ~3) A (xl V x2 V x3) A (x2 V ~3) 

- the conflict-freeness constraint: s ° C_ "s for every place s with more than one 
output  transition; in the case of 1-safe Petri nets this constraint is equivalent 
to "every place has at most one output  transition" for nearly all purposes; 

- the free-choice constraint: if (s, t) is an arc from a place to a transition, then 
so is (s', t') for every place s' 6 "t and for every transition t' 6 s °. 

Unfortunately, it is not possible to summarise the results of the research on 
conflict-free and free-choice Petri nets in a concise and general rule of thumb. 
But we can still say: 

Rule of thumb 5: 
Many interesting questions about  1-safe conflict-free Petri  nets are 
solvable in polynomial time. 
Some interesting questions about live 1-safe free-choice Petri  nets 
are solvable in polynomial time (and liveness of 1-safe free-choice 
Petri  nets is decidable in polynomial time too). 
Almost no interesting questions for 1-safe net classes substantially 
larger than free-choice Petri nets are solvable in polynomial time. 

Among the "many" interesting polynomial questions for conflict-free nets are 
all those that  can be expressed in the fragment of CTL with syntax 

¢ ::= s I 9¢  I ¢1 A¢2 I E X ¢  1 EF¢ 
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(see [7]). Among the "some" interesting polynomial questions for live free-choice 
nets are the following [5]: 

- Is there a reachable marking which marks a given place? 
- Is there a reachable marking which does not mark a given place? 
- Is there a reachable marking which enables a given transition? 
- Is the initial marking reachable from every reachable marking? 
- Is there a run that  does not contain a given transition? 

Interestingly, the reachability problem for 1-safe live free-choice nets is NP- 
complete [8], and so it is unlikely that  it will ever be added to this list. 

P a r t I I  

Genera l  Petr i  nets  
In this second part  of the paper we consider arbitrary (finite) Place/Transit ion 
Petri  nets. The possible markings of a net Af or just the markings olaf are now 
the set of all mappings S -~ ~W, where S is the set of places of A/'. Observe that,  
contrary to the 1-safe case, there is no a priori relation between the size of a net 
and the size of its markings. Notice also that  the set of reachable markings may 
be infinite. 

7 A universal  lower b o u n d  

This section is the counterpart  of Section 3 for Place/Transit ion Petri  nets. The 
rule of thumb is now: 

Rule of thumb 6: 
All interesting questions about the behaviour of (Place/Transition) Petri  
nets are EXPSPACE-hard.  More precisely, they require at least 2 °(~/-~)- 
space. 

In particular, all the questions we asked about  1-safe Petri  nets can be refor- 
mulated for Petri  nets, and turn out to have at least this space complexity. As 
in the case of 1-safe Petri  nets, this is a consequence of one single fundamental 
fact: 

A deterministic, exponentially bounded automaton of size n can be sim- 
ulated by a Petri  net of size O(n2). Moreover, there is a polynomial time 
procedure which constructs this net. 
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In order to answer a question about  the computat ion of an exponentially 
space bounded au tomaton  A, we can construct the net that  simulates A, which 
has size O(n2), and solve the corresponding question. If  the original question 
requires 2 n space, as is the case for many properties, then the corresponding 
question about  nets requires at least 2°(v~)-space. 

The fundamental  fact above was first proved by Lipton [27]. Mayr and Meyer 
proved in [29] that  it is possible to make the simulating net reversible (a net is 
reversible if for each transition t there is a reverse transit ion t which "undoes" 
the effect of t). Since reversible nets are equivalent to commutat ive  semigroups, 
the construction by Mayr and Meyer has important  applications in mathemat ics .  

Since Mayr and Meyer 's  construction is more involved than  Lipton's ,  and 
since reversibility is not a main concern for this paper,  we consider Lipton 's  
construction in detail. I t  would have been easier to refer to Lipton 's  paper,  but  
unfortunately it only exists as an old Yale report,  quite difficult to find. 

Bounded au tomata  and general Place/Transi t ion Petri  nets do not "fit" well. 
I t  is not appropriate  to model a cell of a bounded au tomaton  as a place, as we 
did in the l-safe case, because the cell contains one out of a finite number  of 
possible symbols, while the place can contain infinitely many  tokens, and so the 
same information as a nonnegative integer variable. So we use an intermediate 
model, namely counter programs. It  is well-known tha t  so-called bounded counter 
programs can simulate bounded au tomata  (see below), and we show tha t  Petr i  
nets can simulate bounded counter programs. 

A counter program is a sequence of labelled commands separated by semi- 
colons. Basic commands have the following form, where l, 11, 12 are labels or 
addresses taken from some arbi t rary set, for instance the natural  numbers,  and 
x is a variable over the natural  numbers,  also called a counter. 

l : x : = x + l  
h x : = x - 1  
h g o t o  11 unconditional jump 
h i f  x = 0 t h e n  g o t o  11 conditional jump 

else  g o t o  12 
h h a l t  

A program is syntactically correct if the labels of commands are pairwise 
different, and if the destinations of jumps correspond to existing labels. For 
convenience we can also require the last command to be a h a l t  command.  

A program can only be executed once its variables have received initial values. 
In this paper  we assume tha t  the initial values are always 0. The  semantics of 
programs is that  suggested by the syntax. The  only point to be remarked is tha t  
the command l : x := x - 1 fails if x = 0, and causes abort ion of the program. 
Abort ion must  be distinguished from proper termination,  which corresponds to 
the execution of a h a l t  command. Observe in particular tha t  counter programs 
are deterministic. 

A counter program C is k-bounded if after any step in its unique execution 
the contents of all counters are smaller than or equal to k. We make use of a 
well known construction of computabil i ty theory: 
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There is a polynomial t ime procedure which accepts a determin- 
istic bounded au tomaton  A of size n and returns a counter pro- 
gram C with O(n) commands simulating the computat ion of A on 
empty  tape; in particular,  A halts if and only if C halts. Moreover, 
if A is exponentially bounded, then C is 22"-bounded. 

