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Introduction

Today lecture topic is designing games in such a
way that players are forced to play according to
the rules.

If players play according to the rules, then one
can guarantee that the outcome of the game has
some additional nice properties.



Introduction

This lecture is based on the book:

Algorithmic Game Theory

Edited by: Noam Nisan
Tim Roughgarden
Fva Tardos
Vijay V. Vazirani



Introduction

We are going to introduce the basic concepts of
mechanism design.

Throughout the lecture we are going to talk
about social choice problems.

In these problems we are asked to gather the
preferences of individuals, to combine them,
and to propose a single solution.

In mechanism design we assume that the players
are strategic, 1.e.,

= we assume that each player acts rationally and
maximizes his own utility.
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Introduction

The social choice abstraction can be perceived as an
scenario for the following examples:

election every participant has his own preferences, the
outcome is the joint choice;

markets everyone has preferences what and where to
buy, the outcome is a allocation of goods and money;

auctions a market with single seller, who sets the rules
of selecting the winners;

politics every citizen has his own opinion of what the
government should do, and the government needs
to make a decision that influences everyone.
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Introduction

Observe that rationality of agents can greatly
influence the intended outcome.

In routing games it causes the solutions to be
very inefficient.

Many market interactions are nowadays

implemented with usage of internet, e.g.,
Goodle Ads.



Socilal Choice

Consider elections with two candidates, where every
elector prefers one of them.

When we want to group these preferences it seems that
intuitively the majority vote is a good solution.

What shall we do when there are three candidates?

In 1785 Marquis de Condorcet observed that using
majority voting for three candidates can be problematic.




Social Choice

Consider three candidates 4,b and ¢, and three
electors with the following preferences:

1)a=1b—cC
2)b>yc>pa
B)c>=3a=3b

In this case, the majority prefersa >~ b > ¢ > 4,
i.e., it is cyclic.

In particular, who ever we elect the majority
will want to change him.



Social Choice

There are many election rules — methods to
chose one of many alternatives.

One should consider strategic players as well.
Assume that one elector has preferences
a—; b >=;c, but knows that a will not win,

because he is hated by everybody.

Such elector can strategically vote on b instead
of a, so that b is elected instead of c.



Social Choice

In strategic scenario it is hard to run the
election, because the electors do not reveal their
true prefereces.

I'his brings us to the question whether one can
design reasonable elections that would be
waterproofed against such manipulations?

The answer is negative and was given by Arrow
in 1950.



Arrow’s Theorem

We will consider a set A of possible alternatives
and a set I of n players.

Let L be the set of linear orders on A.

In particular, every <€ L is antisymmetric and
transitive..

The preferences of every elector are given by
<i€ L, where a >; b means that i prefers a over

b.



Arrow’s Theorem

Definition 1
m The function F : L' — L is called social preference
function.

m The function f : L" — A is called social choice
function.

In other words, the social preference function
aggregates all preferences into one joint
preference.

The social choice function based on preferences
chooses one of the alternatives.



Arrow’s Theorem

Definition 2 The social preference function F is
unanimous if for every <& L we have

F(=,...,<) ==<.

In other words, if all electors have equal
preferences then the social preference is the
same.



Arrow’s Theorem

Definition 3 The elector i is called a dictator for
the function F when for all <4,...,<,€ L we have

F(<1,...,=<n) ==

The social preference is equal to the preferences
of the dictator.

Definition 4 The function F is a dictatorship if
there exist a dictators for F.



Arrow’s Theorem

Definition 5 The social preference function is
independent of irrelevant alternatives when for
every a,b € A and for every

<1, =0 =4,...,<€L a<;bsa<bfor
every i implies that a < b < a <’ b, where
<=F(<1,...,=<p)and <'= F(=<},...,=<)).

In other words, social preference between a and
b depends only on preferences of electors
between a and b, and not on preferences on c.



Twierdzenie Arrow’a

Theorem 6 (Arrow) Every social preference
function over a set of more than two candidates,
which is unanimous and independent of irreverent
alternatives is a dictatorship.



