Network Games

kowski

Warszawski
30.04.2014



Outline

s Economic Games

= Concept of Equilibria
+ Nash equlibria
¢ measuring efficiency of equilibrium

» Selfish routing /flow games
+ nonatomic games and atomic games
¢ existence of Nash equlibrium
¢ Price of Anarchy



Economic Games

Prisoner’s dilemma:

= two members of criminal gang after being
caught can choose to either say nothing, or to
betray the other,

s if both say nothing, then both will stay 2 years
In prison,

m if one betrays then he will get 1 year, but the
other one will be imprisoned for 5 years,

= if both betray each other then both will stay in
prison for 4 years.



Economic Games

It is profitable for both prisoners to betray the
other.

To minimize the social cost both prisoners
should remain silent.

Nevertheless from game theoretical perspective
they will choose the solution with the highest
cost and betray each other.



Economic Games

If there is no coordination, the players make
decisions that optimize their own cost only, and

the obtained solutions can be much worse then
the optimal one.

» How bad can these solutions be?

= Can we propose a good stable solution to the
players?

s Can be improve the mechanism of the game,
e.g., by introducing taxes?

m..?



Prisoner’s Dilemma and Reality

Consider two internet service providers (ISP),
who need to forward their traffic.

In the case of outgoing transfer the ISP can
choose where to route it, and this way influence
the cost of other ISPs.

[t is possible to construct Prisoner’s Dilemma
this way.



Prisoner’s Dilemma and Reality

However, in reality we mostly cope with the
case where there are more than just two players.

In such cases similar dilemma is possible.

Examples:
s Pollution Game,

» Tragedy of the Commons.



Pollution Game

There are n countries playing this game.

Every country can choose to introduce pollution
control.

Introducing pollution control costs 3 for every
country.

Not introducing pollution control costs
everyone 1.

In optimal solution of cost 3 every country
controls pollution, but in the only stable
solution of cost 1 no one is controlling pollution.
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Tragedy of the Commons

In the above two examples our strategy does
not depend on what others are doing.

We will show a game where our strategy
depends on what others do.

During the exercise session we will discuss the
Tragedy of the Commons game.



Coordination Games

Examples of the games that have many stable
solutions.

Coordination game “battle of the sexes”.

Anti-coordination game “routing congestion
game”.



Mixed Strategies

In all these examples there did exist pure
(deterministic) stable states.

In the coin game, every players has a coin, which can be
put head or tail up.

The 1st player wins where both coins are put in the
same way.

The 2nd player wins when the coins are put ditferently.

Is stable state both players randomly with probability
1/2 choose one of the two strategies.
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Simultaneous Move Games

The examples we have given so far belong to
the class of simultaneous move games, i.e., games
where players simultaneously choose their
strategies.

Formally:

= the set of players contains n players
A={12,...,n},

» the player 7 has his own set of strategies S;,

m to play the player i chooses a strategy s; € S;.



Simultaneous Move Games

We use s = (s1,...,5,) to denote the vector of
strategies selected by players.

By S = X;5; we denote the set of all vectors of
strategies.

The vector of strategies s € S determines the
payotf of each player.

The results can be different for each player.



Simultaneous Move Games

We could define a transitive relation on the preference
set of each player.

It is better to assign a numeric value to each outcome —

depending on the situation this will be called gain or
cost.

We denote these functions as u; : S — R for gain or
c; : S — R for cost.

They can be used interchangeably because

u;i(s) = —c;i(s).




Simultaneous Move Games

In algorithmic game theory we need to define
the way how the games are given to us.

One solution is to give a list of possible vectors
of strategies and give their cost to each player.

Such form of a game is called standard form or
matrix form.



Simultaneous Move Games

This definition is very useful when we have just
two players.

However, in most interesting cases the games
have exponential size when this "natural” form
is used.

In the pollution game we have 2" possible
strategy vectors.



Dominant Strategies

In the case of Prisoner’s dilemma and pollution
games every player has a single strategy that
does no depend on what other players do.

When this is true we say that the game has a
dominat strategy.

For a vector s, let s; be the strategy chosen by
player i, whereas by s_; we denote the (n — 1)
dimensional vector corresponding to the
strategies of all other players.



Dominant Strategies

Let u;(s) be the gain of player i, we denote gain
as u;(s;,s_;) as well.

Formally the strategy vector s € S is dominating
when for every player i and for every vector
s" € S we have

ui(si, s’ ;) > u(s;,s" ;).

