
Decidability and Complexity of Petri Net Problems -
An Introduction*

Javier Esparza

Institut fiir Informatik, Technische Universit~t Miinchen,
Arcisstr. 21, D-80290 Miinchen, Germany,

e-maih esparza@informatik.tu-muenchen.de

A b s t r a c t . A collection of 10 "rules of thumb" is presented that helps
to determine the decidability and complexity of a large number of Petri
net problems.

1 I n t r o d u c t i o n

The topic of this paper is the decidability and complexity of verification problems
for Petri nets. I provide answers to questions like "is there an algorithm to decide
if two Petri nets are bisimilar?", or "how much time is it needed (in the worst
case) to decide if a 1-safe Petri net is deadlock-free?"

My intended audience are people who work on the development of algorithms
and tools for the analysis of Petri net models and have some basic understanding
of complexity theory. More precisely, I assume that the reader is familiar with
the notion of undecidable problem, with the definitions of deterministic and
nondeterministic complexity classes like NP or PSPACE, with the notion of hard
and complete problems for a complexity class, and with the use of reductions
to prove hardness and completeness results. Theoreticians acquainted with the
topic of this paper are warned: They won't find much in it that they didn't know
before? On the other hand, they might be interested in the paper's unified
view of complexity questions for 1-safe and general Petri nets, and in a few
simplifications in the presentation of some proofs.

When I was invited to write this paper, I hesitated for a while. I remembered
the statement of the Greek scepticist Gorgias:

Nothing exists;
if anything does exist, it is unknowable;
if anything can be known, knowledge of it is incommunicable.

and imagined a Greek chorus advising me not to write the paper because, in
their opinion:

* Work partially supported by the Sondefforschungsbereich 342 "Werkzeuge und
Methoden fiir die Nutzung paralleler Rechnerarchitekturen'.

2 Only one result has not been published before, namely a PSPACE algorithm for the
model-checking problem of CTL and 1-safe Petri nets, presented in Section 4.

375

All results about decidability and complexity of Petri nets were already
obtained in the early eighties;
if there are new results, you have included them for sure in the paper
"Decidability issues for Petri nets - a survey" you wrote with Mogens
Nielsen in 1994 [10];
if you haven't included them in the survey, they are only of interest for
specialists; moreover, these results just show that all interesting problems
are intractable - finer classifications, like NP-, PSPACE- or EXPSPACE-
hardness have no practical relevance.

Since, as you can see, I still decided to write the paper, I would like to an-
ticipate my answer to these three possible criticisms.

• There have been important recent developments about decidability and com-
plexity questions, o] interest for the whole Petri net community.

During the late seventies and early eighties there was an outburst of theoret-
ical work on decidability and complexity problems for (Place/Transit ion) Petri
nets. Well-known computer scientists, like Rabin, Rackoff, Lipton, Mayr, Meyer,
and Kosaraju, just to mention a few, obtained a very impressive collection of
results. The decidability of most problems, like boundedness, liveness, reachabil-
ity, language equivalence, etc. was settled, and in many cases tight complexity
bounds were obtained.

However, while these results were being obtained, two developments in com-
puter science opened new problems:

• In the late seventies, temporal logic was proposed as a query language for
the specification of reactive and distributed systems; a few years later, model-
checking was introduced as a technique for the verification of arbi t rary temporal
properties. Howell, Rosier, and Yen were the first to s tudy the decidability and
complexity of model-checking problems for Petri nets in the second half of the
eighties [17, 19, 20]. Today most questions in this research field have been an-
swered [9, 14].

• In the early eighties, process algebras were introduced for the formal de-
scription of concurrent and reactive systems. It was seen that language equiv-
alence was not an adequate equivalence notion for this class of systems, since
for instance it may consider deadlock-free systems as equivalent to systems with
deadlocks. New equivalence relations were introduced, like bisimulation and fail-
ures equivalence. In the early nineties, the decidability of these equivalences for
systems with infinite state spaces started to receive a lot of attention, and led
to renewed interest in Petri nets. Jan~ar proved only a few years ago a funda-
mental result showing the undecidability for Petri nets of all equivalence notions
described in the literature [22, 21].

These two developments still had another effect. During the eighties, many
researchers started to study the relationship of process algebras to Petri nets.
Net models in which a place can carry at most one token, like condit ion/event
systems or elementary net systems, turned out to be particularly useful for these
studies. These nets, which have by definition a finite number of states, became

376

even more interesting after the introduction of automatic model-checkers, when
it was realised that they could be used to model a large number of interesting sys-
tems which were within the reach of automatic verification. The questions that
had been asked and mostly solved for Place/Transition nets were now asked again
for these models. In the last years the complexity of classical properties (reach-
ability, liveness . . .), model-checking problems for different temporal logics, and
equivalence problems for different equivalence notions, has been completely de-
termined [2, 23, 31].

• This paper has a different approach than the '94 survey paper, and has been
written to complement it.

Research on the decidability and complexity of verification problems for Petri
nets has produced well over 100 papers, maybe even 150. Many of them have been
published in well-known journals, and are thus available in any good library. My
survey paper with Mogens Nielsen [10] summarises many results, and provides
a rather comprehensive list of references.

Petri net researchers often need information about the complexity of a par-
ticular problem (the Petri net mailing list receives now and then postings with
this kind of requests). In most cases, a similar problem has already been studied
in the literature, and pointers to relevant papers can be found in [1t3]. If one
is familiar with a number of basic techniques, it is easy to apply these existing
results to the new problem. However, acquiring this familiarity is at the moment
a rather hard task, specially for Ph. D. students: one has to go through many
papers and distill an understanding which is not explicitly contained in the pa-
pers themselves. The purpose of these pages is to make this task a bit easier.
Instead of listing results and references, I concentrate on a few general results of
broad applicability. I also provide "rules of thumb", which I think can be more
useful than formal theorems.

• All researchers interested in the development and implementation of analysis
algorithms for Petri nets can greatly profit from some basic knowledge on the
computational complexity o] analysis problems.

All researchers are regularly confronted with the problem of having to prove
or disprove a conjecture. Should one first try to find a proof or a counterexample?
The wrong choice can make one lose precious time. Complexity theory can often
help by showing that the truth or falsity of the conjecture implies an unlikely
fact, like P=NP or NP=PSPACE. I present here some examples in the form of
three stories taken from my personal experience:

Story I. After graduating in Physics, I became a Ph. D. student of computer
science. At that time I knew very little about theoretical computer science, and
there were no theoreticians in my environment. I started to work on the analysis
of free-choice Petri nets, a net class for which there was hope of finding efficient
verification algorithms, and more precisely I began to investigate the liveness
problem. My hope was to efficiently transform the problem into a set of linear
inequations that could be solved using linear programming. 'Efficiently' meant

377

for me that the number and size of the equations should grow quadratically, say,
in the size of the net.

During the next four months I could not find any encoding, but I read some
textbooks on theoretical computer science. I came across Garey and Johnson's
book on the theory of NP-completeness [12], and I found the problem I was
working on (more precisely, its complement) in the list of NP-complete prob-
lems at the end of the book. Since there exist polynomial algorithms for Linear
Programming but the complement of the liveness problem for free-choice nets
was NP-complete, the existence of an efficient encoding would imply P=NP, and
so it was highly unlikely.

The NP-completeness of the non-liveness problem for free-choice Petri nets
is proved in Section 10.

Story II. Some years ago I refereed a paper submitted to the Petri net conference.
The paper contained a conjecture on the reachability problem for Petri nets tha t
can be stated as follows. Let N be a net, and let M0 and M be markings of H such
that M is reachable from M0. Conjecture: M can be reached from M0 through
a sequence of transition firings which only visits intermediate markings of size
O(n + mo+ m), where n, m0, m are the sizes of.M, M0 and M, respectively. The
author of the paper had constructed a random generator of nets and markings
and had tested the conjecture in one thousand cases, always with a positive
answer.

It is certainly possible to disprove the conjecture by exhibiting a counterex-
ample, but it is faster to use a complexity argument. I show this argument in
Section 7.

Story III. I have recently come across a paper containing a characterisation of
the set of reachable markings of 1-safe Petri nets. A simple complexity analysis
shows that the characterization is most probably wrong, although I haven' t found
a counterexample yet. In order to formulate the characterisation we need some
definitions and notations. A siphon of a net is a subset of places R satisfying
°R C_ R' . A trap is a subset of places R satisfying R ° C_ °R. Given a net
H = (S , T , F) and a set U C_ T, we define the net N u as the result of first
removing all transitions of Af not belonging to U, and then removing all places
tha t are not connected to any transition anymore.

Now, let Af = (S, T, F) be a net, and let M0 and M be markings of A/" such
that the Petri net (24", Mo) is 1-safe. The characterization states M is reachable
from M0 if and only if there exists a mapping X: T -~ SV satisfying the following
three properties:

(1) for every place s, M(s) = Mo(s) + EteT(F(t, s) - F(s, t)) . X(t) ,
(2) every nonempty siphon of AfTX is marked at Mo, and
(3) every nonempty trap of AfTX is marked at M.

where TX is the set of transitions t such that X(t) > O.

378

I strongly believe that the proof of this result contains a mistake, and that a
counterexample exists. I show why in Section 3. 3

• The classification of a problem as NP-, PSPACE- or EXPSPACE-hard does
have practical relevance

The complexity of Petri nets was first studied in the seventies, when NP-
complete problems were really intractable: computer scientists were unable to
deal even with very small instances due to the lack of computing power and of
good theoretical results. At that time it probably didn't make so much difference
for a practitioner whether a problem was PSPACE-hard or only NP-complete.
In my opinion, today's picture is very different:

- NP-complete problems are no longer "intractable". It is certainly true that all
known algorithms that solve them have exponential worst-case complexity.
However, today there exist commercial systems for standard NP-complete
problems, like satisfiability of propositional logic formulas or integer linear
programming problems, that routinely solve instances of large size.

- The last years have witnessed a proliferation of model-checking tools, like
COSPAN, PEP, PROD, SMV, SPIN, and others (see [11] and [30] for com-
prehensive information). Although the problems they solve are PSPACE-
complete, they have been successfully applied to the verification of many
interesting finite state systems. Commercial versions are starting to appear.

- Experimental tools for the analysis of timed-systems are starting to emerge.
Examples are Hy-Tech, KRONOS, UPPAAL [11]. Many of the problems
solved by these tools are EXPSPACE-complete. The size of the instances
they can handle is certainly much smaller than in the case of model-checkers,
but the results are very promising.

- Theorem provers like HOL, Isabelle, PVS, and others are being applied with
good success to the verification of systems with infinite state spaces. They
use heuristics to try to solve particular instances of undecidable analysis
problems.

My conclusion is that the old "tractable - intractable" classification has
become too rough. A finer analysis provides very valuable information about
the size of instances that can be handled by automatic tools, and about the
possibility of applying existing tools to a particular problem.

O r g a n i s a t i o n o f t h e paper

The paper is divided into two parts. The first is devoted to 1-safe Petri nets,
which are Place/Transition Petri nets having the property that no reachable
marking puts more than one token in any place. Nearly all results hold for n-
safe Petri nets (at most n tokens on a place) too, assuming that the algorithms

After I wrote this paper, but before its publication, Stephan Melzer found a coun-
terexample with 5 places and 3 transitions.

379

receive n as part of the input, which implies in particular tha t n must be known
in advance. The second part is devoted to general Place/Transi t ion nets. Both
parts are divided into the same four sections. Each section contains one or more
"rules of thumb". These are general informal statements which t ry to summarise
a number of formal results in a concise, necessarily informal, but informative
way. They could also be called "useful lies": statements which do not tell all the
t ru th and nothing but the truth, but are more useful than a complicated formal
theorem with many ifs and buts. There is a total of 10 rules of thumb in the
paper; with their help I can solve most of the complexity questions I come across
in my own research.

Rules of thumb are displayed in the text like this:

Rule of thumb 0:
To find the rules of thumb, look for pieces of text within a box.

This is only a rule of thumb, because other pieces of text are also surrounded
by a box, in fact by a double box. They are fundamental formal results used to
derive the rules of thumb.

Fundamental results are displayed within a double
box.

The first section contains a universal lower bound for "interesting" Petri net
problems. The second section deals with upper bounds: for 1-safe Petri nets it
is possible to give an almost universal upper bound, whereas the case of general
Petri nets is more delicate. The third section deals with equivalence problems:
are two given nets equivalent with respect to a given equivalence notion? Upper
and lower bounds are considered simultaneously. Finally, the fourth section gives
information about how far one can go with polynomial time algorithms.

Only some of the results mentioned in the paper are proved; for others the
reader is referred to the literature. The results with a proof are those fulfilling
two conditions: they are very general, applicable to a variety of problems, and
admit relatively simple, non-technical proofs. I have devoted special effort to
presenting proofs in the simplest possible way. My goal was to produce a paper
tha t could be read straight through from beginning to end. I don' t know if the
goal has been achieved, but I tried my best.

T a b l e o f C o n t e n t s

1 Introduction

2 Preliminaries

380

I 1 - s a f e P e t r i n e t s

3 A universal lower bound

4 A near ly universal uppe r b o u n d
4.1 Linear-time propositional temporal logic
4.2 Computation Tree Logic
4.3 An exception
4.4 A remark on action-based temporal logics

5 Deciding equivalences

6 Can any th ing be done in po lynomia l t ime?

I I G e n e r a l P e t r i n e t s

7 A universal lower bound

8 Uppe r bounds
8.1 The state-based case
8.2 The action-based case

9 All equivalence problems are undecidable
9.1 Partial-order equivalences are also undecidable

10 Can any th ing be done in po lynomia l t ime?

11 Conclusions

2 P r e l i m i n a r i e s

We assume that the reader is acquainted with the basic notions of net theory,
like firing rule, reachable marking, liveness, boundedness, etc., and also with
other basic computation models like Turing machines. This section just fixes
some notations.