Now, it suffices to show tha t  a 22"-bounded counter program of size O(n) 
can be simulated by a Petri  net of size O(n2). This is the goal of the rest of this 
section. 

Since a direct description of the sets of places and transitions of the simulating 
net would be very confusing, we introduce a net programming notat ion with a 
very simple net semantics. I t  is very easy to obtain the net corresponding to 
a program,  and execution of a command corresponds exactly to the firing of a 
transition. So we can and will look at the programming notat ion as a compact  
description language for Petri  nets. 

A net program is ra ther  similar to a counter program, but  does not have the 
possibility to branch on zero; it can only branch nondeterministically. However, 
it has the possibility of transferring control to a subroutine. The basic commands 
are as follows: 

l : x : - - x + l  
1: x := x - 1 
l: g o t o  11 
1: g o t o  11 o r  g o t o  12 
1: g o s u b  11 
1: r e t u r n  
l: h a l t  

unconditional jump 
nondeterministic jump 
subroutine call 
end of subroutine 

Syntactical correctness is defined as for counter programs. We also assume 
tha t  programs are well-structured. Loosely speaking, a program is well-structured 
if it can be decomposed into a main program that  only calls first-level sub- 
routines, which in turn only call second-level subroutines, etc., and the jump 
commands  in a subroutine can only have commands of the same subroutine as 
destinations. 9 We do not formally define well-structured programs,  it suffices to 
know tha t  all the programs of this section are well-structured. 

We sketch a (Place/Transit ion) Petri  net semantics of well-structured net 
programs.  The  Petr i  net corresponding to a program has a place for each label, 
a place for each variable, a distinguished halt place, and some additional places 
used to store the calling address of a subroutine call. There is a transition for 
each assignment and for each unconditional jump,  and two transitions for each 
nondeterministic jump,  as shown in Figure 4. We illustrate the semantics of the 
subroutine command  by means of the program 

9 Here we consider the main program as a zero-level subroutine, i.e., jump commands 
in the main program can only have commands of the main program as destinations. 
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()l 

ET<)x 

1 : x:=x+l; 

11 : . . . 

()l 

E -Ox 

1 : x:=x-l; 

11 : . . . 

1 : goto 11 1 : goto 11 
or 

goto 12 

Fig. 4. Net semantics of assignments and jumps 

()l 

<)halt 
1 : halt 

1: gosub  4; 
2: gosub  4; 
3: halt; 
4 : g o t o 5  o r  go to  6; 
5: r e t u r n ;  
6: r e t u r n  

The corresponding Petri  net is shown in Figure 5. Observe that  the places 
l_calls_~ and 2_calls_~ are used to remember the address from which the subrou- 
tine was called. 

Clearly, the Petri net corresponding to a net program with k commands has 
O(k) places and O(k) transitions, and its initial marking has size O(k). So it is 
of size O(k2). 

Let C be a 22"-bounded counter program with O(n) commands. We show 
that  C can be simulated by a net program N(C) with O(n) commands, which 
corresponds to a Petri  net of size O(n2). Unfortunately, the construction of 
N(C) requires quite a bit of low-level programming. But the reward is worth 
the hacking effort. 

The notion of simulation is not as strong as in the case of 1-safe Petri  nets. 
In particular, net programs are nondeterministic, while counter programs are 
deterministic. A net program N simulates a counter program C if the follow- 
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l_calls_4 4 

2_calls4 return_4 

[] 
halt(  

Fig. 5. Net semantics of subroutines 

ing property holds: C halts (executes the command hal t )  if and only if some 
computation of N halts (other computations may fail). 

Each variable x of N (be it a variable from C or an auxiliary variable) has 
an auxiliary complement variable 5. N takes care of setting 5 = 2 ~" at the 
beginning of the program. We call the code that takes care of this Nin~t(C). 1° 
The rest of N(C),  called Nsim(C), simulates C and takes care of keeping the 
invariant 5 = 2 2" - x. 

We design Nsim (C) first. This program is obtained through replacement of 
each command of C by an adequate net program. Commands of the form x :-- 
x + 1 (x := x - 1) are replaced by the net program x := x + 1;5 := 5 -  1 

lo Recall that by definition all variables of N have initial value 0. Therefore, if we need 
= 2 2~ initially, then we have to design preprocessing code for it. 
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(x :=  x -- 1; E :---- ~ + 1). Uncondi t ional  jumps  are replaced by themselves.  Let  
us now design a p rogram 

Testn(x,ZER0, NONZERO) 

to  replace a condit ional  j u m p  of  the  form 

l: i f  x = 0 t h e n  g o t o  ZERO 
else  g o t o  NONZERO 

The  specification of Testn is as follows: 

If  x = 0 (1 _< x _< 2~"), then some execution of  the  p rogram leads to  
ZERO (NONZERO), and no computa t ion  leads to NONZERO (ZERO); moreover  
the  p rogram has no side-effects: after  any  execution leading to ZERO or 
NONZERO no variable has changed its value. 

Actually, it is easier to  design a p rog ram Test~n(x,ZER0, NONZERO) with the 
same specification but  a side-e~ect: after an execution leading to  ZERO, the values 
of x and E axe swapped,  n Once Test~ has been designed, we can take: 

P r o g r a m  Testn(x, ZERO, NONZERO): 

Test~(x,  continue, NONZERO); 
continue: Test~(5, ZERO, NONZERO) 

because the values of  x and 5 are swapped 0 times if x > 0 or  twice if x -- 0, 
and so Testn has no side effects. 

The  key to  the design of Test~, lies in the following observation:  Since x never 
exceeds 22" , test ing x = 0 can be replaced by nondeterminis t ical ly  choosing 

- to decrease x by 1, and if we succeed then we know t h a t  x > 0, or 
- to  decrease 5 by 22" , and if we succeed then we know t h a t  E = 22" , and so 

If  we choose wrongly, t ha t  is, if for instance x = 0 holds and  we t ry  to  decrease 
x by 1, then the  p rogram fails; this is not  a problem, because we only have to  
guarantee  tha t  the p rogram may (not must!) terminate,  and  tha t  if it t e rminates  
then it provides the r ight answer. 