The dominating strategy does not need to be
optimal.

We design auctions in such a way that they have
dominat strategies.
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Pure Nash Equilibrium

However, games very rarely have dominat
strategies, so we want to introduce a weaker
concept of stable solutions.

Nash Equilibrium is a stable solution, where
each player maximize his own (selfish) goal.

These are solutions, where no player can gain
anything by changing his strategy.



Pure Nash Equilibrium

The vector s is called Nash equilibrium if for
every player i and for every alternative vector
s' € S we have:

ui(si, S_i) > ui(sg, S_i).

The dominat strategy is a Nash equilibrium as
well.

If it is strictly dominating then it is the unique
Nash equilibrium.

Games can have many different equilibria.



Mixed Nash Equilibrium

The above equilibrium is called pure, because
every player chooses deterministically his
strategy.

Not every game has such equilibrium, e.g., the
coln game.

In such case the players maximize their
expected gain.

We assume players are not risk averse, i.e., that
maximizing expectation is their goal.



Mixed Nash Equilibrium

Formally, every player chooses a probability
distribution over his strategies.

This distribution is called mixed strategy.

We assume that players choose their strategies
independently.

This gives a probability distribution over the set
of possible outcomes s.



Mixed Nash Equilibrium

Nash in 1951 proved the following theorem.

Theorem 1 Every game with finite number of
players and finite number of strategies has a mixed
Nash equilibria.



Inefficiency of Equilibria

The goal of this lecture is to answer the question
how bad a Nash equilibrium can be?

Equilibrium in Prisoner’s Dilemma seem to be
much worse than the case when prisoners do
not betray.

This is the case with respect to the most
reasonable social cost functions.



Inefficiency of Equilibria

The most widely used cost functions are:
m utilitarian — the sum of all costs,

m egalitarian — the maximum cost.

Nash equilibrium does not minimize any of the
above two functions.

Introduction of these functions allows us to
measure inetficiency of equilibrium and allow
us to say how well equilibrium approximates
the optimum.



Inefficiency of Equilibria

Price of anarchy (PoA) is the most important
measure of this inefficiency.

PoA is defined as the ratio of the cost of the
worst Nash equilibria to the cost of optimum
solution.

PoA = max c(Nash)
Nash c(Opt)

PoA depends not only on the game, but on the
cost function.



Inefficiency of Equilibria

The game that has many equilibria can have very high
PoA even when just one of them is very inefficient.

In such case we can measure the price of stability, which

is defined as a ratio of the cost of the best Nash
equilibria to the cost of the optimum

PoS = max c(Nash)
Nash ¢(Opt)

This is the cost of the best stable solution we can
propose to the players.




Nonatomic selfish flow/routing

Consider a multicommodity flow network given by
a graph G = (V, E) together with a set of
source-sink pairs (s1,t1), ..., (Sk, tx)-

Each such pair is called commodity and
controlled by one player.

Let P; be the set of s; — t; paths in G.

We assume that P; # © and denote by
P = Ui P



Nonatomic selfish flow

The paths chosen by the players are described
by a flow,i.e., a vector indexed by elements of P.

For a flow f and path P € P; we interpret fp as
the amount of the commodity 7 that is send from
s; to t; on P.

Every player needs to send r; units of the
commodity.



Nonatomic selfish flow

The flow satisfies the vector r when every
commodity is send in full

We do not assign any capacities to the edges.

However, every edge ¢ has a cost function
c,: RT™— RT.

We assume that the cost are nonnegative,
continuous and nondecreasing.



Nonatomic selfish flow

Let us now formalize the equilibrium concept
for these nonatomic tlow games.

Let us define the cost of a path P with respect to
the flow f as the sum of cost of edges:

cp(f) = 2 Ce(fe),

ecP

where

_ﬁZ:: 2: fb/

PcP:ecP
denotes the flow on edge e.



Nonatomic selfish flow

Definition 2 Let f be a flow that satisfies r. f is a
nonatomic flow equilibrium if for every commodity i
and every pair P, P' € P; of paths from s; to t; such
that fp > 0 we have:

cp(f) < cp(f)-

In other words, all paths used in the
equilibrium flow have the smallest possible cost
(for give source-sink pair and given flow f).



Nonatomic selfish flow

We will consider the utilitarian cost defined as:

After changing the order of summation we get:

C(f) = Z Ce(fe) e

We say that the flow f is optimal if is minimizes
this cost.