Petri nets. A net is a triple Af = (S, T, F), where S and T are finite sets of places
and transitions, and F C_ (S × T) U (T × S) is the flow relation. We identify F
with its characteristic function (S x T)U (T × S) ~ {0, 1}. The preset and postset
of a place or transition x are denoted by "x and x °, respectively. Given a set
X c S t_J T, we denote "X = I.Jxex *x and X" = I.Jxex x°. A marking is a
mapping M: S --+ iN. A (Place~Transition) Petri net is a pair N = (A/', M0),
where A/" is a net and M0 is the initial marking. A transition t is enabled at a
marking M if M(s) > 0 for every s E °t. If t is enabled at M, then it can fire
or occur, and its firing leads to the successor marking M' which is defined for
every place s by

M'(s) = M(s) + f (t , s) - F(s, t)

The expression M --~ M' denotes that M enables transition t, and that the
marking reached by the occurrence of t is M'. A finite or infinite sequence

381

Mo tl> 2~I1 t2> M2" '" is called a firing sequence. The maximal firing sequences
of a Petri net (i.e., the infinite firing sequences plus the finite firing sequences
which end with a marking that does not enable any transition) are called runs.
Given a sequence a = t i t2 . . , tn, M --g-y M' denotes tha t there exist markings

M1,M2, . . . ,Mn-1 such that M t~) M1 . . .Mn-1 _L% M'.
A Petri net is 1-safe if M(s) < 1 for every place s and every reachable

marking M.
We encode a net (S, T, F) as two ISI x ITI binary matrices Pre and Post.

The entry Pre(s, t) is 1 if there is an arc from s to t, and 0 otherwise. The entry
Post(s, t) is 1 if there is an arc from t to s, and 0 otherwise. The size of a net
is the number of bits needed to write down these two matrices, and is therefore
O(IS I • [TI). The size of a Petri net is the size of the net plus the size of its initial
marking. Markings are encoded as vectors of natural numbers. The size of a
marking is defined as the number of bits needed to write it down as a vector,
where each component is written in binary. Observe that the size of a 1-safe
Petri net is O(ISI. ITI), since the initial marking has size O(ISt).

A labelled net is a fourtuple (S,T, F, ~), where (S ,T ,F) is a net and)~ is a
mapping that associates to each transition t a label A(t) taken from some given

set of actions Act. Given a E Act, we denote by M a > M ' tha t there is some

transition t such that M t > M' and ~(t) = a. A labelled Petri net is a pair
(Af, 114o), where Af is a labelled net and Mo is the initial marking.

Turing machines. In the paper we use single tape Turing machines with one-way
infinite tapes, i.e., the tape has a first but not a last cell. For our purposes it
suffices to consider Turing machines starting on empty tape, i.e., on tape con-
taining only blank symbols. So we define a (nondeterministic) Turing machine
as a tuple M = (Q, F, 6, q0, F) , where Q is the set of states, F the set of tape
symbols (containing a special blank symbol), 5: (Q x F) -+ T'(Q x F x {R, L})
the transition function, qo the initial state, and F the set of final states. The
size o] a Turing machine is the number of bits needed to encode its transition
relation.

Linearly and exponentially bounded automata. We work several times with Tur-
ing machines that can only use a finite tape fragment, or equivalently, with Tur-
ing machines whose tape has both a first and a last cell. We call them bounded
automata. If a bounded automaton tries to move to the right from the last tape
cell it just stays in the last cell.

A function f : SV -~ ~v" induces the class of f(n)-bounded automata, which
contains for all k _> 0 the bounded automata of size k that can use f (k) tape
cells. Notice that we deviate from the standard definition, which says that an
automaton is f (n) -bounded if it can use at most f (k) tape cells for an input
word of length k. Since we only consider bounded automata working on empty
tape, the standard definition is not appropriate for us. When f (n) = n and
f (n) = 2 n we get the classes of linearly bounded and exponentially bounded
automata, respectively.

382

Complexity classes and reductions. In the paper we use some of the most basic
complexity classes, like P, NP, and PSPACE. We also use the class EXPSPACE,
defined by 4

EXPSPACE = U DSPACE(2nk)
k>O

We always work with polynomial reductions, i.e., given an instance x of a problem
A we construct in polynomial time an instance y of a problem B. Many of the
results also hold for logspace reductions, or even log-lin reductions, but we do
not address this point.

P a r t I

1-safe Petr i ne ts
We study the complexity of analysis problems for 1-safe Petri nets. Given a 1-
safe Petri net (Af, M01~ where Af = (S, T, F), we say that the possible markings
of Af or just the markings of IV" are the set of markings that put at most one
token in a place. Clearly, there are 21sl possible markings. Each of the markings
can be identified with the set of places marked at it. Observe that the size of a
marking is linear in the size of the net.

3 A u n i v e r s a l l o w e r b o u n d

In this section we obtain a universal lower bound for the complexity of deciding
whether a 1-safe Petri net satisfies an interesting behavioural property:

I Rule of thumb 1:
All interesting questions about the behaviour of 1-safe Petri nets
are PSPACE-hard.

Notice that a rule of thumb is not a theorem. There are behavioural properties
of 1-safe Petri nets that can be solved in polynomial time. For instance, the
question "Is the initial marking a deadlock?" can be answered very efficiently;
however, it is so trivial that hardly anybody would consider it really interesting.
So a more careful formulation of the rule of thumb would be tha t all questions
described in the literature as interesting are at least PSPACE-hard. Here are 14
examples:

- Is the Petri net live?
- Is some reachable marking a deadlock?
- Is a given marking reachable from the initial marking?

4 Notice that some books (for instance [1]) define
EXPSPACE = Uk>o DSPACE(k • 2~).

383

- I s

- I s

- I s

- I s
- I s
- I s

- I s

- I s

- I s

- I s

there a reachable marking that puts a token in a given place?
there a reachable marking that does not put a token in a given place?
there a reachable marking that enables a given transition?
there a reachable marking that enables more than one transition?
the initial marking reachable from every reachable marking?
there an infinite run?
there exactly one run?
there a run containing a given transition?
there a run that does not contain a given transition?
there a run containing a given transition infinitely often?

- Is there a run which enables a transition infinitely often but contains it only
finitely often?

The PSPACE-hardness of all these problems is a consequence of one single
fundamental fact, first observed by Jones, Landweber and Lien in 1977 [24]:

A linearly bounded automaton of size n can be simulated by a 1-
safe Petri net of size O(n2). Moreover, there is a polynomial time
procedure which constructs this net.

The notion of simulation used here is very strong: a 1-safe Petri net simulates
a rlhring machine if there is bijection f between configurations of the machine
and markings of the net such that the machine can move from a configuration Cl
to a configuration c2 in one step if and only if the Petri net can move from the
marking f(cl) to the marking f(c2) through the firing of exactly one transition.

Let A = (Q,/7, Z, 5,q0, F) be a linearly bounded automaton of size n. The
computations of M visit at most the cells C l , . . . , ca. Let C be this set of cells.
The simulating Petri net N(A) contains a place s(q) for each state q C Q, a
place s(c) for each cell c E C, and a place s(a, c) for each symbol a C F and for
each cell c E C. A token on s(q) signals that the machine is in state q. A token
on s(c) signals tha t the machine reads the cell c. A token on s(a, c) signals tha t
the cell c contains the symbol a. The total number of places is IQ1 + n . (1 + IZI).

The transitions of N(A) are determined by the state transition relation of
A. If (qJ, a', R) E 5(q, a), then we have for each cell c a transition t(q, a, c) whose
input places are s(q), s(c), and s(a, c) and whose output places are s(q'), s(a', c)
and s(d) , where d is the cell to the right of c (this signals tha t the tape head
has moved to the right) unless c is the last cell, in which case c ~ = c. The last cell
is an exception, because by assumption the machine cannot move to the right
from there. If (q~, a ~, L) E 6(q, a) then we add a similar set of transitions; this
t ime the first cell is the exception. The total number of transitions is at most
2. [Vl 2- IF[2 .n , and so O(n2), because the size of A is O([Q[2. IF[2).

The initial marking of N(A) puts one token on s(qo), on s(cl), and on the
place s(B, ci) for 1 < i < n, where B denotes the blank symbol. The total size
of the Petri net is O(n2).

384

It follows immediately from this definition that each move of A corresponds to
the firing of one transition. The configurations reached by A along a computation
correspond to the markings reached along its corresponding run. These markings
put one token in exactly one of the places {s(q) I q E Q}, in exactly one of the
places {s(c) I c E C}, and in exactly one of the places {s(a, c) I a E ~} for each
cell c E C. So N(A) is 1-safe.

In order to answer a question about a linearly bounded automaton A we can
construct the net N(A), which is only polynomially larger than A, and solve the
corresponding question about the runs of A. For instance, the question "does
any of the computations of A terminate?" corresponds to "has the Petri net
N(A) a deadlock?"

It turns out that most questions about the computations of linearly bounded
automata are PSPACE-hard. To begin with, the (empty tape) acceptance problem
is PSPACE-complete:

Given: a linearly bounded automaton A.
To decide: if A accepts the empty input.

Moreover, the PSPACE-hardness of this problem is very robust: it remains
PSPACE-complete if we restrict it to

- deterministic bounded automata,
- bounded automata having one single accepting state,
- bounded automata having one single accepting configuration.

Many other problems can be easily reduced to the acceptance problem in
polynomial time, and so are PSPACE-hard too. Examples are:

- does A halt?,
- does A visit a given state?,
- does A visit a given configuration?
- does A visit a given configuration infinitely often?

We obtain in this way a large variety of PSPACE-hard problems. Since N(A)
is only polynomially larger than A, all the corresponding Petri net problems are
PSPACE-hard as well. For instance, a reduction from the problem "does A
ever visit a given configuration?" proves PSPACE-hardness of the reachability
problem for 1-safe Petri nets. Furthermore, once we have some PSPACE-hard
problems for 1-safe Petri nets we can use them to obtain new ones by reduction.
For instance, the following problems can be easily reduced to the problem of
deciding if there is a reachable marking that puts a token on a given place:

- is there a reachable marking that concurrently enables two given transitions
tl and t2?

- can a given transition t ever occur?
- is there a run containing a given transition t infinitely often?

385

13 out of the 14 problems at the beginning of the section (and many others)
can be easily proved PSPACE-hard using these techniques. The liveness problem,
the first in our list, is a bit more complicated. The interested reader can find the
reduction in [2].

The so lu t ion to Story III

Recall the conjecture of Story III: Let Af = (S, T, F) be a net, and let Mo and
M be markings of Af such that the Petri net(H, Mo) is 1-safe. M is reachable
from Mo in Af if and only if there exists a mapping X: T -+ ~ satisfying the
following three properties:

(1) for every place s, M(s) = Mo(s) + ~ t ~ T (F (t , s) -- F(s , t)) . X (t) ,
(2) every nonempty siphon of J~fTX is marked at M0, and
(3) every nonempty trap of JVTX is marked at M.

where T X is the set of transitions t such that X (t) > 0.
We show that if the conjecture is true, then the reachability problem for

1-safe Petri nets belongs to NP. Since we know that this problem is PSPACE-
hard, the truth of the conjecture implies NP=PSPACE, which is highly unlikely.
So, very probably, the conjecture is false; one should look for a counterexample
instead of trying to prove it.

We need a well-known result (see for instance [16]):

11
There is a polynomial time nondeterministic algorithm Feasible(S) fort[
the problem of deciding if a system of linear equations S with integer/[
coefficients has a solution in the natural numbers.]l

It is easy to decide if every siphon of a net Af is marked at a given marking
M. The following (deterministic) algorithm, due to Starke [33, 5], does it for
you. It first computes the largest siphon R contained in the set of places not
marked at M. Clearly, all nonempty siphons are marked at M if and only if R
is empty.

Algorithm All_Siphons_Marked(N, M):

variable: R of type set of places;

begin
R := set of places of N unmarked under M;
while there is s E R and t E "s such that t ~ R" do

R: = R \ {8}
od;
if R = 0 then r e tu rn true
else r e tu rn false

end

386

The algorithm All_Traps_Marked is very similar: just change the loop condi-
tion to: there is s E R and t E s" such that t ~ "R. Clearly, these two algorithms
run in polynomial time.

The following nondeterministic algorithm checks conditions (1), (2) and (3).
It first guesses the set TX of transitions, and checks that (2) and (3) hold. Then,
it checks if condition (1) holds for a vector X such that TX = {t E T 1 X (t) > 0}.
For that, it checks if the system of equations S containing the equations of
condition (1) plus the equation X(t) _> 1 for every t E TX, and the equation
X (t) = 0 for every t E T \ TX has a solution.

Algorithm Check_Conditions(N, Mo, M):

beg in
guess a subset of transitions TX of Af;
if All_Siphons_Marked(AfTX, M0)

and All_TrapsAViarked(A/'TX, M)
and Feasible(S)

t hen r e t u r n t rue fi
end

Since the system of equations S has linear size in the net N, Feasible(S) runs in
polynomial time in the size of the net. So Check_Conditions runs in polynomial
time, and the problem of checking if conditions (1), (2), and (3) hold belongs to
NP.

Remark Even if we didn't know about the All_Siphons.Marked algorithm, we
could still conclude that the conjecture is probably false. Only from the exis-
tence of the procedure Feasible(S) we can already conclude that the teachability
problem for 1-safe nets belongs to E P, the second level of the polynomial-time
hierarchy (see for instance [1]). The general opinion of complexity theorists is
that Z P = PSPACE is almost as unlikely as NP=PSPACE.

4 A n e a r l y u n i v e r s a l u p p e r b o u n d

In this section we obtain a nearly universal upper bound matching the PSPACE-
hard lower bound of the last section:

Rule of thumb 2: l
Nearly all interesting questions about the behaviour of 1-safe Petri t nets can be decided in polynomial space.

Observe that the rule of thumb says "nearly all" and no longer "all". The
reason is that the literature contains at least one interesting question requiring
more than polynomial space. This exception to the rule is described at the end
of the section.

387

We substantiate the rule of thumb with the help of temporal logics. Since
their first application to computer science in the late seventies by Pnueli and
others, temporal logics have become the standard query languages used to ex-
press properties of reactive and distributed systems. A good introduction to the
application of temporal logics to computer science can be found in [6].

Temporal logics can be linear-time and branching-time: linear-time logics are
interpreted on the single computations of a system, while branching-time logics
are interpreted on the tree of all its possible computations. The most popular
linear and branching-time temporal logics axe LTL (linear-time propositional
temporal logic) and CTL (computation tree logic). Most of the safety and live-
ness properties of interest for practitioners, like deadlock-freedom, reachability,
liveness (in the Petri net sense), starvation-freedom, strong and weak fairness,
etc. can be expressed in LTL or in CTL (often in both).