Decreasing x by 1 is easy. Decreasing 5 by 22" is the difficult part .  We leave it 
for a rout ine Dec~ to be designed, which must  satisfy the following specification: 

If  the initial value of  s is smaller than  2 2"  , then every execut ion of 
Decn fails. If  the value of  s is greater  than  or  equal to  22~, then all 
executions te rmina t ing  with a r e t u r n  c o m m a n d  have the  same effect as 
s :=  s - 22~;~ :-- ~ + 22"; in part icular ,  there  are no side-effects. All 
o ther  executions fail. 

11 Executions leading to NONZERO must still be free of side-effects. 
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Test~ proceeds by transferring the value of x to a special variable s, and then 
calling the routine Decn, which decreases s by 2 ~". In this way we need one 
single routine Decn, instead of one for each different variable to be decreased, 
which leads to a smaller net program. 

Program Test~(x, ZERO, NONZERO): 

** initially s -- 0 and ~ --- 22" ** 
g o t o  nonzero  o r  g o t o  loop; 

nonzero:  x := x - 1; x :-- x + 1; goto NONZERO; 
loop:  ~ : - - - - ~ - - l ; x : - - - - x + l ; s : = s + l ; ~ : - - - - ~ - l ;  

g o t o  e x i t  o r  g o t o  loop  
e x i t :  g o s u b  decn; g o t o  ZERO 

** the routine called at decn is Decn(s) ** 

It is easy to see that  Test~ meets its specification: if x > 0, then we may 
choose the nonzero  branch and reach NONZERO. If x = 0, then 5 = 22" . After 
looping 22" times on loop  the values of x, • and s, ~ have been swapped. 
The values of s and ~ are swapped again by the subroutine Decn, and then 
the program moves to ZERO. Moreover, if x = 0 then no execution reaches the 
NONZERO branch, because the program fails at x := x - 1. If x > 0, then no 
execution reaches the ZERO branch, because s cannot reach the value 22", and 
so Decn fails. 

The  next step is to design Decn. We proceed by induction on n, starting with 
Dec0. This is easy, because it suffices to decrease s by 220 = 2. So we can take 

Subroutine Dec0(s): 

s := s -  1; ~ := ~ +  1; 
s := s -  1; ~ : = ~ +  1; 
r e t u r n  

Now we design Deci+l under the assumption that  Deci is already known. The 
definition of Deci+l contains two copies of a program Test~, called with different 
parameters.  We define this program by substituting i for n everywhere in Test~n. 
Test~ calls the routine Deci at the address deci. Notice that  this is correct, 
because we are assuming that  the routine Deci has already been defined. 

The key to the design of Deci+l is that  decreasing by 2 ~+1 amounts to 
decreasing 22. times by 22', because 

22`+` = (22') 2 = 2 ~' . 22` 

So decreas ingby 22~+1 can be implemented by two nested loops, each of which 
is executed 22' times, such that  t h e b o d y  of the inner loop decreases s by 1. The 
loop variables have initial values 22` , and termination of the loops is detected by 
testing the loop variables for 0. This is done by the Test~ programs. 
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Subroutine Deci+l (s): 

** Initially Yi = 22' = zi, Yi = 0 = -5i ** 
** The initialisation is carried out by Ninit ** 
oute r_ loop:  Yi := Yi - 1; Yi := Yi + 1; 
inner_ loop:  zi := zi - 1; ~i := ~i + 1; 

s := s -  1; $ := ~4- 1; 
Test~(zi, inner_exit , inner_loop); 

inner_exit: Test~(yi, outer_exit, outer_loop); 
outer_exit: return 

Observe also tha t  both  instances of Test~ call the same routine at the same label. 
It  could seem tha t  DeCi+l swaps the values of Yi, Yi and zi, -5i, which would be 

a side-effect contrary to the specification. But  this is not the case. These swaps 
are compensated by the side-effects of the ZERO branches of the Test~ programs! 
Notice tha t  these branches are now the i n n e r _ e x i t  and o u t e r _ e x i t  branches. 
When the program leaves the inner loop, Test~ swaps the values of zi and -5i. 
When the program leaves the outer loop, Test~ swaps the values of Yi and Yi- 

This concludes the description of the program Test,~, and so the description 
of the program Nsim(C) .  I t  remains to design Nini t (C) .  Let us first make a list 
of the initialisations that  have to be carried out. Nsim(C)  contains 

- the variables x l , . . . ,  xz of C with initial value 0; their complementary  vari- 
ables • 1 , . . . ,  gt with initial value 22" ; 

- a variable s with initial value 0; its complementary variable g with initial 
value 22" ; 

- two variables yi, zi for each i, 0 < i < n - 1, with initial value 224; their 
complementary variables ~i,-Si for each i, 0 < i < n -  1, with initial value 0. 

Now, the specification of Ni ,u t (C)  is simple 

Nini t (C)  uses only the variables in the list above; every successful ex- 
ecution leads to a state in which the variables have the correct initial 
values. 

Nini t (C)  calls programs Inc/(vl,  . . . ,  Vm) with the following specification: 

All successful executions have the same effect as 

Vl :=  Vl 4- 2T; 

Vrn :---- Vm 4- 224 

In particular,  there are no side-effects. 

These programs are defined by induction on i, and are very similar to the family 
of Dec /p rograms .  We star t  with Inc0: 
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Program Inco (vl, •. •, Vm): 

v l : = v l + l ; v l : = v i + l ;  
. . .  

vm := Vm + 1; Vm := Vm + 1 

and now give the inductive definition of Inci+v 

Program Inc~+l (Vl,. • •, Vm): 

• * Initially Yi = 22` = zi, Yi = 0 = "zi ** 
outer_loop: Yi := Yi - 1; Yi := Yi + 1; 
inner_loop: zi := zi - 1; ~i := zi + 1; 

V l  :~'-~ V l  " t -  1; 
. . .  

Vm := Vm + 1; 
Test~(zi, inner_exit , inner_loop); 

inner_exit: Test~(yi, outer_exit, outer_loop); 
outer_exit: ... 