Nonatomic selfish flow

The cost of anarchy is the ratio between the cost
of the worst equilibrium flow to the cost of
optimal flow:

h c(f)

max
fequlibirum C (fOpt )

~ __ 4
Pigou - KA = 3.

Braess — KA = %.



Atomic Selfish Flow

The atomic selfish flow game is given by the graph

G = (V, E), the set source-sink pairs (s1,t1),. .., (Sk, tx),
positive values r; of the flows, and nonnegative,
continuous, nondecreasing cost functions c, for every

edge e.

The ditference between nonatomic and atomic games:

» in the nonatomic game the flow can be split in an
arbitrary way and each infinitesimal amount of flow
is controlled by a different player,

» in atomic games the flows represent the players and
the flow needs to be send on a single path.




Atomic Selfish Flow

In the language of simultaneous games we have
k players, one player for each pair s; — t;.

The set of strategies of player i is the set of paths
P;, that can be used to send r; units of flow.

Now the flow f is a vector indexed by both
paths and players.

Let fl(,i) denote the flow that is send by player i
on path P.



Atomic Selfish Flow

The flow f satistfies r when for each player i, fl(,i>

is equal to 7; for exactly one path in P; and is 0
for all other paths.

The cost of the flow C(f) is defined in the same
way as in the nonatomic games:

C(f) = 2 cp(f)fr = Zce(fe)fe°

PepP ecE



Atomic Selfish Flow

Definition 3 Let f be the flow satisfying r. f is an
atomic equilibrium flow if for every player i and
every pair P, P' € P; of paths from s; to t; such that

fl(f> > 0 we have:

ce(f) < ep(f),

where f' is identical to f with the exception that
flz(vl) = 0 and f’l(f,) =7

This definition corresponds to pure Nash
equilibrium.



Atomic Selfish Flow

AAE example - on the blackboard.

This example shows that PoA is at least 2.

There exist cases when pure Nash equilibrium
does not exists, e.g., when general costs are
allowed.



Nonatomic flows: existence

We will prove that nonatomic equilibrium flows
allays exists, and all have equal cost.

In other words, we will show that PoA = PoS.

Theorem 4 Let (G, r,c) be the nonatomic flow
qgame, then:

(a) there exists an equilibrium flow in (G, r,c),

(b) if f and f' are equilibria then c.(f.) = c.(f.) for
every edge e.



Nonatomic flows: existence

We are going to use the potential function method.

We will define a function over the state of the
game, such that its minima will correspond to
equilibrium flows.

Changes of the value of the function will
correspond to changes of players cost when
they change their strategy.

However, first we are going to characterize
optimal flows.



Nonatomic flows: existence

Assume that x - ¢.(x) is a convex differentiable
function.

x - c.(x) is the total contribution of e to the social
cost.

The marginal cost function for edge e is defined as
Ce(x) = (x-ce(x))" = ce(x) + x - ().

Let ci(f) = Y.cpci(f) be the sum of marginal

costs on path P.



Nonatomic flows: existence

Theorem 5 f* is the optimal flow for (G, r,c) iff for
everyi € {1,...,n} and every pair P, P’ € P; of
paths such that f; > 0 we have:

cp(f7) < ep(f7)-

This is a consequence of convex flow properties.

We skip this proof as it is too “algorithmic”.



Nonatomic flows: existence

From this theorem and the detfinition of
equilibria flow we immediately obtain.

Corollary 6 Let (G, 1, c) be a nonatomic flow game

such that for every edge the function x - c,(x) is
convex and differentiable. Then f* is the optimal

flow for (G, r,c) iff it is the equilibrium flow in
(G, r,c*).

Pigou example.



Nonatomic flows: existence

In order to construct the potential function let
us "flip” the above corollary and consider for
which functions equilibria flows are optimal.

We need to find a function /,(x) that will play
the role of x - c.(x), i.e., h.(x) = c.(x).

We obtain . (x) = [ c.(y)dy for every edge .



Nonatomic flows: existence

The function ®( f) defined as:

o(f) = ¥ [ el

ecE

is the potential function for the game (G, 7, c).

By applying Theorem 5l to /. (x) instead of
X - Co(x) we otain:

Lemma 7 The flow f is the equilibrium flow in
(G, r,c) iff when it minimizes the function ®(f).



Nonatomic flows: existence

Proof of Theorem 4.

T]

ne set of possible flows is a compact set.

Tl

ne potential function is continuous.