We show that all the properties expressible in LTL and CTL can be decided
in polynomial space. Actually, we even show that they can be uniformly decided
in polynomial space, i.e., we prove that the degree of the polynomial does not
depend on the property we consider. More precisely, let INI denote the size of a
Petri net N, and let I¢1 denote the length of a formula ¢ (its number of symbols).
For each of LTL and CTL we give an algorithm that accepts as input a Petri
net N and a formula ¢, and answers "yes" or "no" according to whether the net
satisfies the formula or not; the algorithm uses O(p(IN I + I¢l)) space, where p is
a polynomial independent of N and ¢.

4.1 Linear-time propositional temporal logic

The formulas of LTL are built from a set Prop of atomic propositions, and have
the following syntax:

¢ ::= p E Prop
~¢
¢: ^ ¢5
x¢
¢1U¢2

(¢ holds at the next state)
(¢t holds until ¢2 holds)

Usual abbreviations are true = p V -~p, F¢ = trueU¢ (eventually ¢), and
a ¢ = -~F-~¢ (always ¢).

LTL formulas are interpreted o n computations. A computation is a finite or
infinite sequence ~ = P(O)P(1)P(2).. . of sets of atomic propositions. Intuitively,
P(i) is the set of propositions that hold in the computation after i steps. For a
computation ~r and a point i in the computation, we have that:

388

~ r , i ~ p
. , i

iff p e P(i)
iff not(r , i ¢)
iff ~r, i ~ ¢1 and r , i ~ ¢2
iff there exists a point i + 1 in the computation, and

~ r , i + l ~ ¢
iff for some j _> i, we have ~r, j ~ ¢2 and

for all k, i < k < j , we have ~, k ~ ¢1

We say that a computation r satisfies a formula ¢, denoted iv ~ ¢, if ~, 0 ~ ¢.
The atomic propositions are intended to be propositions on the states of a

system. They can only be chosen after the class of systems on which the logic is to
be applied has been fixed. In the case of 1-safe Petri nets the states of the system
are the markings, and so the atomic propositions are predicates on the possible
markings of the net. It is then natural to have one atomic proposition per place.
The markings satisfying the atomic proposition s are those that put a token
in s. Observe that a computation is now a sequence of sets of places, and so a
sequence of markings. In particular, the sequences of markings obtained from the
runs of N by removing the intermediate transitions are computations. Abusing
language, we also call these particular computations runs. We now define that
a Petri net N satisfies ¢ if all its runs satisfy ¢. Here are some LTL formulas
that can be interpreted on the Petri net of Figure 1, which models a variation
of Lamport 's 1-bit mutual exclusion algorithm for two processes [26]:

(1) All runs are infinite (true for the net of Figure 1): GXtrue.
(2) All runs mark place csl infinitely often (false): GFcsl.
(3) In all runs, if place reql becomes marked then place csl wilt eventually

become marked (true): G(reqt ~ Fcsl).

Formula (1) expresses deadlock-freedom; formula (3) expresses that the re-
quests of the first process to the critical section are eventually granted.

The model-checking problem for LTL and 1-safe Petri nets consists of, given
a 1-safe Petri net N and a formula ¢, deciding whether N satisfies ¢ or not.

The solution to the model-checking problem we give here makes use of au-
tomata theory. We have to introduce automata on infinite words. Let A --
(Z, Q, qo, 5, F) be a nondeterministic automaton, where Z is a finite alphabet,
Q is a finite set of states, qo is the initial state, (f C_ Q x ~ x Q is the transition
relation, and F is a set of finite states. The language of A, denoted by L(A), is
defined as the set of finite words accepted by A. We define now the language of
infinite words accepted by A, which we denote by L~(A). A word w = aoala2...
belongs to L~(A) if there is an infinite sequence of states qoqlq2.., such tha t
(qiaiqi+l) e 5 for every i > 0.

When we are interested in the language of infinite words of an automaton,
then we call it Biichi automaton.

We have the following important result:

389

First process Second process

Fig. 1. A Petri net model of Lamport's 1-bit mutex algorithm

Given an LTL formula ¢, one can build a finite au tomaton A¢
and a Biichi au tomaton Be such tha t L(A¢) U L~(B¢) is exactly
the set of computat ions satisfying the formula ¢.

Since computat ions are sequences of sets of atomic propositions, the alphabet
of the au toma ta A¢ and Be is the set 2Pr°P. In our case Prop is the set of places
of the net, and so the alphabet of the au tomata is the set of all markings.

The construction of A¢ and Be exceeds the scope of this paper (see for
instance [37]). For our purposes, it suffices to know the following facts:

- The states of A¢ are sets of subformulas of ¢; the states of Be are pairs of sets
of subformulas of ¢. Since there are exponentially many sets of subformulas,
A¢ and Be may have exponentially many states in [¢1.

- Given two states ql, q2 of A¢ or Be and a marking M, there is an algori thm
which decides using polynomial space whether (ql, M, q2) 6 6¢.

We also need two automata A2v = (2 s, Qlv, q0N, 6~v, FN A) and BN = (2 s, QN, qoN, 5N, F B)
obtained from the Petri net N, as follows:

- QN is the set of reachable markings of N;
- - qON is the initial marking M0;

- 5N contains the triples of markings (M1, M1, M2) such tha t M1 ~ > M2 for
some transit ion t;

390

- F A is the set of deadlocked reachable markings of N;
- F B = Q, i.e., FN B is the set of reachable markings of N.

Loosely speaking, both automata correspond to the reachability graph of N,
with the peculiarity that edges are labelled with the marking they come from.
AN and BN differ only in their final states. Clearly, L(AN) is the set of all finite
runs of N, and L~(BN) the set of all infinite runs.

In order to solve the model-checking problem for input N, ¢, let A be
the product of the automata A~¢ and AN, and let B be the product of the
automata B-~¢ and BN, where the product (Z ,Q, qo, 5, F) of two automata
(Z, Q1, q01,51, F1) and (E, Q2, q02,52, F2) is defined in the usual way:

Q = Q1 x Q2

qo = (qol,q02)
5 = {((ql,q2),a,(ql,q'2))J(ql,a, ql) ~ 51 and (q2,a,q~) E 52}

F = Fl × F2

Clearly, we have L(A) = L(A~¢) N L(AN) and L~(B) = L~(B~¢) N L~(BN). 5
So the union of L(A) and L~(B) is the set of runs of N that do not satisfy ¢; in
other words, N satisfies ¢ ff and only if L(A) = 0 and L~ (B) = 0.

We have reduced the model checking problem to the following one: Given N
and ¢, decide if L(A) and L~ (B) are empty. We have to solve this problem using
only polynomial storage space in the size of N and ¢. The first natural idea is
to construct A and B, and then use the standard algorithms for emptiness of
automata for finite and infinite words. Unfortunately, both A and B may have
exponentially many states in [N[and [¢[.

At this point, complexity theory helps us by means of Savitch's construction.
Recall that a nondeterministic decision procedure for a problem is an algorithm
which can return "yes" or fail, and satisfies the following property: the answer
to the problem is "yes" if and only if some (not necessarily all) execution of
the algorithm returns "yes". A deterministic decision procedure always answers
"yes" or "no".

Savitch's construction:
Given a nondeterministic decision procedure for a given problem
using f (n) space, Savitch's construction yields a deterministic pro-
cedure for the same problem using f2(n) space.

This construction makes our life easier: it suffices to give a nondeterministic
algorithm for the emptiness problem of A and B running in polynomial space.
Actually, it also suffices to give a nondeterministic algorithm for the nonempti-
ness problem: by Savitch's construction there exists a deterministic algorithm

5 The product of two Biichi automata doesn't always accept the intersection of the
languages, but this is so in our case.

391

for the nonemptiness problem, and by reversing the answer of this algorithm we
obtain another one for the emptiness problem.

The nondeterministic algorithm for the nonemptiness problem constructs A
and B "on the fly". The algorithm keeps track of a current state of A or B,
which is initially set to the initial state. The algorithm repeatedly guesses a next
state, checks that there is a transition leading from the current state to the next
state, and updates the current state. In the case of A, the algorithm returns
"true" when (and if) it reaches a final state:

Algorithm Nonempty_A(N, ¢)

var iables : q of type state of A~¢;
M of type state of AN (i.e., of type marking);

beg in
(q, M) := (qo~¢, Mo);
whi le (q, M) is not a final state of A do

choose a state qt of A~¢ such that (q, M, q') E (f-.¢
and a marking M ~ such that M t > M ~ for some transition t;
(q, M) := (q', M');

od;
r e t u r n t r u e

e n d

In order to estimate the space used by Nonempty_A, observe that all the
operations and tests can be performed in polynomial space. For that, recall that
given two states ql,q2 E Q..¢ and M E 2 S, there is an algorithm which decides
using polynomial space whether (ql, M, q~) E (f~¢. The algorithm needs to store
one state q of A~¢ and a marking M of N. Since the states of A~¢ are sets of
subformulas of ¢, q has quadratic size in]¢1- Since M has linear size in INI,
polynomial space suffices.

The case of B is a bit more complicated. Since B has finitely many states,
L~ (B) is nonempty if and only if there exists a reachable final state q such that
there is a loop from q to itself. So the algorithm proceeds as in the case of A,
but, at some point, it guesses that the current final state will be revisited; it
then stores the current state to be able to check if the guess is true. The rest of
the algorithm checks the guess nondeterministically.

Algorithm Nonempty_B(N, ¢):

var iables : M, Mr of type state of BN (i.e., of type marking);
q, qr of type state of B-~¢;
flag of type boolean;

392

begin
(q, M) : = (q0~¢, M0); flag :--false;
while flag = false do

choose a state q' of A-~¢ such that (q, M, q') E 59¢
and a marking M ' such that M t ~ M ~ for some t;
(q, M) := (q', M') ;
i f (q, M) is a final state then

choose between flag := false and flag := true
fi

od;
(qr, M r) : = (q,M);
repeat

choose a state q~ of A-~¢ such that (q, M, q') E 5.¢

and a marking M ' such that M t ,~ M ~ for some t;
(q, M) := (q', M')

until (q, M) = (qr, Mr);
return true

end

Again, Nonempty_B(N, ¢) uses only polynomial space. Since the deter-
ministic algorithm obtained after the application of Savitch's construction to
Nonempty_A and Nonempty_B also needs polynomial space, the model-checking
problem for LTL belongs to PSPACE.

Observe that the only properties of 1-safe nets we have used in order to
obtain this result are:

- a state has polynomial size (actually, even linear) in IN[, and

- given two markings M, M' , it can be decided in polynomial space if M
M t for some transition t.

t
)

These conditions are very weak, and so the PSPACE result can be extended
to a number of other models. As observed in [35], conditions (1) and (2) hold
for other Petri net classes, like condition/event systems, elementary net systems,
but also for process algebras with certain limitations to recursion, and for several
other models based on a finite number of state machines communicating by
finite means. The conditions also hold for bounded Petri nets, assuming that the
bound is also given to Nonempty_A and NonemptyA] as part of the input. This
assumption is necessary, because the bound of a bounded Petri net (the maximal
number of tokens a place can contain under a reachable marking) can be much
bigger than the size of the net, and so we may need more than polynomial space
in order to just write down a reachable marking.

The PSPACE result can also be extended to more general logics, like the
linear-time mu-calculus, for which the translation into automata still works (see
for instance [4]).

393

4.2 Computation Tree Logic

Some interesting properties of Petri nets cannot be expressed in LTL. An ex-
ample is liveness (in the Petri net sense). Recall that a transition is live if it
can always occur again. One possibility to express this to allow existential or
universal quantification on the set of computations start ing at a marking. CTL
introduces this quantification on top of LTL's syntax The syntax of CTL is

¢ ::= p E Prop
-,¢
¢1 A ~
EX¢
AXe
E[¢IU¢2]
A[¢IU¢2]

existential next operator
universal next operator
existential until operator
universal until operator

and a node n we have that:

T , n ~ p
T,n ~ -~¢
r ,n ~ ¢1 A ¢2
T,n ~ A X ¢
T, n ~ EX¢

T, n ~ A[¢1 Gee]

T,n ~ E[¢IU¢2]

iff p E P(n)
iff not(T, n ~ ¢)
iff r ,n ~ ¢1 and T,n ~ ¢~
iff for every child n ~ of n, T, n ~ ~ ¢
iff for some child n t of n, T, n' ~ ¢

(n must have at least one child)
iff for all computations n = nonln2. . .

there exists i > 0 such tha t ni ~ ¢2
and for every j, 0 <_ j < i, nj ~ ¢1

iff for some computation n = nonln2. . .
there exists i > 0 such that ni ~ ¢2
and for every j , 0 _< j < i, nj ~ ¢1

If the tree r is clear from the context we shorten T, n ~ ¢ to n ~ ¢. We say
that a tree T satisfies a formula ¢ if root(T) ~ ¢.

Observe that A X e is equivalent to - ,EX-,¢, i.e., E X and A X are dual
operators. So actually we could remove A X from the syntax without losing
expressive power. It might seem that the existential and universal until operators
are also dual of each other, but this is not true. The dual operator of the universal

Disjunction and implication are defined as usual. Other abbreviations are
true = p V-.p, E F ¢ = E[trueU¢] (possibly ¢), AGe = -.EF-.¢ (always ¢),
AF¢ = A[trueU¢] (eventually ¢) and EG¢ = -~AF-,¢ (¢ holds at every state
of some computation).

CTL formulas are interpreted on computation trees, which are possibly infi-
nite trees where each node n is labelled with a set of atomic propositions P(n).
A path of a computation tree that cannot be extended to a larger path is called
a computation; notice that it is a computation in the LTL sense. The intuition
is that the nodes of the tree correspond to the states of a system; a state may
have an arbitrary number of successors, corresponding to different computations.
P(n) is the set of atomic propositions that hold at node (state) n. For a tree T

394

until is the existential weak until, with syntax E[¢: WU¢2], and the following
semantics:

It holds that

~-,n ~ E[¢: WU¢2] iff r , n ~ E[¢IU¢2] V E G (¢ :)

A[¢I U¢2] = -~E[-¢2 WU-~¢I]

In order to use CTL to specify properties of a 1-safe Petri net N, we choose
again the places of N as atomic propositions. With this choice a computation
tree is a tree of sets of places, and so a set of markings. We can associate to N a
computation tree T N as follows: the root is labelled with the initial marking Mo;
the children of a node labelled by M are labelled with the markings M' such

that M • t ~ M' for some transition t. We say that N satisfies ¢ if the tree 7N
satisfies ¢.