It is easy to see that  these programs satisfy their specifications. Now, let us 
consider Ninit (C). Apparently, we face a problem: in order to initialise the vari- 
ables v l , . . . ,  Vm to 22~+1 the variables Yi and zi must have already been initialised 
to 221[ Fortunately, we find a solution by just carrying out the initialisations in 
the right order: 

Program Ninit (C): 

nac0(yo, z0); 
Inca (yl, Zl); 
. , .  

Incn-l(yn-1,  zn-1); 
Incn(~,~l , . . .  ,St) 

This concludes the description of N(C) ,  and it is now time to analyse its 
size. Consider Nsim(C) first. It contains two assignments for each assignment 
of C, an unconditional jump for each unconditional jump in C, and a different 
instance of Westk for each conditional jump. Moreover, it contains (one single 
instance of) the routines Decn, Decn-1, . . . ,  Deco (notice that  Testn calls Decn, 
which calls Decn-1, etc.). Both Testn and the routines have constant length. So 
the number of commands of Nsim(C) is O(n). 

Ninit(C) contains (one single instance of) the programs Inci 1 < i < n. The 
programs Incl, . . . ,  Incn-x have constant size, since they initialise a constant 
number of variables. The number of commands of Inch is O(n), since it initialises 
O(n) variables. 

So we have proved that  N(C)  contains O(n) commands. It follows that  its 
corresponding Petri net has size O(n2), which concludes our presentation of 
Lipton's result. 
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T h e  solution to Story I I  

Recall the conjecture of Story II: given a net Af and two markings M1 and M2, 
if M2 is reachable from M1 then it is reachable from M1 through a sequence 

M0 - ~  M1 - -~  . . .  - ~  M ,  = M such that  all the markings M 1 , . . . ,  M .  have 
size O(n +mo + m), where n, m0, m are the sizes of Af, M0 and M respectively. 

Let c be the constant such that  Mo, • • •, Mn have size at most c. (n+mo+m).  
If the conjecture is true, then the following nondeterministic algorithm solves the 
reachability problem, since it may always answer "true" when M is reachable: 

Algorithm Reachable(N, M0, M): 

va r iab le :  M r of type marking; 

b e g i n  
M r := Mo; 
whi le  M ' ~ t M  do 

choose a marking M "  of size at most c .  (n + m0 + m) 

such that  M I t > M "  for some transition t; 
if there is no such marking then stop; 
M r := M ' ;  

od; 
r e t u r n  t r u e  

e n d  

Since the algorithm only visits markings of size c- (n + m0 + m), it runs in 
linear space. By Savitch's construction there is a deterministic algorithm which 
uses quadratic space. Since the reachability problem requires exponential space, 
the conjecture is false. 

8 U p p e r  b o u n d s  

The general exponential space lower bound of the last section is almost the best 
we can hope for, because Rackoff gave in [32] an almost matching exponential 
space upper bound for the covering and boundedness problems for Petri  nets. 
More precisely, the upper bound is 2 °(nl°g n) space, very close to the 2 °(v~) 
lower bound. The covering problem consists of deciding if there exists a reachable 
marking M such that  M >_ M' for a given marking M' ,  i.e., if there exists a 
reachable marking M covering Mr; the boundedness problem consists of deciding 
if the number of reachable markings is finite. 

Yen showed some years later in [38] that  the same upper bound holds for the 
problem of deciding if there exists a firing sequence 

Mo c~1,,) M1 ~2> . . . .  o'~ Mk 
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satisfying a given predicate F (M1, . . . ,  Mk, al, • . . ,  a~) constructed using the fol- 
lowing syntax: 12 

F ::= Mi(s)  >_ c I M~(s) > c 

M~(s) < M~(s') I M~(s) > MAs') 
#., (t) < ~ I #~ ,  (t) >_ c 
#. ,  (t) <__ #~, (t')I # . ,  (t) _> #~ (t') 
F1A F2 I F1V F2 

where s and s' are places, t and t' are transitions, c is a constant, and #a(t)  
denotes the number of times that t occurs in a. Both the covering and the 
boundedness problem can be reduced to Yen's problem. The covering problem 
for a marking M = ( m l , . . . ,  mn) corresponds to deciding if there exists a fir- 
ing sequence M0 Z2+ M1 such that Ml(Sl) _> ml A . . .  A Ml(Sn) > mn. The 
boundedness problem can be easily shown to be equivalent to the problem of 
deciding if there exists a sequence Mo ~1~ MI - ~  M2 such that M l ( s l )  > 
M2(sl) A . . .  A M1 (Sn) > M2(sn). Observe however that the teachability problem 
cannot be reduced to Yen's problem, because the predicate M ( s )  = c does not 
belong to the syntax. The reachability problem was shown to be decidable by 
Mayr [28] and shortly after with a simpler proof by Kosaraju [25], but all known 
algorithms are non-primitive recursive. Closing the gap between the exponential 
space lower bound and the non-primitive recursive upper bound is one of the 
most relevant open problems of net theory. 

Is it possible to give more general results about the properties that are decid- 
able, and the properties that are decidable in exponential space? In particular, 
we would like to show that all the properties of a certain temporal logic are 
decidable, or decidable in exponential space. As we are going to see, there is 
a very significant difference between state-based logics and action-based logics, 
and so we consider them separately. 

8.1  T h e  s t a t e - b a s e d  case  

We have the following very general rule of thumb: 

Rule of thumb 7: 
The model-checking problems of all interesting state-based logics 
are undecidable. 

As in the 1-safe case, we first have to choose a set of atomic propositions. We 
take again Prop = S, i.e., the atomic propositions are the places of N. We say 
that a marking M satisfies the proposition s if M is marked at s. Observe that a 
computation is no longer a sequence of markings; a computation is a sequence of 

12 The syntax is actually a bit more general, see [38] for the details. 
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sets of places, as in the 1-safe case, but the markings of general Place/ t ransi t ion 
nets are not sets of places anymore. 

With this choice of atomic propositions we can only express tha t  a place 
is marked or not; we can say nothing about  the number of tokens it contains. 
Unfortunately, even with this restricted expressive power the model checking 
problems for LTL and CTL turn out to be undecidable. 