Gibbard-Satterthwaite Theorem

Definition 7 The social choice function f can be
strategically manipulated by player i when for
<1,...,=<n€ Land <'€ L such that a <; a’ we
havea = f(<1,...,<i,...,=<n), but

A= f(<q,...,=<0...,=<n).

In other words, when i prefers a’ over a and can
misreport his preferences in such a way that a’ is
elected instead of a.

Definition 8 A function is incentive compatible
when it cannot be strategically manipulated.



Gibbard-Satterthwaite Theorem

Definition 9 The elector i is a dictator for the social
choice function f when for every <1,...,<,€ L, for
every a # b, we havea =; b = f(<1,...,<y) = a.

Definition 10 The function f is a dictatorship if it
has a dictator.

Theorem 11 (Gibbard-Satterthwaite) Let f be a
incentive compatible function on A, where |A| > 3,
then f is a dictatorship, or some alternative is never
choosen.



Mechanisms with Money

In the social choice/preference function we were
modeling preferences of the electors using linear orders.

We were not modeling who much they prefer different
outcomes.

The money can be used to quantitatively measure such
preferences.

Moreover, the money can be transferred between the

P!

ayers.

T
in these two theorems.

nis allows to overcome the impossibility results given
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Mechanisms with Money

Consider a set of alternatives A and a set I of n
players.

The preferences of player i are given by a
valuation function v; : A — R, where v;(a)
denotes the value given by i to the outcome a.

This value is given in some currency, and when
1 gets m units of this currency, then his utility is

equal to u; = v;(a) + m.

The utility is the abstraction of want the player
expects and wants to maximize.
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Incentive Compatibility

In the world with money, the mechanism not only
should choose the single alternative, but should set the
payments for all player.

The preference of player i is denoted by v; € V;, where

V; € R4 is the publicly known set of alternatives for
player i.

We will use the following standard notation

0_; = (Ull ooy 0i—1,0i41y+ -, vn)

Vi=Vix- X Vi X Vi XXV,



Incentive Compatibility

Definition 12 The mechanism is a social choice function
f: Vi x-xV, = Atogether with payment rules
P, ..., Pn, Where p; : Vi X - XV, = R.

Definition 13 We say that the mechanism (f, p1,...,Pn) iS
incentive compatible if for every player i, for every

01 €V1,...,0, €V, for every v. € Vi, when a = f(v;,v_;)
and a' = f(v},v_;) we have

vi(a) — pi(vi,v-;) = vi(a’) — pi(vy, v-i).

Alternatively truthful, or strategyproof.



VCG Mechanism

The social welfare of alternative a € A is defined
to be the sum of values given by all players to 4,

ie., U(a) =Y ,;vi(a).

Definition 14 The mechanism (f, p1,...,Py) is

called Vickrey-Clarke-Groves (VCG) mechanism

when

» f(01,...,0,) € argmax,_, U(a),

m for some functions hy, ..., h, whereh; : V_; = R
and forall v, € V,...,v, € V,, we have:

pi(Ul,..., ZZ)] Ul, . ))

j#i
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VCG Auction

The main idea of VCG is to pay to i’'th player
— Y4 0] (f(vy,...,v4)),1.e., equal to how much other
players value the outcome.

After adding this term to i’th player’s valuation
vi(f(v1,...,v,)) we are obtaining the social welfare.

In other words, this mechanism identifies the goals of
all players with the maximization of social welfare.

The function #; is independent from the bids of player 1
— from his point of view it is a constant.




VCG Mechanism

Theorem 15 (Vickrey-Clarke-Groves) Every
VCG mechanism is incentive compatible.



VCG Mechanism

/

Let us fix i, v_;, v; and v;.

Leta = f(v;,v_;) and a’ = f(v.,v_;).