The computat ion tree corresponding to the the net of Figure 1 is shown in
Figure 2. Essentially, the tree is just the unfolding into a tree of the reachability
graph of the net. Different nodes in the tree can be labelled with the same

{idle l,id_l,idle_2,id_2}

{ req_l, hid_l, idle_2, id_2 } / \
{ CS_I, nid_l, { req_l, hid_l,
idle_2 ~ id_2 } req_2, nid_2)

{idle_l, id_2, reel_2, nid_2 } / \
{ reci_l, nid_l, { idle_l, id_l,
req__2, nid_2 } cs_2, nid_2 }

Fig. 2. Computation tree of the Petri net of Figure 1

marking, but all subtrees whose roots are labelled with the same marking are
isomorphic. Given a formula ¢ and a marking M, either all or none of the nodes
labelled by M satisfy ¢. So it makes sense to say that M satisfies ¢, meaning
that all nodes labelled by M satisfy ¢.

Here are some CTL queries on the Petri net of Figure 1:

- No reachable marking puts tokens in cs: and cs2 (true): AG(-~cs: V -~cs2).
- The output transition of the place reql is live (true): AGEF(req: A id2).
- The initial marking is reachable from every reachable marking (true):

AGEF(idlel A id~ A id~ A idle~))
- Eventually place csl becomes marked (false): AFcs:
- There is a run tha t never marks cs2 (true): EG-~cs2
- If req2 becomes marked, then eventually cs2 becomes marked (false):

AG(req2 ~ AFcs2)

395

We show that the model checking problem for CTL is in PSPACE. It follows
from the discussion above that it suffices to give a polynomial space algorithm
for the syntax

¢ ::-- s I ~¢1 I ¢1 A ¢2 I EX~) I E[¢zU¢2] I E[¢I WV¢2]

We give a (deterministic) algorithm Check(M, ¢) with a marking M and a
formula ¢ as parameters which answers "true" if M satisfies ¢, and "false"
otherwise. The model-checking problem is then solved by Check(Mo, ¢).

Check(M, ¢) is a recursive procedure on the structure of ¢, i.e., Check(M,
0 p (¢ 1 , . . . , Ca)), where Op is some operator of the logic, calls Check(M, ¢1),
. . . , Check(M, Ca).

Algorithm Check(M, ¢):

beg in
if ¢ = s t hen

if M(s) = 1 then r e tu rn t rue else r e t u r n false fi
elseif ¢ = -~¢1 then r e t u r n not Check(M, ¢1)
elseif ¢ = ¢1 A ¢2 then r e t u r n Check(M, ¢1) and Check(M, ¢2))
elseif ¢ = E X ¢ I then

for every M' such that M --~ M' for some transition t do
if Check(M', Cz) then r e t u r n t rue fi

od
else i f ¢ : E[¢zU¢2] t h e n r e t u r n EU(M, ¢1, ¢2)
elseif ¢ = E[¢IWU¢2] then r e t u r n EWU(M, ¢1, ¢2)
fi

end

It remains to define the procedures EU(M, ¢1, ¢2) and EWU(M, ¢1, ¢2). We
start with EU(M, ¢1, ¢2).

It is not possible to deterministically explore the infinitely many computa-
tions starting at M, and check directly if one of them satisfies ¢1 U¢2. The reader
might feel tempted to give a nondeterministic algorithm which explores one of
the computations, and then apply Savitch's technique. This seems to be a good
idea, but in fact doesn't work! There is a rather subtle problem. Consider the
formulas

Cn = E[E . . . E[soVsz] . . .]Usn-z]Us,~]

where S l , . . . , s,~ are places. We obtain a checking algorithm Cn through n appli-
cations of Savitch's technique. It is easy to give a C2(]N[)-space nondeterministic
algorithm for E[soUsl]. Unfortunately, the deterministic algorithm obtained by
Savitch's technique requires ST([NI 2) space, the algorithm for E[E[soUsl]Us2]
~([NI 4) space, and the algorithm for Cn no less than ~(INI 2~) space. So the
degree of the polynomial in tNt depends on the formula we axe considering.

We proceed in a different way. In a fist step we reduce the problem to the
exploration of a finite number of finite paths. We extend the syntax of CTL with
new operators E[¢IUb¢2], one for each natural number b. Loosely speaking, a

396

node satisfies E[¢IUb¢2] if in at least one of the computations starting at it we
find a node satisfying ¢2 after at mos t b steps, and all nodes before it satisfy ¢1.
Formally:

7-,n ~ E[¢IUb¢2] iff for some computation n = n o n l n 2 . . .
there exists i, 0 < i < b - 1 such that
ni ~ ¢9. and nj ~ ¢1 for every j , 0 < j < i

It follows immediately from this definition that if r, n satisfies E[¢IUb¢2] for
some number b then it also satisfies E[¢IU¢2].

Now, let n be an arbitrary node of TN, and let k be the number of places of
N. We prove

n ~ E[¢IU¢2] ¢=~ E[¢lU2~¢2]

It suffices to prove that n ~ E[¢IU¢2] implies n ~ E[¢lU2~¢2]. Assume that n
satisfies E[¢IU¢2]. Then, T N contains a computation n = n o n l n 2 . . , satisfying
¢1U¢2: ni ~ ¢1 for some i _ 0 and nj ~ ¢1 for every j , 0 <_ j < i. If
i < 2 k - 1, then this computation satisfies ¢1U2h¢2, and so n ~ ¢1U2~¢2. Let
us now consider the case i > 2 a. Let M o M 1 M 2 . . . be the sequence of markings
corresponding to nonln2 Since N is 1-safe and has k places, it has at most
2 ~ reachable markings. So there are indices j l and j2, 0 _< j l < j2 _< i, such
that Mjl = Mj2. Since the markings labelling the successors of a node are
completely determined but the marking labelling the node itself, T N contains
another computation starting at no and labelled by

M0. . . Mjl Mj2+I Mj2+2 • • •

Loosely speaking, the sequence of markings of the new computation is obtained
from the old sequence by "cutting out" the piece MjI+I . . . Mj2 and "glueing" the
two ends Mjl and Mj2+I. In this new sequence the marking Mi appears at the
position i - (j2 - j l) , and so closer to Mo than in the original computation. We
now iterate the "cutting and glueing" procedure until Mi appears before the 2 k -
th position. The computation so obtained satisfies ¢1U2~ ¢2, and so n ~ ¢1 U2~ ¢2.

So we have solved our first problem: instead of a potentially infinite number
of computations, it suffices to explore finitely many paths containing at most
2 k nodes, and check that at least one of them satisfies ¢1 U2~ ¢2 (more precisely,
that at least one of them can be extended to a computation satisfying ¢1 U2k ¢2)-

We construct EU(M, ¢1, ¢2) with the help of another algorithm Path(M,
M', ¢, ¢, l), still to be designed, with the following specification:

Path(M, M', ¢, ¢, l) returns "true" if and only if ~'N has a path no . . . nz
such that

- no is labelled by M and nt is labelled by M',
- n i ~ ¢ f o r e v e r y i , 0 < i < l , and
- n i c e .

We can take:

397

Algorithm EU(M, ¢1, ¢2)

constant : k = number of places of N;

begin
for every marking M' of N and every 0 < l < 2 k do

if Path(M, M', ¢i, ¢2, l) t hen r e t u r n t r u e
od;
r e t u r n false

end

Since each iteration of the for loop can reuse the same space, the space used
by EU(M, ¢1, ¢2) is the space used by Path(M, M', ¢1, l) plus the space needed
to store M' and l. So Path(M, M r, ¢1, l) should use at most polynomial space for
every I < 2 k. A backtracking algorithm, which would be the obvious choice, does
not meet this requirement, because it stores all the nodes of the computation
being currently explored having still unexplored branches, and there can be
exponentially many of those.

A trick frequently applied in complexity theory 6 helps us out of the problem.
Loosely speaking, for each reachable marking M ' , we explore all paths leading
from M to M" and containing [~] + 1 nodes, and then, reusing the same space,
all paths leading from M" to M ~ and containing [~J + 1 nodes. This trick of
splitting the paths into two parts is applied recursively until paths having at
most 2 nodes are reached.

Algorithm Path(M, M', ¢, ¢, l)

constant : k = number of places of N;

begin
if l = 0 then

if M = M' and Check(M, ¢)
then r e t u r n t rue fi

fi;
if 1 = 1 then

if M t) M' for some transition t
and Check(M, ¢) and Check(M', ¢)

t hen r e t u r n t rue fi
fi;
for every marking M" of N do

if Path(M, M ' , ¢, true, l r3]) and Path(M", M, ¢, ¢, [~J)
t hen r e t u r n t rue fi

od;
r e t u r n false

end

In order to estimate the space complexity of Path(M, M r, ¢ , /) , let c(¢) be
the maximum over all markings M of the space needed by Check(M, ¢), and let

6 In fact, this trick lies at the heart of Savitch's technique.

398

p(¢, ¢, l) be the maximum over all pairs of markings M, M r of the space needed
by Path(M, M', ¢, ¢, l). Then we have

p(¢, ¢, 0) = o(~(¢))
p(¢, ¢, 1) = O(max{c(¢), c(¢)}lgl)

p(¢, ¢,I) = O(max{p(¢, ¢, l [~]),p(¢,¢, L~J)}INI)

and so, in particular

p(¢, ¢, 2 k) = O(max{c(¢), c(¢)} + k. IYl) = O(max{c(¢), c(¢)} + tYl 2)

It remains to construct EWU(M, ¢1, ¢2). The interested reader can easily
prove that for every node n of TN

n ~ E[¢1 WU¢2] -' '.- E[¢1 WU~¢2]

where the semantics of E[¢I WUb¢2] is given by

T, n ~ E[¢1 WUb¢2]

So we can take

iff n ~ E[¢IUb¢2] or
there exists a path n = non ln2 . . . nb
such that ni ~ ¢1 for every 0 < i < b

Algorithm EWU(M, ¢1, ¢2)

cons tant : k = number of places of N;

beg in
if EU(M, ¢1, ¢2) t h e n r e t u r n t r u e
else

for every marking M' of N do
if Path(M, M', ¢1, true, 2 k) t h e n r e t u r n t rue

od;
r e t u r n false

end

This completes the definition of Check(M, ¢). It is easy to see that it runs
in polynomial space in IN I and I¢1, but let us determine the space complexity a
bit more precisely. We have:

c(8) =
c(¢1 A ¢2) =

c(~¢) =
c(E[¢IU¢2]) =

c(E[¢lV~¢2]) =

and so we finally get c(¢)

O(INI)
O(max{c(¢l), c(¢2)} + }NI)
O(c(¢))
O(p(¢1, ¢2,2 k) + INt)
O(max{c(¢l), c(¢2)} + Igl 2)
O(max{c(E[¢lV¢2]),p(¢l, true, 2k)} + fNI)
O(max{c(¢l), c(¢2)} + Igl 2)

= o(l¢ l . Igl~).

399

4.3 A n except ion

The most interesting exception to Rule of Thumb 2 is the controllability property.
Let To be a subset of transitions of a 1-safe Petri net N = (S, T, F, M0), and let
t E T \ To. We say tha t To controls t by a sequence a E T~ if for every occurrence

sequence M0 _L+ M such that the projection of T onto To is a, the transit ion t
cannot occur at M. The intuition is tha t To can control t in the sense tha t once
the sequence a has occurred, possibly interleaved with transitions of T \ To, t
cannot occur until transitions of To occur again. We say tha t To can control t if
To can control t by at least one sequence a.

The controllability problem is defined as follows:

Given: a 1-safe Petri net with a set T of transitions, To C_ T, t E T \ To
To decide: if To can control t.

Jones, Landweber and Lien show in [24] tha t controllability is EXPSPACE-
complete.

4.4 A remark on action-based temporal logics

We have defined LTL and CTL as state-based logics, because in order to know
if a run satisfies a property one only needs information about the states - the
markings - visited during its execution, and not about which transitions lead
from a marking to the next. I t is possible to define action-based versions of these
logics, in which the identities of the markings visited during the execution of a
run is irrelevant, while the information is carried by the sequence of transit ions
tha t occur. These action-based versions are particularly useful for labelled Petr i
nets.

The action-based version of LTL - tailored for labelled Petri nets looks
as follows: the set of basic propositions contains only one element, namely the
proposition true. The operators X and U are replaced by a set of relativised
operators XK, UK, where k is a subset of a certain finite set of actions Act. A
computation is now a finite or infinite sequence 7r = aoala2. . , of actions. Let
7r (i) = aiai+l We have:

7r ~ true
7r ~ X K ¢ iff
7~ ~ ~)l Vg¢2 iff

always
lr 74 e, a0 E k, and 7r (1) ~ ¢
for some j > 0 we have 7r(J) ~ ¢2 and
for all k, 0 < k < j , we have ai E k and 7r (k) ~ ¢1

In order to interpret the logic on a 1-safe labelled Petri net N, we choose Act
as the set of labels carried by the transitions of N. We say that N satisfies a
formula ¢ if all the sequences of transition labels obtained from the runs of N
by removing the markings satisfy ¢.

Similarly, in the action-based version of CTL the operators of the logic E X ,
A X , E[. . . U . . .] , and A[. . . U . . .] are replaced by sets of relativised operators

400

E X K , AXK, E[.. . UK...], and A[... UK...]. Computation trees are now trees
whose edges are labelled with actions. The semantics is exactly what one expects.

It is easy to prove that the model-checking problem for these two new logics
can be reduced to the model-checking problem for their state-based versions.
More precisely: given a labelled 1-safe Petri net N and a formula ¢ of action-
based LTL (CTL), one can construct in polynomial time an unlabelled 1-safe
Petri net N' and a formula ¢' of state-based LTL (CTL) such that N satisfies ¢
if and only if N' satisfies ¢'. It follows that the model-checking problem for the
action-based LTL and CTL is also in PSPACE.

In Section 8 we study the model checking problems for temporal logics and
arbitrary Petri nets. There, the distinction between state-based and action-based
logics plays a much more important r61e.

5 Deciding equivalences

In this section we investigate the complexity of deciding if two labelled 1-safe
Petri nets are equivalent with respect to a given equivalence notion.

Since the early eighties many different equivalence notions have been pre-
sented in the literature. Van Glabbeek has classified them in several papers, e.g.
[36]. Most of these equivalences fit between the so-called trace equivalence, which
is a process theory counterpart of the classical language equivalence used in for-
mal language theory, and bisimulation equivalence. An equivalence notion X fits
between trace and bisimulation equivalence if bisimilar systems are X-equivalent,
and X-equivalent systems are trace equivalent.