The proof is in both cases by reduction from the following problem, which is 
known to be undecidable: 

Given: a counter program C with counters initialised to 0. 
To decide: if C halts. 

We simulate once again counter programs by net programs. Given a counter 
program C, we obtain a net program N ~ (C) through replacement of each counter 
command 

l : i f  x = 0  t h e n g o t o  l l e l s e g o t o  12 

by the net program 

1: g o t o  t e s t -11  o r  g o t o  tes t - ] .2;  
t e s t _ l  1: g o t o  11; 
test_12:  go to  12 

while other commands are replaced by themselves. 
The net program N~(C) simulates C in a much weaker sense than tha t  of 

Section 7. N'(C) has a honest run that  exactly mimics the (unique) execution 
of C: whenever C executes the command l, N'(C) chooses the same branch as 
C. However, it also has many other runs that  "cheat", i.e., runs that  at some 
point choose the wrong branch. The labels t e s t - ~ l  and tes t_12 correspond to 
two places of N'(C) which can be used to test if the program has cheated or not 
when executing the conditional jump. 

Suppose that  there exists a temporal logic formula Halt with the following 
property: 

N~(C) satisfies Halt if and only if the honest execution of N~(C) hal tsJ  3 

Since the honest run exactly mimics the execution of the counter program C, 
N'(C) satisfies Halt if and only if C halts. Therefore, the problem of deciding if 
Halt is satisfied by a given Petri net N is undecidable. It follows tha t  the model- 
checking problem of those logics in which Halt was expressed is undecidable as 
well. 

We construct in CTL and LTL very simple formulas LTL-Halt and CTL- 
Halt. We first define a formula Cheat without temporal  operators. Cheat is the 
conjunction over all conditional jumps l: i f  x = 0 t h e n  g o t o  11 else  g o t o  12 
of the formulas: 

13 Since Nf(C) is just a shorthand description of a Petri net, it makes sense to ask if 
N~(C) satisfies a property formalised as a temporal formula. 
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(test_ll A X) V (test_12 A -~X) 

If a run visits a marking satisfying Cheat, then we know that  it is dishonest: if 
the marking satisfies ( t e s t _ l l  A x), then at some conditional jump the run has 
taken the 11 branch even though x > 0; if (test_12 A-~x), then the run has taken 
the 12 branch even though x = 0. Now, we define 

LTL - Halt = F(Cheat V halt) 

where halt is the place in the net semantics corresponding to all the ha l t  com- 
mands. A run satisfies LTL-Halt if at some point it cheats or it halts. N'(C)  
satisfies LTL-Halt iff every run satisfies LTL-Halt. Since the honest run is the 
only one that  doesn't cheat, N'(C)  satisfies LTL-Halt iff the honest run halts. 

The formula CTL-Halt is : 

CTL - Halt = AF(Cheat  V halt) 

It follows immediately from the semantics of formulae that  N'(C)  satisfies 
CTL-Halt if and only if it satisfies LTL-Halt 

Since the formula CTL-Halt only contains the operator AF, the fragment of 
CTL tha t  extends propositional logic with the operators E F  and its dual AG 
could still be decidable. Unfortunately, a different proof [9] shows that  this is 
not the case. 

8 .2  T h e  a c t i o n - b a s e d  case  

As mentioned above, the action-based case is very different from the state-based 
case: 

Rule of thumb 8: 
The model-checking problems of all interesting branching-time, action- 
based logics are undecidable. The model-checking problems of all inter- 
esting linear-time, action-based logics are decidable. 

The undecidability of branching-time logics in the action-based case is an 
immediate consequence of the following fact: given an unlabelled Petri net N 
and a formula ¢ of state-based CTL there is a labelled net N '  and a formula ¢' 
of action-based CTL such that  N satisfies ¢ if and only if N '  satisfies ~'. 

The net N '  is obtained by labelling the transitions of N with some label, 
say a, and then adding for each place s a new transition t8 having s as only 
input place, no output  place at all, and labelled by s. The formula ¢' is ob- 
tained through replacement of each atomic proposition s by EXstrue, and of 
each temporal operator E X ,  AX ,  E[ . . .  U. . . ] ,  A[. . .  U . . . ]  by EX{a}, AX{a}, 
E[ . . .  U{a}...], and A[.. .  U{a}.. -], respectively. Observe that  s holds iff the tran- 
sition ts can occur, i.e., iff EXstrue holds. 
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We cannot use the same technique to prove the undecidability of the model- 
checking problem for LTL, because the problem is decidable! As in the 1-safe 
case, the model-checking algorithm is based on automata  theory. Given an LTL 
formula ¢, one can build a finite automaton A¢ and a Bfichi automaton Be such 
that  L(A¢) U L~ (Be) is exactly the set of computations satisfying the formula ¢. 
In the action-based case both A¢ and Be are automata  over the alphabet Act. 

In the 1-safe case, given a net N and a formula ¢, we first constructed two 
automata  A~¢ and B~¢ such that  L(A~¢) U L~(B~¢) is exactly the set of com- 
putations violating the formula ¢. In the general case we proceed exactly in the 
same way. The second step was to construct two finite automata  AN and BN 
from the Petri net N,  which were both essentially equal to the teachability graph 
of the net. Here we have a problem: the automata  AN and BN can be defined 
just as in the 1-safe case, but since N may now have infinitely many reachable 
markings, they are not guaranteed to be finite. 

The solution to this problem is easy: instead of constructing two au tomata  
AN and BN out of the Petri net N,  we construct two labelled Petri  nets NA~¢ 
and NB~¢ out of the automata A~¢ and B~¢ in the following obvious way: 

- the places of NA¢ are the states of A¢; 
- for each transition q a ~ qr in A¢ add a transition to NA,, labelled by a, 

with q and qr as input and output  place. 

NB~ is constructed analogously. Now we construct the products N x NA¢ and 
N x NB¢, where the product N1 x N2 of two Petri  nets N1 and N2 is another 
Petri  net defined in the following way: 

- the set of places of N is the union of the sets of places of N1 and N2; 
- for each pair of transitions tl of N1 and t2 of N2 labelled by a same action 

a, the product N contains a transition (tl, t2) also labelled by a; the input 
(output) places of ( t l , t2) are the union of the input (output) places of tl 
and t2. 