From Weiersrass’s theorem we know that it has
a minimum.

From Lemma [/ we obtain that these minima are
equilibria flows, what proves (a).



Nonatomic flows: existence

In order to prove (b) we first notice that ®(f) is
convex.

Let f and f’ be two equilibria flows.

We know that both of them minimize the
potential function.

Consider the flow of the form Af + (1 — A) f’ for
A€ [0,1].



Nonatomic flows: existence

From the convexity of ®(f) we obtain:
OAf + (1 =A)f) < AD(f) + (1= A)D(f).

The right side is equal to the minimum value of
®, so this inequality needs to hold with equality.

This can be true only when every term
fox c.(y)dy in the sum in @ is linear.

This in turn means that ¢, is constant between f

and f'.



Atomic flows: existence

In general atomic games the equilibria flows do
not need to exist.

It is possible to prove their existence in the case
when every r; is the same.

Theorem 8 Let (G, r,c) be an atomic flow game
such that r; = 1, then there exist an equilibrium flow

in (G,r,c).

During exercise session we will prove this for
any r but linear cost functions.



Atomic flows: existence

Let us discretize the potential function:

The game is finite so the set of possible strategy

vectors is finite as well. Hence ®(a) has a
minimum.

Let f be the global minimum of ®,.



Atomic flows: existence

We will prove that f is equilibrium flow.

Let us assume by contradiction that in f the player i can
decrease his cost by changing his path from P to P’. Let
f' be the new flow.

We have:
0> cp(f') — cplf) =

= ) clfet)— ) clfe) =

ecP/—P ecP—P’/

— q)a(f/) — q)a(f)r

what contradicts the minimality of f.



Nonatomic flow: PoOA

We want to prove that PoA depends only on the
cost function but not on:
m size of the network,

» structure of the network,
s number of commedities.

We will prove that there exists a uniform bound
on PoA that depends only on the degree of
nonlinearity of the cost function.

Intuitively the potential function is an
approximation of the cost function.
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Nonatomic flow: PoOA

Theorem 9 Let (G, 1, ¢) be a nonatomic flow game

and let x - c.(x) <y - [ c.(y)dy for every e € E
and x > 0, then PoA is at most Y.

Let f be the equilibrium and f* be the optimal
flow then:

C(f) < y®(f) <v®(f*) <C(f"),

because [; c.(y) < x - ce(x).

For polynomials of degree p we have v = p + 1.



Nonatomic flow: PoOA

Definition 10 Let C be the set of cost functions,
Pigou bound «(C) is defined as:

MO =SS e + (- 0]

Theorem 11 For a nonatomic game (G, r,c) with
cost functions C:

» PoA is bounded by a(C),
m there exist examples where PoA is equal to a(C).

We will prove the second part during the
exercise session.



Atomic flow: PoA

In the atomic case we cannot use the same proof
technique because the flows are nonunique.

For simplicity let us consider only linear cost
functions, i.e., c.(x) = a,x + b, for a,, b, > 0.

We will prove:

Theorem 12 If (G, r, ¢) is an atomic flow game with
linear cost functions then PoA is bounded by

(3++/5)/2 ~ 2.618.



Atomic flow: PoA

The following lemma is a simple consequence
of the definition of the equilibrium flow.

Lemma 13 Let f be the equilibrium and f* be the
optimal flow, assume that player i is using the path
D;in f, and the path P’ in f*, then:

2 aefe + be S 2 ae(fe —|—7’i) + be-

ecP; BEPZ-*

Lemma1d C(f) < C(f*) + Lecr acfof:



Atomic flow: PoA

Let us multiply inequalities from Lemma [13 by
r;, then:



Atomic flow: PoA

Theorem 15 If (G, r, ¢) is an atomic flow game with
linear cost functions then PoA is bounded by

(3++/5)/2 ~ 2.618.

By applying the Cauchy-Schwarz inequality to
vectors {\/a.fe }ece and {/a.f, }ecr we obtain:

Y acfef; < \/ Y acf? \/ Y a.(fi)? <

ecE ecE ecE

<\/C(f)-\/JC(f).




Atomic flow: PoA

Lemma [
obtain:

By combining this inequality with the one in
4

and after dividing by C(f*) w

c(f) c(f)
cify S \/ C(F)’

by squaring both sides and solving the
inequality x* — 3x + 1 < 0 we get:

C(f) _3+V5

< ~ 2.618.
C(f*) 2

For polynomials one obtain ~ p?.
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