Trace and bisimulation equivalences are defined as follows. Let N be a la-
belled Petri net, where transitions are labelled with the elements of a set of
actions Act. The set of traces of N, denoted by T(N) is the set of words
al . . .an E Act* such that there exist markings M1, . . .Mn satisfying M0 al>
M1 ~2> . . . aN; M J . Two Petri nets N1 and N~ are trace equivalent if T(N1) =

A relation T¢ between the sets of markings of two nets is a (strong) bisimu-
lation if for every pair (M1, M2) E T~ and for every action a E Act,

- if M1 - ~ M~, then M2 a > M~ for some marking M~ such that (M~, M~) E
TO, and

- if M2 --~ M~, then M1 --%t M~ for some marking M~ such that (M~, M~) E
TO.

Two Petri nets N1 and N2 are (strongly) bisimilar if there exists a (strong)
bisimulation T~ containing the pair (Mol, Mo2) of initial markings of N1 and N2.

We have the following

7 Recall: M ~ ; M' denotes that there is a transition t labelled by a such that M --~
M'.

401

Rule of thumb 3:
Equivalence problems for 1-safe Petri nets are harder to solve
than model-checking problems, but they need at most exponential
space.

We provide a first piece of evidence for this rule of thumb by showing that
the equivalence problem for 1-safe Petri nets and any equivalence notion fitting
between trace and bisimulation equivalence is PSPACE-hard. It turns out that all
the concrete equivalences mentioned in the literature have at least DEXPTIME-
hard equivalence problems, and so this general PSPACE-hardness lower bound
can possibly be improved.

We proceed by reduction from the following PSPACE-hard problem

Given: a 1-safe Petri net N, a place s of N
To decide: if some reachable marking of N puts a token on s.

We start by labelling each transition of N with the same label, say a. N is
now a labelled net. We put N side by side with the labelled net N ' consisting of a
loop containing one single place marked with one token and one single transition
labelled by a. We denote the resulting Petri net by N !1 N' .

Now, we consider two labelled nets. The first one is N t l N' ; the second is a
small modification of it obtained by adding a new output transition to the place
s of N. The new transition has s as unique input place, no output places, and
carries a label different from a, say b.

The following holds:

- If some reachable marking puts a token on s, then the two nets are not trace
equivalent: the second one can do a b, while the first one can't.

- If no reachable marking puts a token on s, then the two nets are bisimilar:
the relation containing all pairs (M1, M2), where M1 is a reachable marking
of the first net and M2 a reachable marking of the second net, is clearly a
bisimulation.

Therefore, given any equivalence notion X fitting between trace and bisimula-
tion equivalence, we can solve the PSPACE-hard problem above by constructing
the two nets and deciding if they are X-equivalent. So the equivalence problem
for any such notion is PSPACE-hard.

Apart from this little result, the real evidence supporting the rule of thumb
above is the work of Rabinovich [31] and Jategaonkar and Meyer [23]. This last
paper contains a table with the complexity of 18 equivalence notions. Bisimilarity
and many variants of it are DEXPTIME-complete, while trace equivalence, fail-
ures equivalence, and several variants of them are EXPSPACE-complete. They
also consider so-called partial order equivalences, for which the concurrent execu-
tion of two actions is not equivalent to their interleaved execution (i.e., a system
that executes a and b in parallel is not considered to be equivalent to a system
which chooses between executing a and then b, or b and then a). The complexity
results (up to some open problems) are similar.

402

6 C a n a n y t h i n g b e d o n e i n p o l y n o m i a l t i m e ?

We have seen that all interesting problems for arbitrary 1-safe Petri nets are at
least PSPACE-hard, and so that there is very little hope of finding polynomial
algorithms for them. The natural question to ask is if there are important sub-
classes of 1-safe Petri nets for which one could solve at least some problems in
polynomial time. In this section we get some general answers in the form of rules
of thumb.

A first rule, which tends to be surprising for many people is

t Rule of thumb 4:
Most interesting questions about the behaviour of acyclic 1-safe
Petri nets are NP-hard.

Here, as in Section 3, a word of warning is required about the meaning of
"interesting". Liveness is certainly an interesting question for arbitrary 1-safe
nets, but not for the acyclic ones: 1-safe acyclic Petri nets are always non-live,
because no transition can fire more than once. Interesting questions for 1-safe
acyclic Petri nets, all of them NP-hard, are

- Is a given marking reachable from the initial marking?
- Is there a reachable marking which marks a given place?
- Is there a reachable marking which does not mark a given place?
- Is there a reachable marking which enables a given transition?
- Is the initial marking reachable from every reachable marking?
- Is there a run containing a given transition?
- Is there a run that does not contain a given transition?

Let us prove NP-hardness of the second problem: Is there a reachable marking
which marks a given place? We present a polynomial time construction which
associates to a boolean formula in conjunctive normal form an acyclic 1-safe Petri
net. The net nondeterministically selects a truth assignment for the variables of
the formula, and then checks if the formula is true under the assignment. The
construction is illustrated in Figure 3 by means of an example.

It seems s that in order to obtain classes with polynomial decision algorithms
one has to impose local constraints on the net's structure. Here "local constraint"
means a constraint which can be shown not to hold by looking at only a small
part of the net. For instance, "every transition has exactly one input place" is
a local constraint; if the constraint does not hold, then one can always point at
a particular transition in the net, together with its input places, and show that
the constraint is not satisfied because of this transition. A constraint like "the
net is acyclic" is not local, because the smallest circuit of the net may be the
net itself.

The two following local constraints have been very intensely studied in the
literature:

s Although I don't know of any formal proof.

403

A1 A2 A 3

~3

CI ~ C3

True
Fig. 3. Acyclic net corresponding to the formula (xl V ~3) A (xl V x2 V x3) A (x2 V ~3)

- the conflict-freeness constraint: s ° C_ "s for every place s with more than one
output transition; in the case of 1-safe Petri nets this constraint is equivalent
to "every place has at most one output transition" for nearly all purposes;

- the free-choice constraint: if (s, t) is an arc from a place to a transition, then
so is (s', t') for every place s' 6 "t and for every transition t' 6 s °.

Unfortunately, it is not possible to summarise the results of the research on
conflict-free and free-choice Petri nets in a concise and general rule of thumb.
But we can still say:

Rule of thumb 5:
Many interesting questions about 1-safe conflict-free Petri nets are
solvable in polynomial time.
Some interesting questions about live 1-safe free-choice Petri nets
are solvable in polynomial time (and liveness of 1-safe free-choice
Petri nets is decidable in polynomial time too).
Almost no interesting questions for 1-safe net classes substantially
larger than free-choice Petri nets are solvable in polynomial time.

Among the "many" interesting polynomial questions for conflict-free nets are
all those that can be expressed in the fragment of CTL with syntax

¢ ::= s I 9¢ I ¢1 A¢2 I E X ¢ 1 EF¢

404

(see [7]). Among the "some" interesting polynomial questions for live free-choice
nets are the following [5]:

- Is there a reachable marking which marks a given place?
- Is there a reachable marking which does not mark a given place?
- Is there a reachable marking which enables a given transition?
- Is the initial marking reachable from every reachable marking?
- Is there a run that does not contain a given transition?

Interestingly, the reachability problem for 1-safe live free-choice nets is NP-
complete [8], and so it is unlikely that it will ever be added to this list.

P a r t I I

Genera l Petr i nets
In this second part of the paper we consider arbitrary (finite) Place/Transit ion
Petri nets. The possible markings of a net Af or just the markings olaf are now
the set of all mappings S -~ ~W, where S is the set of places of A/'. Observe that,
contrary to the 1-safe case, there is no a priori relation between the size of a net
and the size of its markings. Notice also that the set of reachable markings may
be infinite.

7 A universal lower b o u n d

This section is the counterpart of Section 3 for Place/Transit ion Petri nets. The
rule of thumb is now:

Rule of thumb 6:
All interesting questions about the behaviour of (Place/Transition) Petri
nets are EXPSPACE-hard. More precisely, they require at least 2 °(~/-~)-
space.

In particular, all the questions we asked about 1-safe Petri nets can be refor-
mulated for Petri nets, and turn out to have at least this space complexity. As
in the case of 1-safe Petri nets, this is a consequence of one single fundamental
fact:

A deterministic, exponentially bounded automaton of size n can be sim-
ulated by a Petri net of size O(n2). Moreover, there is a polynomial time
procedure which constructs this net.

405

In order to answer a question about the computat ion of an exponentially
space bounded au tomaton A, we can construct the net that simulates A, which
has size O(n2), and solve the corresponding question. If the original question
requires 2 n space, as is the case for many properties, then the corresponding
question about nets requires at least 2°(v~)-space.

The fundamental fact above was first proved by Lipton [27]. Mayr and Meyer
proved in [29] that it is possible to make the simulating net reversible (a net is
reversible if for each transition t there is a reverse transit ion t which "undoes"
the effect of t). Since reversible nets are equivalent to commutat ive semigroups,
the construction by Mayr and Meyer has important applications in mathemat ics .

Since Mayr and Meyer 's construction is more involved than Lipton's , and
since reversibility is not a main concern for this paper, we consider Lipton 's
construction in detail. I t would have been easier to refer to Lipton 's paper, but
unfortunately it only exists as an old Yale report, quite difficult to find.

Bounded au tomata and general Place/Transi t ion Petri nets do not "fit" well.
I t is not appropriate to model a cell of a bounded au tomaton as a place, as we
did in the l-safe case, because the cell contains one out of a finite number of
possible symbols, while the place can contain infinitely many tokens, and so the
same information as a nonnegative integer variable. So we use an intermediate
model, namely counter programs. It is well-known tha t so-called bounded counter
programs can simulate bounded au tomata (see below), and we show tha t Petr i
nets can simulate bounded counter programs.

A counter program is a sequence of labelled commands separated by semi-
colons. Basic commands have the following form, where l, 11, 12 are labels or
addresses taken from some arbi t rary set, for instance the natural numbers, and
x is a variable over the natural numbers, also called a counter.

l : x : = x + l
h x : = x - 1
h g o t o 11 unconditional jump
h i f x = 0 t h e n g o t o 11 conditional jump

else g o t o 12
h h a l t

A program is syntactically correct if the labels of commands are pairwise
different, and if the destinations of jumps correspond to existing labels. For
convenience we can also require the last command to be a h a l t command.

A program can only be executed once its variables have received initial values.
In this paper we assume tha t the initial values are always 0. The semantics of
programs is that suggested by the syntax. The only point to be remarked is tha t
the command l : x := x - 1 fails if x = 0, and causes abort ion of the program.
Abort ion must be distinguished from proper termination, which corresponds to
the execution of a h a l t command. Observe in particular tha t counter programs
are deterministic.

A counter program C is k-bounded if after any step in its unique execution
the contents of all counters are smaller than or equal to k. We make use of a
well known construction of computabil i ty theory:

406

There is a polynomial t ime procedure which accepts a determin-
istic bounded au tomaton A of size n and returns a counter pro-
gram C with O(n) commands simulating the computat ion of A on
empty tape; in particular, A halts if and only if C halts. Moreover,
if A is exponentially bounded, then C is 22"-bounded.

Now, it suffices to show tha t a 22"-bounded counter program of size O(n)
can be simulated by a Petri net of size O(n2). This is the goal of the rest of this
section.

Since a direct description of the sets of places and transitions of the simulating
net would be very confusing, we introduce a net programming notat ion with a
very simple net semantics. I t is very easy to obtain the net corresponding to
a program, and execution of a command corresponds exactly to the firing of a
transition. So we can and will look at the programming notat ion as a compact
description language for Petri nets.

A net program is ra ther similar to a counter program, but does not have the
possibility to branch on zero; it can only branch nondeterministically. However,
it has the possibility of transferring control to a subroutine. The basic commands
are as follows:

l : x : - - x + l
1: x := x - 1
l: g o t o 11
1: g o t o 11 o r g o t o 12
1: g o s u b 11
1: r e t u r n
l: h a l t

unconditional jump
nondeterministic jump
subroutine call
end of subroutine

Syntactical correctness is defined as for counter programs. We also assume
tha t programs are well-structured. Loosely speaking, a program is well-structured
if it can be decomposed into a main program that only calls first-level sub-
routines, which in turn only call second-level subroutines, etc., and the jump
commands in a subroutine can only have commands of the same subroutine as
destinations. 9 We do not formally define well-structured programs, it suffices to
know tha t all the programs of this section are well-structured.

We sketch a (Place/Transit ion) Petri net semantics of well-structured net
programs. The Petr i net corresponding to a program has a place for each label,
a place for each variable, a distinguished halt place, and some additional places
used to store the calling address of a subroutine call. There is a transition for
each assignment and for each unconditional jump, and two transitions for each
nondeterministic jump, as shown in Figure 4. We illustrate the semantics of the
subroutine command by means of the program

9 Here we consider the main program as a zero-level subroutine, i.e., jump commands
in the main program can only have commands of the main program as destinations.

407

()l

ET<)x

1 : x:=x+l;

11 : . . .

()l

E -Ox

1 : x:=x-l;

11 : . . .

1 : goto 11 1 : goto 11
or

goto 12

Fig. 4. Net semantics of assignments and jumps

()l

<)halt
1 : halt

1: gosub 4;
2: gosub 4;
3: halt;
4 : g o t o 5 o r go to 6;
5: r e t u r n ;
6: r e t u r n

The corresponding Petri net is shown in Figure 5. Observe that the places
l_calls_~ and 2_calls_~ are used to remember the address from which the subrou-
tine was called.

Clearly, the Petri net corresponding to a net program with k commands has
O(k) places and O(k) transitions, and its initial marking has size O(k). So it is
of size O(k2).

Let C be a 22"-bounded counter program with O(n) commands. We show
that C can be simulated by a net program N(C) with O(n) commands, which
corresponds to a Petri net of size O(n2). Unfortunately, the construction of
N(C) requires quite a bit of low-level programming. But the reward is worth
the hacking effort.

The notion of simulation is not as strong as in the case of 1-safe Petri nets.
In particular, net programs are nondeterministic, while counter programs are
deterministic. A net program N simulates a counter program C if the follow-

408

l_calls_4 4

2_calls4 return_4

[]
halt(

Fig. 5. Net semantics of subroutines

ing property holds: C halts (executes the command hal t) if and only if some
computation of N halts (other computations may fail).

Each variable x of N (be it a variable from C or an auxiliary variable) has
an auxiliary complement variable 5. N takes care of setting 5 = 2 ~" at the
beginning of the program. We call the code that takes care of this Nin~t(C). 1°
The rest of N(C), called Nsim(C), simulates C and takes care of keeping the
invariant 5 = 2 2" - x.