The two following results are easy to prove: 

- L~(BN) M L(B¢) # 0 holds if and only if the Petri  net N x NB¢ has a run 
which marks some place corresponding to a final state of B¢ infinitely often. 

- L(AN)ML(A¢) # 0 holds if and only if the Petri net N x NA¢ has a reachable 
dead marking which marks some place corresponding to a final state of A¢. 

Finding a run of N × NB¢ that marks some place from a given set FS of final 
places infinitely often is equivalent to deciding if there exists a firing sequence 
M0 ~ M1 --?2+ M2 ~ M3 in the net N x NB¢ such that  

( A M 3 ( s ) > M I ( S ) )  A ( V M2(s) > 1) 
sES sEFS  

where S denotes the set of all places. By Yen's result, introduced at the beginning 
of this section, the problem can be solved in exponential space in the size of 
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N x N B ¢ .  In a more detailed analysis [14], Habermehl shows that  this problem 
is EXPSPACE-complete in the size of N and PSPACE-complete in the length 
of ¢. 

Finding a dead reachable marking of N × NA~ that  marks some place from 
a given set F S  of final places can be reduced to and is at least as hard as 
the reachability problem. Therefore, there exist so far no primitive recursive 
algorithms for it. 

As in the 1-safe case, these results can be generalised to any logic for which 
the translation into automata theory holds [9]. 

9 All equivalence problems  are  undecidable 

This section's rule of thumb has a rather negative flavour: 

Rule of thumb 9: 
All equivalence problems for Petri nets are undecidable. 

This rule is supported by a recent and very nice result due to Jan~ar, showing 
that  every equivalence notion between trace and bisimulation equivalence is un- 
decidable for Petri nets. 14 Jan~ar himself has presented his result very clearly in 
[22]; here we do it in a slightly different way. We proceed by reduction from the 
problem 

Given: a counter program C, 
To decide: if C halts (recall that  all counters are initialised to 0). 

which is known to be undecidable. 
Although the result can be presented directly by constructing two Petri nets 

out of C (and this is the way the proof in [22] goes), we prefer to use again a net 
programming language with a very simple net semantics, this time a language 
of guarded commands.  A program is a sequence of instructions, and instructions 
are expressions of the form 

actionl 
1: [ [] guardl - , ~ commandl  

action2 
[] guard2 . . . . . . . .  ~ comraand2 

. . ,  

action,, 
D guardn - ~ commandn ] 

where 1 is a label, actioni,  . . . ,  actionn are actions, a guard is either the special 
string t r u e  or a conjunction of expressions of the form x > 0 (no guards of the 
form x = 0 are allowed), and the possible commands  are 

14 Actually, the result is a bit stronger, since bisimulation can be replaced by an even 
finer equivalence. 
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skip  , x := x + 1 , x : =  x -  1 , g o t o  1 , h a l t  

Operationally, an instruction is executed as follows: one of the guards that  eval- 
uate to true at the current state is nondeterministically selected (if no guard 
evaluates to true, the program aborts). Then, two things happen: the action of 
the selected guard is sent to the environment, and its command is executed (if 
the command is x := x - 1 and x = 0 holds, then the program aborts).  If the 
command is a jump g o t o  1, then execution continues at  the instruction with 
label 1. If the command is sk ip  or an assignment, then execution continues with 
the next instruction. An observer can only see the actions executed by the pro- 
gram, but  not the values of its variables, or the label of the instruction being 
currently executed. 

Guarded command programs can be easily translated into labelled Petri  nets. 
Figure 6 shows the labelled net corresponding to the instruction 

1:[ 0 x > O - t + x : = x - 1  

0 true b ; x : = x + l  
0 x > 0 A y > 0  a ) g o t o 3  
0 true ,c h a l t ]  

(where we assume that  the instruction following 1 in the program is labelled by 
2). There is a place for each variable and each label, plus a special place halt. 
There is a transition for each alternative, labelled by the alternative's action. 
The semantics of a program is obtained by merging places of the nets corre- 
sponding to its instructions carrying the same label. We identify a program with 
its corresponding labelled Petri net. In particular, two programs are trace or 
bisimulation equivalent if their corresponding labelled nets are. 

3 

hal t 

Fig. 6. Net corresponding to an instruction 
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Given a counter program C, we construct two net programs N1 (C) and N2 (C) 
satisfying the following two properties: 

(1) if C halts, then NI(C) and N2(C) are not trace equivalent, and 
(2) if C does not halt, then NI(C) and N2(C) axe bisimilax. 

For the proof of these properties it is very useful to characterise trace and 
bisimulation equivalences in terms of two-person games. We describe first the 
features common to both trace and the bisimulation games. The board of the 
games are the two programs NI(C) and N2(C) in their initial states. The games 
are played by two players, Alice and Bob, who alternate moves. Alice makes the 
first move. A move is the execution of (one of the alternatives of) an instruction 
in either N1 (C) or N2(C), and is named after the action corresponding to the 
executed alternative. Tha t  is, an a-move is the execution of an alternative of the 
form guard a ~ command. If Alice makes an a-move in one of the programs, then 
Bob can only answer with an a-move in the other program. It may help your 
intuition to imagine that  Alice wishes the programs to  be non-equivalent, while 
Bob wishes them to be equivalent. The winner of a game is decided as follows: 

- if Alice has no move available, then Bob wins; 
- if Bob cannot answer to Alice's move, then Alice wins; 
- if the game does not terminate, then Bob wins. 

If you find the idea of a non-terminating game awkward, think of chess with- 
out the 50-move rule. If a position with only the two kings on the board is 
reached, then the game goes on forever. In the trace and bisimulation games a 
situation like this is not a draw, but  a win for Bob. Bob only wins after infi- 
nite time, which can make the game rather tedious, but  that 's  his problem: the 
winning condition is well defined, and every game has a winner. 

We describe now the differences between the trace and bisimutation games, 
which are surprisingly small. In a trace game, Alice chooses one of the programs 
at the beginning of the game, and makes all her moves in this program; Bob 
must make all his moves in the other program. In a bisimulation game, Alice 
chooses one of the programs before each move, and makes her next move in this 
program. For instance, in the bisimulation game Alice can make her first move 
in the first program (Bob must answer in the second), and her second move in 
the second program (Bob must answer in the first). 

A strategy for a player is a function which gets the list of moves played so far 
and yields the player's next move. A strategy is winning if a player that  sticks 
to it wins all games. We have the following nice result (see for instance [34]), 
which at least in the case of the trace game is intuitively very plausible: 

f 
in the trace and bisimulation games for NI(C) and N2(C): ............. ]] 
if Alice has a winning strategy, then the two programs are equivalent; if [[ 
Bob has a winning strategy, then the two programs are not equivalent. 1 1 
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So the properties ( t)  and (2) tha t  N1 (C) and ?~½(C) - both to be constructed 
- have to satisfy can be reformulated as follows: 

(1) if C halts, then Alice has a winning strategy in the trace game, and 
(2) if C does not halt, then Bob has a winning strategy in the bisimulation game. 

It is time to start with the definition of NI(C) and N2(C). To make things 
a bit simpler, assume without loss of generality that  the counter program C 
contains one single ha l t  instruction, and that  this instruction is the last one. 15 
The programs NI(C) and N2(C) look as follows: 

Program N1 (C): Program N2(C): 

s t a r t  s t a r t  
s t a r t : [  t r u e  - ) y := y + 1 ]; s t a r t [  t r u e  - > s k i p  ]; 

g'(c); Y'(C); 
h a l t  h a l t  

h a l t :  [ y > 0 -  ) h a l t ]  h a l t : [ y > 0 -  ) h a l t ]  

where the program N~(C) still has to be defined. Observe that  the two programs 
differ only in the first instruction, and that  after this instruction is executed, the 
variable y has the value 1 in NI(C) and the value 0 in N2(C). 

The program N~(C) is obtained by replacing each command of C but  the 
unique ha l t  command through an instruction of the new language. The instruc- 
tions corresponding to assignments and jumps are: 

i n c  
h x : = x + l  is replaced by h [ t r u e -  ~ x : = x + l ]  

dec  
l : x : = x - 1  is replaced by h [ t r u e -  ~ x : = x - 1 ]  

h g o t o  11 is replaced by h [ t rue  j~mp - ,~ g o t o  11] 

Conditional jumps are the delicate part. A command of the form 

h i f  x = 0  t h e n g o t o  ZERO 
else g o t o  NONZERO 

is replaced by the following sequence of two instructions: 

n o n z e r o  
I:[ 0 x > 0 -  ) gotoNONZER0 

z e r o  

0 t r u e  - ) sk ip  
z e r o  

[J x > O A y > O -  ~y:=y-1]; 
z e r o  

lt: [ t r u e  - ) g o t o  ZERO ] 

This completes the description of NI(C) and N2(C). Before going on, we ob- 
serve that  the program Ns(C) has an honest run that  mimics the execution of 
C, and looks as follows: whenever C executes a command, N~(C) executes its 

15 If there axe several halt  instructions, we can replace them by jumps to a new label 
at the end of the program, and place there a unique halt  command. 
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corresponding instruction. If  the command is a conditional jump and C takes 
the NONZER0-branch, then N' (C)  chooses the nonzero alternative of the corre- 
sponding instruction; if C takes the ZERO branch, then N' (C)  chooses the first 

z e r o  

of the two zero alternatives, namely t r u e  . . . .  ~ sk ip ,  and then it executes the 
goto ZERO instruction. 

There  is an impor tant  difference between NI (C)  and N2(C). Assume tha t  
in both  NI(C)  and N2(C) we execute the start action, followed by the honest 
execution of Nt(C) .  If  and when the honest execution terminates,  we can execute 
the halt action in NI(C) ,  because y has been set to I by the start action, but  we 
cannot execute it in N2(C), because y still has the value 0 there. 

We are now ready to describe the winning strategies for Alice and Bob in the 
different games. 

Assume that C halts. Here is the s trategy for Alice in the trace game. Alice 
chooses to play on NI(C) ,  and so Bob is forced to play on N2(C). Alice sticks 
to the following sequence of moves, completely disregarding Bob's  answers: she 
plays the start-move, continues with the moves of the honest execution of N'(C) ,  
and - if the honest run terminates - finishes with a halt-move. 

We show in the first place that ,  if Alice follows this strategy, then from the 
second move on Bob is forced to play exactly the same moves as Alice (i.e., exactly 
the same alternatives in the same commands).  When Alice plays a nonzero move, 
Bob can only answer with a unique nonzero move, so this case is easy. When 
Alice plays a zero move, it seem as if Bob can choose between two zero-answers, 
namely 

Z e r o  z e r o  

t r u e -  ~ sk ip  and x > 0 A y > 0 -  > y : = y - 1  

But  remember:  Alice is playing the honest run, and so she only plays a zero-move 
when x = 0. So, whenever Alice plays a zero move, Bob observes that  the guard 

Z e r O  

x > 0 A y > 0 evaluates to false, and so that  his only move is t r u e  - ) sk ip .  
Let us now see tha t  Alice's s t ra tegy is winning. Since C halts, the honest run 

terminates,  and so eventua~y Alice plays a halt move. 16 All along the game Bob 
has pat iently repeated Alice's moves, waiting for a chance, but  his efforts are in 
vain: he cannot  reply to Alice's halt move, because in his program N2(C) the 
variable y has the value 0, and so the guard y > 0 of the halt move evaluates to 
false. So Bob loses. 

Assume that C does not halt. Here is the s t rategy for Bob in the bisimulation 
game. Alice has to play the start move in one of the two programs,  and Bob jus t  
replies with the start move in the other program. Then, as long as Alice plays 
the  honest run of NJ(C) (possibly switching between the two programs),  Bob 
patiently repeats her moves in the other program. IT The first t ime (if at  all) tha t  
Alice deviates from the honest run by playing 

16 Incidentally, observe that Alice can indeed play halt, because she set y to 1 with her 
start move, and she never touched y during the honest execution. 