We design Nsim (C) first. This program is obtained through replacement of
each command of C by an adequate net program. Commands of the form x :--
x + 1 (x := x - 1) are replaced by the net program x := x + 1;5 := 5 - 1

lo Recall that by definition all variables of N have initial value 0. Therefore, if we need
= 2 2~ initially, then we have to design preprocessing code for it.

409

(x := x -- 1; E :---- ~ + 1). Uncondi t ional jumps are replaced by themselves. Let
us now design a p rogram

Testn(x,ZER0, NONZERO)

to replace a condit ional j u m p of the form

l: i f x = 0 t h e n g o t o ZERO
else g o t o NONZERO

The specification of Testn is as follows:

If x = 0 (1 _< x _< 2~"), then some execution of the p rogram leads to
ZERO (NONZERO), and no computa t ion leads to NONZERO (ZERO); moreover
the p rogram has no side-effects: after any execution leading to ZERO or
NONZERO no variable has changed its value.

Actually, it is easier to design a p rog ram Test~n(x,ZER0, NONZERO) with the
same specification but a side-e~ect: after an execution leading to ZERO, the values
of x and E axe swapped, n Once Test~ has been designed, we can take:

P r o g r a m Testn(x, ZERO, NONZERO):

Test~(x, continue, NONZERO);
continue: Test~(5, ZERO, NONZERO)

because the values of x and 5 are swapped 0 times if x > 0 or twice if x -- 0,
and so Testn has no side effects.

The key to the design of Test~, lies in the following observation: Since x never
exceeds 22" , test ing x = 0 can be replaced by nondeterminis t ical ly choosing

- to decrease x by 1, and if we succeed then we know t h a t x > 0, or
- to decrease 5 by 22" , and if we succeed then we know t h a t E = 22" , and so

If we choose wrongly, t ha t is, if for instance x = 0 holds and we t ry to decrease
x by 1, then the p rogram fails; this is not a problem, because we only have to
guarantee tha t the p rogram may (not must!) terminate, and tha t if it t e rminates
then it provides the r ight answer.

Decreasing x by 1 is easy. Decreasing 5 by 22" is the difficult part . We leave it
for a rout ine Dec~ to be designed, which must satisfy the following specification:

If the initial value of s is smaller than 2 2" , then every execut ion of
Decn fails. If the value of s is greater than or equal to 22~, then all
executions te rmina t ing with a r e t u r n c o m m a n d have the same effect as
s := s - 22~;~ :-- ~ + 22"; in part icular , there are no side-effects. All
o ther executions fail.

11 Executions leading to NONZERO must still be free of side-effects.

410

Test~ proceeds by transferring the value of x to a special variable s, and then
calling the routine Decn, which decreases s by 2 ~". In this way we need one
single routine Decn, instead of one for each different variable to be decreased,
which leads to a smaller net program.

Program Test~(x, ZERO, NONZERO):

** initially s -- 0 and ~ --- 22" **
g o t o nonzero o r g o t o loop;

nonzero: x := x - 1; x :-- x + 1; goto NONZERO;
loop: ~ : - - - - ~ - - l ; x : - - - - x + l ; s : = s + l ; ~ : - - - - ~ - l ;

g o t o e x i t o r g o t o loop
e x i t : g o s u b decn; g o t o ZERO

** the routine called at decn is Decn(s) **

It is easy to see that Test~ meets its specification: if x > 0, then we may
choose the nonzero branch and reach NONZERO. If x = 0, then 5 = 22" . After
looping 22" times on loop the values of x, • and s, ~ have been swapped.
The values of s and ~ are swapped again by the subroutine Decn, and then
the program moves to ZERO. Moreover, if x = 0 then no execution reaches the
NONZERO branch, because the program fails at x := x - 1. If x > 0, then no
execution reaches the ZERO branch, because s cannot reach the value 22", and
so Decn fails.

The next step is to design Decn. We proceed by induction on n, starting with
Dec0. This is easy, because it suffices to decrease s by 220 = 2. So we can take

Subroutine Dec0(s):

s := s - 1; ~ := ~ + 1;
s := s - 1; ~ : = ~ + 1;
r e t u r n

Now we design Deci+l under the assumption that Deci is already known. The
definition of Deci+l contains two copies of a program Test~, called with different
parameters. We define this program by substituting i for n everywhere in Test~n.
Test~ calls the routine Deci at the address deci. Notice that this is correct,
because we are assuming that the routine Deci has already been defined.

The key to the design of Deci+l is that decreasing by 2 ~+1 amounts to
decreasing 22. times by 22', because

22`+` = (22') 2 = 2 ~' . 22`

So decreas ingby 22~+1 can be implemented by two nested loops, each of which
is executed 22' times, such that t h e b o d y of the inner loop decreases s by 1. The
loop variables have initial values 22` , and termination of the loops is detected by
testing the loop variables for 0. This is done by the Test~ programs.

411

Subroutine Deci+l (s):

** Initially Yi = 22' = zi, Yi = 0 = -5i **
** The initialisation is carried out by Ninit **
oute r_ loop: Yi := Yi - 1; Yi := Yi + 1;
inner_ loop: zi := zi - 1; ~i := ~i + 1;

s := s - 1; $:= ~4- 1;
Test~(zi, inner_exit , inner_loop);

inner_exit: Test~(yi, outer_exit, outer_loop);
outer_exit: return

Observe also tha t both instances of Test~ call the same routine at the same label.
It could seem tha t DeCi+l swaps the values of Yi, Yi and zi, -5i, which would be

a side-effect contrary to the specification. But this is not the case. These swaps
are compensated by the side-effects of the ZERO branches of the Test~ programs!
Notice tha t these branches are now the i n n e r _ e x i t and o u t e r _ e x i t branches.
When the program leaves the inner loop, Test~ swaps the values of zi and -5i.
When the program leaves the outer loop, Test~ swaps the values of Yi and Yi-

This concludes the description of the program Test,~, and so the description
of the program Nsim(C) . I t remains to design Nini t (C) . Let us first make a list
of the initialisations that have to be carried out. Nsim(C) contains

- the variables x l , . . . , xz of C with initial value 0; their complementary vari-
ables • 1 , . . . , gt with initial value 22" ;

- a variable s with initial value 0; its complementary variable g with initial
value 22" ;

- two variables yi, zi for each i, 0 < i < n - 1, with initial value 224; their
complementary variables ~i,-Si for each i, 0 < i < n - 1, with initial value 0.

Now, the specification of Ni ,u t (C) is simple

Nini t (C) uses only the variables in the list above; every successful ex-
ecution leads to a state in which the variables have the correct initial
values.

Nini t (C) calls programs Inc/(vl, . . . , Vm) with the following specification:

All successful executions have the same effect as

Vl := Vl 4- 2T;

Vrn :---- Vm 4- 224

In particular, there are no side-effects.

These programs are defined by induction on i, and are very similar to the family
of Dec /p rograms . We star t with Inc0:

412

Program Inco (vl, •. •, Vm):

v l : = v l + l ; v l : = v i + l ;
. . .

vm := Vm + 1; Vm := Vm + 1

and now give the inductive definition of Inci+v

Program Inc~+l (Vl,. • •, Vm):

• * Initially Yi = 22` = zi, Yi = 0 = "zi **
outer_loop: Yi := Yi - 1; Yi := Yi + 1;
inner_loop: zi := zi - 1; ~i := zi + 1;

V l :~'-~ V l " t - 1;
. . .

Vm := Vm + 1;
Test~(zi, inner_exit , inner_loop);

inner_exit: Test~(yi, outer_exit, outer_loop);
outer_exit: ...

It is easy to see that these programs satisfy their specifications. Now, let us
consider Ninit (C). Apparently, we face a problem: in order to initialise the vari-
ables v l , . . . , Vm to 22~+1 the variables Yi and zi must have already been initialised
to 221[Fortunately, we find a solution by just carrying out the initialisations in
the right order:

Program Ninit (C):

nac0(yo, z0);
Inca (yl, Zl);
. , .

Incn-l(yn-1, zn-1);
Incn(~,~l , . . . ,St)

This concludes the description of N(C) , and it is now time to analyse its
size. Consider Nsim(C) first. It contains two assignments for each assignment
of C, an unconditional jump for each unconditional jump in C, and a different
instance of Westk for each conditional jump. Moreover, it contains (one single
instance of) the routines Decn, Decn-1, . . . , Deco (notice that Testn calls Decn,
which calls Decn-1, etc.). Both Testn and the routines have constant length. So
the number of commands of Nsim(C) is O(n).

Ninit(C) contains (one single instance of) the programs Inci 1 < i < n. The
programs Incl, . . . , Incn-x have constant size, since they initialise a constant
number of variables. The number of commands of Inch is O(n), since it initialises
O(n) variables.

So we have proved that N(C) contains O(n) commands. It follows that its
corresponding Petri net has size O(n2), which concludes our presentation of
Lipton's result.

413

T h e solution to Story I I

Recall the conjecture of Story II: given a net Af and two markings M1 and M2,
if M2 is reachable from M1 then it is reachable from M1 through a sequence

M0 - ~ M1 - -~ . . . - ~ M , = M such that all the markings M 1 , . . . , M . have
size O(n +mo + m), where n, m0, m are the sizes of Af, M0 and M respectively.

Let c be the constant such that Mo, • • •, Mn have size at most c. (n+mo+m).
If the conjecture is true, then the following nondeterministic algorithm solves the
reachability problem, since it may always answer "true" when M is reachable:

Algorithm Reachable(N, M0, M):

va r iab le : M r of type marking;

b e g i n
M r := Mo;
whi le M ' ~ t M do

choose a marking M " of size at most c . (n + m0 + m)

such that M I t > M " for some transition t;
if there is no such marking then stop;
M r := M ' ;

od;
r e t u r n t r u e

e n d

Since the algorithm only visits markings of size c- (n + m0 + m), it runs in
linear space. By Savitch's construction there is a deterministic algorithm which
uses quadratic space. Since the reachability problem requires exponential space,
the conjecture is false.

8 U p p e r b o u n d s

The general exponential space lower bound of the last section is almost the best
we can hope for, because Rackoff gave in [32] an almost matching exponential
space upper bound for the covering and boundedness problems for Petri nets.
More precisely, the upper bound is 2 °(nl°g n) space, very close to the 2 °(v~)
lower bound. The covering problem consists of deciding if there exists a reachable
marking M such that M >_ M' for a given marking M' , i.e., if there exists a
reachable marking M covering Mr; the boundedness problem consists of deciding
if the number of reachable markings is finite.

Yen showed some years later in [38] that the same upper bound holds for the
problem of deciding if there exists a firing sequence

Mo c~1,,) M1 ~2> o'~ Mk

414

satisfying a given predicate F (M1, . . . , Mk, al, • . . , a~) constructed using the fol-
lowing syntax: 12

F ::= Mi(s) >_ c I M~(s) > c

M~(s) < M~(s') I M~(s) > MAs')
#., (t) < ~ I #~ , (t) >_ c
#. , (t) <__ #~, (t')I # . , (t) _> #~ (t')
F1A F2 I F1V F2

where s and s' are places, t and t' are transitions, c is a constant, and #a(t)
denotes the number of times that t occurs in a. Both the covering and the
boundedness problem can be reduced to Yen's problem. The covering problem
for a marking M = (m l , . . . , mn) corresponds to deciding if there exists a fir-
ing sequence M0 Z2+ M1 such that Ml(Sl) _> ml A . . . A Ml(Sn) > mn. The
boundedness problem can be easily shown to be equivalent to the problem of
deciding if there exists a sequence Mo ~1~ MI - ~ M2 such that M l (s l) >
M2(sl) A . . . A M1 (Sn) > M2(sn). Observe however that the teachability problem
cannot be reduced to Yen's problem, because the predicate M (s) = c does not
belong to the syntax. The reachability problem was shown to be decidable by
Mayr [28] and shortly after with a simpler proof by Kosaraju [25], but all known
algorithms are non-primitive recursive. Closing the gap between the exponential
space lower bound and the non-primitive recursive upper bound is one of the
most relevant open problems of net theory.

Is it possible to give more general results about the properties that are decid-
able, and the properties that are decidable in exponential space? In particular,
we would like to show that all the properties of a certain temporal logic are
decidable, or decidable in exponential space. As we are going to see, there is
a very significant difference between state-based logics and action-based logics,
and so we consider them separately.

8.1 T h e s t a t e - b a s e d case

We have the following very general rule of thumb:

Rule of thumb 7:
The model-checking problems of all interesting state-based logics
are undecidable.

As in the 1-safe case, we first have to choose a set of atomic propositions. We
take again Prop = S, i.e., the atomic propositions are the places of N. We say
that a marking M satisfies the proposition s if M is marked at s. Observe that a
computation is no longer a sequence of markings; a computation is a sequence of

12 The syntax is actually a bit more general, see [38] for the details.

415

sets of places, as in the 1-safe case, but the markings of general Place/ t ransi t ion
nets are not sets of places anymore.

With this choice of atomic propositions we can only express tha t a place
is marked or not; we can say nothing about the number of tokens it contains.
Unfortunately, even with this restricted expressive power the model checking
problems for LTL and CTL turn out to be undecidable.

The proof is in both cases by reduction from the following problem, which is
known to be undecidable:

Given: a counter program C with counters initialised to 0.
To decide: if C halts.

We simulate once again counter programs by net programs. Given a counter
program C, we obtain a net program N ~ (C) through replacement of each counter
command

l : i f x = 0 t h e n g o t o l l e l s e g o t o 12

by the net program

1: g o t o t e s t -11 o r g o t o tes t -] .2;
t e s t _ l 1: g o t o 11;
test_12: go to 12

while other commands are replaced by themselves.
The net program N~(C) simulates C in a much weaker sense than tha t of

Section 7. N'(C) has a honest run that exactly mimics the (unique) execution
of C: whenever C executes the command l, N'(C) chooses the same branch as
C. However, it also has many other runs that "cheat", i.e., runs that at some
point choose the wrong branch. The labels t e s t - ~ l and tes t_12 correspond to
two places of N'(C) which can be used to test if the program has cheated or not
when executing the conditional jump.

Suppose that there exists a temporal logic formula Halt with the following
property:

N~(C) satisfies Halt if and only if the honest execution of N~(C) hal tsJ 3

Since the honest run exactly mimics the execution of the counter program C,
N'(C) satisfies Halt if and only if C halts. Therefore, the problem of deciding if
Halt is satisfied by a given Petri net N is undecidable. It follows tha t the model-
checking problem of those logics in which Halt was expressed is undecidable as
well.