17 He has no choice anyway! 
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z e r o  

x > 0 A y > 0  . . . . . .  ~ y : = y - - 1  

in one of the programs,  Bob replies with 

z e r o  

t r u e -  ~ sk ip  

in the other program. After this move, Bob goes on playing exactly the same 
moves as Alice. 

Let us see tha t  Bob wins all games. If Alice sticks to the honest execution, 
then, since C does not halt,  she never plays a halt-move. Since all other moves 
can be mimicked by Bob without problems, the game never terminates:  a win 
for Bob. So Alice's only chance to win is to deviate from the honest run at  some 

z e T ' o  

point by p l a y i n g x  > 0 A y  > 0 - ) y :---- y -  1 a t  a m a r k i n g i n  which 
x > 0 - a cheat. But  with this cheat she digs her own grave: she sets y to 0, and 
now all variables have exactly the same value in NI (C)  and N~ (C)! Bob replays 

z e r o  

t rue  - ~ sk ip ,  and after his move both programs are in exactly the same 
state. So Bob wins by playing the same moves as Alice. 

9.1 P a r t i a l - o r d e r  e q u i v a l e n c e s  a r e  a lso  u n d e c i d a b l e  

As we mentioned in Section 5, the li terature contains many  so-called partial-order 
equivalence notions which do not fit between trace and bisimulation equiva- 
lence. So Jan~ar 's  result might seem not to apply for them. But  it does. Say 
tha t  two transitions t 1 and t2 are concurrently enabled at a marking M if 
M(s) >_ F(s, t l )+F(s ,  t2) for every place s, and say tha t  a Petri  net is sequential 
if no reachable marking enables two transitions concurrently. It  is easy to see 
tha t  the Petri  nets NI(C) and N2(C) we have constructed above are sequential. 
So, actually, we have just proved that  any equivalence relation which fits be- 
tween trace and bisimulation equivalence for the class of sequential Petri nets is 
undecidable. Part ial-order equivalences turn out to fit between trace and bisim- 
ulation equivalence for sequential nets. Actually, this is what  one would expect: 
part ial-order equivalences should distinguish concurrency from interleaving, but  
if there is no concurrency at  all then there is also nothing to distinguish. 

1 0  C a n  a n y t h i n g  b e  d o n e  i n  p o l y n o m i a l  t i m e ?  

The  general EXSPACE-hardness bound of Section 7 raises the question if there 
are bet ter  results (PSPACE, NP, polynomial problems) for classes of P lace /Tran-  
sition Petri  nets. Since a complete t rea tment  of this question is out of the scope 
of this paper,  we concentrate on how far can one go with polynomial  algorithms. 
Obviously, we cannot expect to go further than for 1-safe Petri  nets. So the first 
question is if at  least some problems for conflict-free nets and free-choice nets 
tha t  are not necessarily 1-safe can still be solved in polynomial time. The answer 
is a qualified "no". Even though [18, 39] contain some polynomial algorithms for 
conflict-free Petri  nets, most of the important  problems for these two classes 
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become at least NP-hard. For instance, the reachability problem for conflict-free 
Petri nets is NP-complete [8], and the liveness problem for free-choice Petri nets 
is co-NP-complete (i.e., it is the complement of an NP-complete problem) [24, 5] 
(the proof is sketched below as the solution to Story I). Notice that the liveness 
and reachability problems for arbitrary Petri nets are much harder, and so these 
NP-completeness results can also be seen as positive results. 

Is there any interesting constraint leading to polynomial algorithms for many 
problems? There seems to be essentially a single non-trivial one: every place has 
exactly one input transition and exactly one output transition ("exactly" can 
also be generalised to "at most") The Petri nets satisfying this constraint have 
been called marked graphs, synchronisation graphs, and T-systems. Two of the 
oldest papers in net theory show that many problems for these nets can be solved 
using simple graph algorithms or linear programming [3, 13]. So let us formulate 
our last rule of thumb: 

Rule of thumb 10: 
Many interesting problems about marked graphs are solvable in 
polynomial time. Almost no interesting problems about Petri net 
classes substantially larger than marked graphs are solvable in 
polynomial time. 

The  solut ion  to S tory  I 

The non-liveness problem for free-choice Petri nets can be formulated as follows: 

Given: a free-choice Petri net N, 
To decide: if N is non-live. 

Membership in NP is non-trivial; it follows from Commoner's theorem [15, 5]. 
NP-hardness, on the contrary, is very easy to prove by a reduction, first presented 
in [24], from the satisfiability problem for boolean formulas in conjunctive normal 
form. is. Figure 7 shows the Petri net corresponding to the formula 

(Xl VX3) A (X 1 VX2 VX3) A (X2 Vx3) 

and we explain the construction on this example. Loosely speaking, the Petri 
net works as follows: first, the variables are nondeterministically assigned truth 
values by firing either the transition xi or ~i for each variable xi. Once all 
variables have been assigned a value, a transition Cj is enabled if and only if the 
assignment makes the clause Cj false. For instance, C2 is enabled if and only if the 
transitions ~1, x2,53 have fired; this corresponds to the assignment xl := false, 
x2 := true, x3 := false, which is the only assignment making C2 false. So we 
have that the place False gets tokens if and only if the formula is false under the 
assignment. If the formula is satisfiable, then there is an assignment making the 
formula true, and for this assignment the place False never gets marked. So the 
Petri net is not live. On the contrary, if the formula is unsatisfiable, then the 
place False can always get marked again, and the net is live. 

is It is interesting to compare this reduction with the one of Section 6. 
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f 

~ False 
k. ~ J 

Fig. 7. Petri net corresponding to the formula (xl V x3) A (xl V ~2 V x3) A (x2 V ~3) 

Since the formula is satisfiable, the Petri  net of Figure 7 is non-live. 

11 Conclusions 

I'd like to conclude by listing the 10 rules of thumb of the paper. You can find 
them in Table 11. I've allowed myself to suppress the word "interesting" from 
all the rules, since it should no longer lead to confusion. 
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