We construct in CTL and LTL very simple formulas LTL-Halt and CTL-
Halt. We first define a formula Cheat without temporal operators. Cheat is the
conjunction over all conditional jumps l: i f x = 0 t h e n g o t o 11 else g o t o 12
of the formulas:

13 Since Nf(C) is just a shorthand description of a Petri net, it makes sense to ask if
N~(C) satisfies a property formalised as a temporal formula.

416

(test_ll A X) V (test_12 A -~X)

If a run visits a marking satisfying Cheat, then we know that it is dishonest: if
the marking satisfies (t e s t _ l l A x), then at some conditional jump the run has
taken the 11 branch even though x > 0; if (test_12 A-~x), then the run has taken
the 12 branch even though x = 0. Now, we define

LTL - Halt = F(Cheat V halt)

where halt is the place in the net semantics corresponding to all the ha l t com-
mands. A run satisfies LTL-Halt if at some point it cheats or it halts. N'(C)
satisfies LTL-Halt iff every run satisfies LTL-Halt. Since the honest run is the
only one that doesn't cheat, N'(C) satisfies LTL-Halt iff the honest run halts.

The formula CTL-Halt is :

CTL - Halt = AF(Cheat V halt)

It follows immediately from the semantics of formulae that N'(C) satisfies
CTL-Halt if and only if it satisfies LTL-Halt

Since the formula CTL-Halt only contains the operator AF, the fragment of
CTL tha t extends propositional logic with the operators E F and its dual AG
could still be decidable. Unfortunately, a different proof [9] shows that this is
not the case.

8 .2 T h e a c t i o n - b a s e d case

As mentioned above, the action-based case is very different from the state-based
case:

Rule of thumb 8:
The model-checking problems of all interesting branching-time, action-
based logics are undecidable. The model-checking problems of all inter-
esting linear-time, action-based logics are decidable.

The undecidability of branching-time logics in the action-based case is an
immediate consequence of the following fact: given an unlabelled Petri net N
and a formula ¢ of state-based CTL there is a labelled net N ' and a formula ¢'
of action-based CTL such that N satisfies ¢ if and only if N ' satisfies ~'.

The net N ' is obtained by labelling the transitions of N with some label,
say a, and then adding for each place s a new transition t8 having s as only
input place, no output place at all, and labelled by s. The formula ¢' is ob-
tained through replacement of each atomic proposition s by EXstrue, and of
each temporal operator E X , AX , E[. . . U. . .] , A[. . . U . . .] by EX{a}, AX{a},
E[. . . U{a}...], and A[.. . U{a}.. -], respectively. Observe that s holds iff the tran-
sition ts can occur, i.e., iff EXstrue holds.

417

We cannot use the same technique to prove the undecidability of the model-
checking problem for LTL, because the problem is decidable! As in the 1-safe
case, the model-checking algorithm is based on automata theory. Given an LTL
formula ¢, one can build a finite automaton A¢ and a Bfichi automaton Be such
that L(A¢) U L~ (Be) is exactly the set of computations satisfying the formula ¢.
In the action-based case both A¢ and Be are automata over the alphabet Act.

In the 1-safe case, given a net N and a formula ¢, we first constructed two
automata A~¢ and B~¢ such that L(A~¢) U L~(B~¢) is exactly the set of com-
putations violating the formula ¢. In the general case we proceed exactly in the
same way. The second step was to construct two finite automata AN and BN
from the Petri net N, which were both essentially equal to the teachability graph
of the net. Here we have a problem: the automata AN and BN can be defined
just as in the 1-safe case, but since N may now have infinitely many reachable
markings, they are not guaranteed to be finite.

The solution to this problem is easy: instead of constructing two au tomata
AN and BN out of the Petri net N, we construct two labelled Petri nets NA~¢
and NB~¢ out of the automata A~¢ and B~¢ in the following obvious way:

- the places of NA¢ are the states of A¢;
- for each transition q a ~ qr in A¢ add a transition to NA,, labelled by a,

with q and qr as input and output place.

NB~ is constructed analogously. Now we construct the products N x NA¢ and
N x NB¢, where the product N1 x N2 of two Petri nets N1 and N2 is another
Petri net defined in the following way:

- the set of places of N is the union of the sets of places of N1 and N2;
- for each pair of transitions tl of N1 and t2 of N2 labelled by a same action

a, the product N contains a transition (tl, t2) also labelled by a; the input
(output) places of (t l , t2) are the union of the input (output) places of tl
and t2.

The two following results are easy to prove:

- L~(BN) M L(B¢) # 0 holds if and only if the Petri net N x NB¢ has a run
which marks some place corresponding to a final state of B¢ infinitely often.

- L(AN)ML(A¢) # 0 holds if and only if the Petri net N x NA¢ has a reachable
dead marking which marks some place corresponding to a final state of A¢.

Finding a run of N × NB¢ that marks some place from a given set FS of final
places infinitely often is equivalent to deciding if there exists a firing sequence
M0 ~ M1 --?2+ M2 ~ M3 in the net N x NB¢ such that

(A M 3 (s) > M I (S)) A (V M2(s) > 1)
sES sEFS

where S denotes the set of all places. By Yen's result, introduced at the beginning
of this section, the problem can be solved in exponential space in the size of

418

N x N B ¢ . In a more detailed analysis [14], Habermehl shows that this problem
is EXPSPACE-complete in the size of N and PSPACE-complete in the length
of ¢.

Finding a dead reachable marking of N × NA~ that marks some place from
a given set F S of final places can be reduced to and is at least as hard as
the reachability problem. Therefore, there exist so far no primitive recursive
algorithms for it.

As in the 1-safe case, these results can be generalised to any logic for which
the translation into automata theory holds [9].

9 All equivalence problems are undecidable

This section's rule of thumb has a rather negative flavour:

Rule of thumb 9:
All equivalence problems for Petri nets are undecidable.

This rule is supported by a recent and very nice result due to Jan~ar, showing
that every equivalence notion between trace and bisimulation equivalence is un-
decidable for Petri nets. 14 Jan~ar himself has presented his result very clearly in
[22]; here we do it in a slightly different way. We proceed by reduction from the
problem

Given: a counter program C,
To decide: if C halts (recall that all counters are initialised to 0).

which is known to be undecidable.
Although the result can be presented directly by constructing two Petri nets

out of C (and this is the way the proof in [22] goes), we prefer to use again a net
programming language with a very simple net semantics, this time a language
of guarded commands. A program is a sequence of instructions, and instructions
are expressions of the form

actionl
1: [[] guardl - , ~ commandl

action2
[] guard2 ~ comraand2

. . ,

action,,
D guardn - ~ commandn]

where 1 is a label, actioni, . . . , actionn are actions, a guard is either the special
string t r u e or a conjunction of expressions of the form x > 0 (no guards of the
form x = 0 are allowed), and the possible commands are

14 Actually, the result is a bit stronger, since bisimulation can be replaced by an even
finer equivalence.

419

skip , x := x + 1 , x : = x - 1 , g o t o 1 , h a l t

Operationally, an instruction is executed as follows: one of the guards that eval-
uate to true at the current state is nondeterministically selected (if no guard
evaluates to true, the program aborts). Then, two things happen: the action of
the selected guard is sent to the environment, and its command is executed (if
the command is x := x - 1 and x = 0 holds, then the program aborts). If the
command is a jump g o t o 1, then execution continues at the instruction with
label 1. If the command is sk ip or an assignment, then execution continues with
the next instruction. An observer can only see the actions executed by the pro-
gram, but not the values of its variables, or the label of the instruction being
currently executed.

Guarded command programs can be easily translated into labelled Petri nets.
Figure 6 shows the labelled net corresponding to the instruction

1:[0 x > O - t + x : = x - 1

0 true b ; x : = x + l
0 x > 0 A y > 0 a) g o t o 3
0 true ,c h a l t]

(where we assume that the instruction following 1 in the program is labelled by
2). There is a place for each variable and each label, plus a special place halt.
There is a transition for each alternative, labelled by the alternative's action.
The semantics of a program is obtained by merging places of the nets corre-
sponding to its instructions carrying the same label. We identify a program with
its corresponding labelled Petri net. In particular, two programs are trace or
bisimulation equivalent if their corresponding labelled nets are.

3

hal t

Fig. 6. Net corresponding to an instruction

420

Given a counter program C, we construct two net programs N1 (C) and N2 (C)
satisfying the following two properties:

(1) if C halts, then NI(C) and N2(C) are not trace equivalent, and
(2) if C does not halt, then NI(C) and N2(C) axe bisimilax.

For the proof of these properties it is very useful to characterise trace and
bisimulation equivalences in terms of two-person games. We describe first the
features common to both trace and the bisimulation games. The board of the
games are the two programs NI(C) and N2(C) in their initial states. The games
are played by two players, Alice and Bob, who alternate moves. Alice makes the
first move. A move is the execution of (one of the alternatives of) an instruction
in either N1 (C) or N2(C), and is named after the action corresponding to the
executed alternative. Tha t is, an a-move is the execution of an alternative of the
form guard a ~ command. If Alice makes an a-move in one of the programs, then
Bob can only answer with an a-move in the other program. It may help your
intuition to imagine that Alice wishes the programs to be non-equivalent, while
Bob wishes them to be equivalent. The winner of a game is decided as follows:

- if Alice has no move available, then Bob wins;
- if Bob cannot answer to Alice's move, then Alice wins;
- if the game does not terminate, then Bob wins.

If you find the idea of a non-terminating game awkward, think of chess with-
out the 50-move rule. If a position with only the two kings on the board is
reached, then the game goes on forever. In the trace and bisimulation games a
situation like this is not a draw, but a win for Bob. Bob only wins after infi-
nite time, which can make the game rather tedious, but that 's his problem: the
winning condition is well defined, and every game has a winner.

We describe now the differences between the trace and bisimutation games,
which are surprisingly small. In a trace game, Alice chooses one of the programs
at the beginning of the game, and makes all her moves in this program; Bob
must make all his moves in the other program. In a bisimulation game, Alice
chooses one of the programs before each move, and makes her next move in this
program. For instance, in the bisimulation game Alice can make her first move
in the first program (Bob must answer in the second), and her second move in
the second program (Bob must answer in the first).

A strategy for a player is a function which gets the list of moves played so far
and yields the player's next move. A strategy is winning if a player that sticks
to it wins all games. We have the following nice result (see for instance [34]),
which at least in the case of the trace game is intuitively very plausible:

f
in the trace and bisimulation games for NI(C) and N2(C):]]
if Alice has a winning strategy, then the two programs are equivalent; if [[
Bob has a winning strategy, then the two programs are not equivalent. 1 1

421

So the properties (t) and (2) tha t N1 (C) and ?~½(C) - both to be constructed
- have to satisfy can be reformulated as follows:

(1) if C halts, then Alice has a winning strategy in the trace game, and
(2) if C does not halt, then Bob has a winning strategy in the bisimulation game.

It is time to start with the definition of NI(C) and N2(C). To make things
a bit simpler, assume without loss of generality that the counter program C
contains one single ha l t instruction, and that this instruction is the last one. 15
The programs NI(C) and N2(C) look as follows:

Program N1 (C): Program N2(C):

s t a r t s t a r t
s t a r t : [t r u e -) y := y + 1]; s t a r t [t r u e - > s k i p];

g'(c); Y'(C);
h a l t h a l t

h a l t : [y > 0 -) h a l t] h a l t : [y > 0 -) h a l t]

where the program N~(C) still has to be defined. Observe that the two programs
differ only in the first instruction, and that after this instruction is executed, the
variable y has the value 1 in NI(C) and the value 0 in N2(C).

The program N~(C) is obtained by replacing each command of C but the
unique ha l t command through an instruction of the new language. The instruc-
tions corresponding to assignments and jumps are:

i n c
h x : = x + l is replaced by h [t r u e - ~ x : = x + l]

dec
l : x : = x - 1 is replaced by h [t r u e - ~ x : = x - 1]

h g o t o 11 is replaced by h [t rue j~mp - ,~ g o t o 11]

Conditional jumps are the delicate part. A command of the form

h i f x = 0 t h e n g o t o ZERO
else g o t o NONZERO

is replaced by the following sequence of two instructions:

n o n z e r o
I:[0 x > 0 -) gotoNONZER0

z e r o

0 t r u e -) sk ip
z e r o

[J x > O A y > O - ~y:=y-1];
z e r o

lt: [t r u e -) g o t o ZERO]

This completes the description of NI(C) and N2(C). Before going on, we ob-
serve that the program Ns(C) has an honest run that mimics the execution of
C, and looks as follows: whenever C executes a command, N~(C) executes its

15 If there axe several halt instructions, we can replace them by jumps to a new label
at the end of the program, and place there a unique halt command.

422

corresponding instruction. If the command is a conditional jump and C takes
the NONZER0-branch, then N' (C) chooses the nonzero alternative of the corre-
sponding instruction; if C takes the ZERO branch, then N' (C) chooses the first

z e r o

of the two zero alternatives, namely t r u e ~ sk ip , and then it executes the
goto ZERO instruction.

There is an impor tant difference between NI (C) and N2(C). Assume tha t
in both NI(C) and N2(C) we execute the start action, followed by the honest
execution of Nt(C) . If and when the honest execution terminates, we can execute
the halt action in NI(C) , because y has been set to I by the start action, but we
cannot execute it in N2(C), because y still has the value 0 there.

We are now ready to describe the winning strategies for Alice and Bob in the
different games.

Assume that C halts. Here is the s trategy for Alice in the trace game. Alice
chooses to play on NI(C) , and so Bob is forced to play on N2(C). Alice sticks
to the following sequence of moves, completely disregarding Bob's answers: she
plays the start-move, continues with the moves of the honest execution of N'(C) ,
and - if the honest run terminates - finishes with a halt-move.

We show in the first place that , if Alice follows this strategy, then from the
second move on Bob is forced to play exactly the same moves as Alice (i.e., exactly
the same alternatives in the same commands). When Alice plays a nonzero move,
Bob can only answer with a unique nonzero move, so this case is easy. When
Alice plays a zero move, it seem as if Bob can choose between two zero-answers,
namely

Z e r o z e r o

t r u e - ~ sk ip and x > 0 A y > 0 - > y : = y - 1

But remember: Alice is playing the honest run, and so she only plays a zero-move
when x = 0. So, whenever Alice plays a zero move, Bob observes that the guard

Z e r O

x > 0 A y > 0 evaluates to false, and so that his only move is t r u e -) sk ip .
Let us now see tha t Alice's s t ra tegy is winning. Since C halts, the honest run

terminates, and so eventua~y Alice plays a halt move. 16 All along the game Bob
has pat iently repeated Alice's moves, waiting for a chance, but his efforts are in
vain: he cannot reply to Alice's halt move, because in his program N2(C) the
variable y has the value 0, and so the guard y > 0 of the halt move evaluates to
false. So Bob loses.

Assume that C does not halt. Here is the s t rategy for Bob in the bisimulation
game. Alice has to play the start move in one of the two programs, and Bob jus t
replies with the start move in the other program. Then, as long as Alice plays
the honest run of NJ(C) (possibly switching between the two programs), Bob
patiently repeats her moves in the other program. IT The first t ime (if at all) tha t
Alice deviates from the honest run by playing

16 Incidentally, observe that Alice can indeed play halt, because she set y to 1 with her
start move, and she never touched y during the honest execution.

17 He has no choice anyway!

423

z e r o

x > 0 A y > 0 ~ y : = y - - 1

in one of the programs, Bob replies with

z e r o

t r u e - ~ sk ip

in the other program. After this move, Bob goes on playing exactly the same
moves as Alice.

Let us see tha t Bob wins all games. If Alice sticks to the honest execution,
then, since C does not halt, she never plays a halt-move. Since all other moves
can be mimicked by Bob without problems, the game never terminates: a win
for Bob. So Alice's only chance to win is to deviate from the honest run at some

z e T ' o

point by p l a y i n g x > 0 A y > 0 -) y :---- y - 1 a t a m a r k i n g i n which
x > 0 - a cheat. But with this cheat she digs her own grave: she sets y to 0, and
now all variables have exactly the same value in NI (C) and N~ (C)! Bob replays

z e r o

t rue - ~ sk ip , and after his move both programs are in exactly the same
state. So Bob wins by playing the same moves as Alice.

9.1 P a r t i a l - o r d e r e q u i v a l e n c e s a r e a lso u n d e c i d a b l e

As we mentioned in Section 5, the li terature contains many so-called partial-order
equivalence notions which do not fit between trace and bisimulation equiva-
lence. So Jan~ar 's result might seem not to apply for them. But it does. Say
tha t two transitions t 1 and t2 are concurrently enabled at a marking M if
M(s) >_ F(s, t l)+F(s , t2) for every place s, and say tha t a Petri net is sequential
if no reachable marking enables two transitions concurrently. It is easy to see
tha t the Petri nets NI(C) and N2(C) we have constructed above are sequential.
So, actually, we have just proved that any equivalence relation which fits be-
tween trace and bisimulation equivalence for the class of sequential Petri nets is
undecidable. Part ial-order equivalences turn out to fit between trace and bisim-
ulation equivalence for sequential nets. Actually, this is what one would expect:
part ial-order equivalences should distinguish concurrency from interleaving, but
if there is no concurrency at all then there is also nothing to distinguish.

1 0 C a n a n y t h i n g b e d o n e i n p o l y n o m i a l t i m e ?

The general EXSPACE-hardness bound of Section 7 raises the question if there
are bet ter results (PSPACE, NP, polynomial problems) for classes of P lace /Tran-
sition Petri nets. Since a complete t rea tment of this question is out of the scope
of this paper, we concentrate on how far can one go with polynomial algorithms.
Obviously, we cannot expect to go further than for 1-safe Petri nets. So the first
question is if at least some problems for conflict-free nets and free-choice nets
tha t are not necessarily 1-safe can still be solved in polynomial time. The answer
is a qualified "no". Even though [18, 39] contain some polynomial algorithms for
conflict-free Petri nets, most of the important problems for these two classes

424

become at least NP-hard. For instance, the reachability problem for conflict-free
Petri nets is NP-complete [8], and the liveness problem for free-choice Petri nets
is co-NP-complete (i.e., it is the complement of an NP-complete problem) [24, 5]
(the proof is sketched below as the solution to Story I). Notice that the liveness
and reachability problems for arbitrary Petri nets are much harder, and so these
NP-completeness results can also be seen as positive results.

Is there any interesting constraint leading to polynomial algorithms for many
problems? There seems to be essentially a single non-trivial one: every place has
exactly one input transition and exactly one output transition ("exactly" can
also be generalised to "at most") The Petri nets satisfying this constraint have
been called marked graphs, synchronisation graphs, and T-systems. Two of the
oldest papers in net theory show that many problems for these nets can be solved
using simple graph algorithms or linear programming [3, 13]. So let us formulate
our last rule of thumb:

Rule of thumb 10:
Many interesting problems about marked graphs are solvable in
polynomial time. Almost no interesting problems about Petri net
classes substantially larger than marked graphs are solvable in
polynomial time.

The solut ion to S tory I

The non-liveness problem for free-choice Petri nets can be formulated as follows:

Given: a free-choice Petri net N,
To decide: if N is non-live.

Membership in NP is non-trivial; it follows from Commoner's theorem [15, 5].
NP-hardness, on the contrary, is very easy to prove by a reduction, first presented
in [24], from the satisfiability problem for boolean formulas in conjunctive normal
form. is. Figure 7 shows the Petri net corresponding to the formula

(Xl VX3) A (X 1 VX2 VX3) A (X2 Vx3)

and we explain the construction on this example. Loosely speaking, the Petri
net works as follows: first, the variables are nondeterministically assigned truth
values by firing either the transition xi or ~i for each variable xi. Once all
variables have been assigned a value, a transition Cj is enabled if and only if the
assignment makes the clause Cj false. For instance, C2 is enabled if and only if the
transitions ~1, x2,53 have fired; this corresponds to the assignment xl := false,
x2 := true, x3 := false, which is the only assignment making C2 false. So we
have that the place False gets tokens if and only if the formula is false under the
assignment. If the formula is satisfiable, then there is an assignment making the
formula true, and for this assignment the place False never gets marked. So the
Petri net is not live. On the contrary, if the formula is unsatisfiable, then the
place False can always get marked again, and the net is live.

is It is interesting to compare this reduction with the one of Section 6.

425

f

~ False
k. ~ J

Fig. 7. Petri net corresponding to the formula (xl V x3) A (xl V ~2 V x3) A (x2 V ~3)

Since the formula is satisfiable, the Petri net of Figure 7 is non-live.

11 Conclusions

I'd like to conclude by listing the 10 rules of thumb of the paper. You can find
them in Table 11. I've allowed myself to suppress the word "interesting" from
all the rules, since it should no longer lead to confusion.

Acknowledgments

Many thanks to Eike Best, Peter Habermehl, Ernst Mayr, Richard Mayr, Pe-
ter Rosmanith, P.S. Thiagarajan, Antti Valmari and Frank Wallner for helpful
suggestions, discussions, and informations. The PSPACE-algorithm for CTL of
Section 4 is joint work with Peter Rossmanith.

References

1. J.L. Balc£zar, J. Diaz, and J. Gabarr6. Structural Complexity I, volume 11 of
Monographs in theoretical Computer Science. Springer-Verlag, 1988.

2. A. Cheng, J. Esparza, and J. Palsberg. Complexity Results for 1-safe Nets. The-
oretical Computer Science, 147:117-136, 1995.

3. F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked Directed Graphs.
Journal of Computer and System Sciences, 5:511-523, 1971.

426

The I0 Rules of Thumb

1. All questions about the behaviour of 1-safe Petri nets are PSPACE-hard.
2. Nearly all questions about the behaviour of 1-safe Petri nets can be solved in

polynomial space.
3. Equivalence problems for 1-safe Petri nets are harder to solve than model-

checking problems. They need at most exponential space.
4. Most questions about the behaviour of acyclic 1-safe Petri nets are NP-hard.
5. Many questions about 1-safe conflict-free Petri nets are solvable in polynomial

time.
Some questions about live 1-safe free-choice Petri nets are solvable in polynomial
time (and liveness of 1-safe free-choice Petri nets is decidable in polynomial time
too).
Almost no questions for 1-safe net classes substantially larger than free-choice
Petri nets are solvable in polynomial time.

6. All questions about the behaviour of Petri nets are EXPSPACE-hard.
7. The model-checking problems for Petri nets and all state-based logics are un-

decidable.
8. The model-checking problems for Petri nets and all branching-time, action-

based logics are undecidable.
The model-checking problems for Petri nets and all linear-time, action-based
logics are decidable.

9. All equivalence problems for Petri nets are undecidable.
10. Many questions about marked graphs are solvable in polynomial time.

Almost no questions about Petri net classes substantially larger than marked
graphs are solvable in polynomial time.

Table 1.

4. M. Dam. Fixpoints of Biichi automata. In Proceedings of the 1~th International
Conference of Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 652 of Lecture Notes in Computer Science, pages 39-50, 1992,
Also: LFCS Report, ECS-LFCS-92-224, University of Edinburgh.

5. J. Desel and J. Esparza. F~ee-choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1995.

6. E. A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer
Science Volume B, pages 995-1027, 1990.

7. J. Esparza. Model Checking Using Net Unfoldings. Science of Computer Program-
ming, 23:151-195, 1994.

8. J. Esparza. Reachability in Live and Safe Free-Choice Petri Nets is NP-Complete.
Technical Report SFB-Bericht Nr. 342/12/96 A, Technische Universit~t Miinchen,
1996. To appear in Theoretical Computer Science.

9. J. Esparza. Decidability of Model-Checking for Infinite-State Concurrent Systems.
Aeta lnformatica, 34:85-107, 1997.

10. J. Esparza and M. Nielsen. Decidability Issues for Petri Nets - a Survey. In
Bulletin of the EATCS, volume 52, pages 245-262, 1994
Also: Journal of Information Processing and Cybernetics 30(3):143-160, 1995.

427

11. Formal methods page of the WWW Virtual Library at
http://www.comlab.ox.ac.uk/archive/formal-methods.html#notations.

12. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, 1979.

13. H. J. Genrich and K. Lautenbach. Synchronisationsgraphen. Acta Informatica,
2:143-161, 1973.

14. P. Habermehl. On the Complexity of the Linear-Time Mu-Calculus for Petri Nets.
In P. Az~ma and G. Balbo, editors, Application and Theory of Petri Nets, volume
1248 of Lecture Notes in Computer Science, pages 102-116. Springer-Verlag, 1997.

15. M. H. T. Hack. Analysis of Production Schemata by Petri Nets. M.s. thesis, Cam-
bridge, Mass.: MIT, Dept. Electronical Engineering, 1972.

16. J. E. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

17. R. R. Howell and L. Rosier. On Questions of Fairness and Temporal Logic for
Conflict-free Petri Nets. In G. Rozenberg, editor, Advances in Petri Nets, volume
340 of Lecture Notes in Computer Science, pages 200-220, 1988.

18. R. R. Howell and L. E. Rosier. An O(n 1"5) Algorithm to Decide Boundedness
for Conflict-free Vector Replacement Systems. Information Processing Letters,
25(1):27-33, 1987.

19. R. R. Howell and L. E. Rosier. Problems Concerning Fairness and Temporal Logic
for Conflict-free Petri Nets. Theoretical Computer Science, 64:305-329, 1989.

20. R. R. Howell, L. E. Rosier, and H. Yen. A Taxonomy of Fairness and Temporal
Logic Problems for Petri Nets. Theoretical Computer Science, 82:341-372, 1991.

21. P. Jan~ar. All Action-based Behavioural Equivalences axe Undecidable for La-
belled Petri Nets. Bulletin of EATCS, 56:86-88, 1995.

22. P. Jan~ar. Undecidability of Bisimilarity for Petri Nets and Some Related Prob-
lems. Theoretical Computer Science, 148:281-301, 1995.

23. L. Jategaonkar and A. Meyer. Deciding True Concurrency Equivalences on Safe,
Finite Nets. Theoretical Computer Science, 154(1):107-143, 1996.

24. N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of Some Problems in
Petri Nets. Theoretical Computer Science, 4:277-299, 1977.

25. S.R. Kosaraju. Decidability of Reachability in Vector Addition Systems. In l~th
Annual A CM Symposium on Theory of Computing, pages 267-281, San Francisco,
1982.

26. L. Lamport. The Mutual Exclusion Problem. Part II - Statement and Solutions.
Journal of the ACM, 33(2), 1986.

27. R. Lipton. The Reachability Problem Requires Exponential Space. Technical Re-
port 62, Yale University, 1976.

28. E. W. Mayr. An Algorithm for the General Petri Net Reachability Problem. SIAM
Journal on Computing, 13:441-460, 1984.

29. E.W. Mayr and A.R. Meyer. The Complexity of the Word Problems for Commu-
tative Semigroups and Polynomial Ideals. Advances in Mathematics, 46:305-329,
1982.

30. WWW page on Petri net tools at http://www.daimi.aau.dk/petrinets/tools/.
31. A. Rabinovich. Complexity of Equivalence Problems for Concurrent Systems of

Finite Agents. Information and Computation, 127(2):164-185, 1997.
32. C. Rackoff. The Covering and Boundedness Problem for Vector Addition Systems.

Theoretical Computer Science, 6:223-231, 1978.
33. P. Starke. Analyse yon Petri-Netz-ModeUen. Teubner, 1990.

428

34. C. Stifling. Bisimulation, Model Checking and Other Games. Notes for Mathfit
instructional meeting on games and computation, Edinburgh, June 1977. Available
at http://www.dcs.ed.ac.uk/home/cps/.

35. A. Valmari. State Space Generation: E~cieney and Practicality. Phd thesis, Tam-
pete University of Technology, 1988.

36. R. J. van Glabbeek. The Linear Time - Branching Time Spectrum. In Proceedings
of CONCUR '90, volume 458 of Lecture Notes in Computer Science, pages 278-297,
1990.

37. M. Vardi. An Automata-Theoretic Approach to Linear temporal Logic. In Logics
for Concurrency: Structure versus Automata, volume 1043 of Lecture Notes in
Computer Science, pages 238-265, 1996.

38. H. C. Yen. A Unified Approach for Deciding the Existence of Certain Petri Nets
Paths. Information and Computation, 96(1):119-137, 1992.

39. H. C. Yen. A Polynomial Time Algorithm to Decide Pairwise Concurrency of
Transitions for 1-Bounded Conflict Free Petri Nets. Information Processing Let-
ters, 38:71-76, 1991.