The utility of i for declaring v; is equal to:
vi(a) + Y vj(a) — hi(v_;),
j#i
whereas for declaring v’ is equal to:

vi(a) 4+ ) vi(a") — hi(v_;).

j7



VCG Mechanism

a = f(v;,v_;) is the alternative that maximizes
social welfare, so:

—I—Zv] > v;( ’)—I—Zv]-(a’)

j#i j#i

By subtracting h;(v_;) from both sides we get:
a) + Zvj(a) — hi(v_;) >
j#i

> vi(a") +) vj(a") — hi(v_;).

j7



Clarke’a Payment Rules

We are left to chose the right functions ;.

The simple solution is to take h; = 0, but in such
case we actually pay players a lot.

We would like to guarantee that players do not
lose by participating, i.e., u; > 0.

Moreover, we would not like to pay agents to
take part in the auction.



Clarke’a Payment Rules

Definition 16 The mechanism is called
individually rational when it guarantees that each

player has nonnegative utility:

u; = vi(f(v1,...,v4)) — pi(v1,...,0,) > 0.

Definition 17 The mechanism make no positive
transfers when it does not pay the players:

pi(v1,...,0,) > 0.



Clarke’a Payment Rules

Definition 18 (Clarke’a Payment Rules)
Functions defined as:

hi(v_i) s I?EBAX ]; Z)]'(b),

are called Clarke’s payment rules.

Theorem 19 The VCG auction with Clarke’s
payment rules:
m does not make positive transfers,

w if v;(a) > 0 foreveryv; € Viand a € A, then it is
individually rational.

-p.31/54



Clarke’a Payment Rules

Leta = f(vy,...,v,) maximize U(a) = }_;vj(a)
and let b maximize )_;,; v;(b), then:

PT: pi(vy,..., vy) =Y vj(b) =Y vj(a) >
7 7
IR:  u; =vi(a)+) vj(a) =Y vi(b) >
j7 j7
> Z)Z —|- ZU] (b) — ZZ)](Z?) —
j# j#i

> vj(a) =} vj(b) =
] J



Combinatorial Auctions

So far we have been considering very abstract
auctions, where the list of alternatives is given
explicitly.

In combinatorial auctions we are considering the
case when we are giving a set of resources with
some constraints.

The description of the constraints can be
complex.

We should propose an etficient way to handle
this complexity.
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Combinatorial Auctions

We are given a set of m indivisible goods, which are
being sold to n players.

Every player has preferences for each subset of items.

Definition 20 The valuation v; is a function which for each
subset S of items gives the value v;(S) € R the player i
would have for getting this set. It has to satisfy:
m free disposal — monotonicity, i.e., for S C T we have

vi(S) < wui(T),

m be normalized, i.e., v;(D) = 0.




Combinatorial Auctions

We implicitly assume that utilities of the players

are:

» quasi-linear in money, i.e., when player i gets
set S and pays price p then his utility is
vi(S) = p,

» there are no externalities, i.e., utility of a player
does not depend on what other players get.

Allocation of the items is denoted as S4, ..., S,
where 5; N S; = D fori # j.

Social welfare of the allocation is equals Y, v;(S;).
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Combinatorial Auctions

We assume that the valuation function v; is
private knowledge of player i — it is unknown to
the seller and other players.

Our goal is to design a mechanism that will

constrict an allocation that maximizes social
welfare.

We want the mechanism to be incentive
compatible.



Combinatorial Auctions

In such auction we often face the following
difficulties:

computational complexity often determining
the best allocation is NPP-hard,

representation and communication the
description of the valuation function requires
exponential space,

strategic players how shall we analyze the
behavior of the players.



Single-Minded Case

We restrict our attention to the case when
players have just one goal.

This way we ignore communication problems
and concentrate on complexity and strategy:.

Definition 21 The valuation function v is
single-minded when there exists set S* and value
v* such that

n0(S) =0v"for S O 5%,

n 0(S) = 0 for all other S.

Single-minded bid is a pair (S*,v*).



Single-Minded Case

Let us now consider the complexity of computing the
allocation that maximizes social welfare, when all
players are single-minded.

This problem is given as:
INPUT: (5%, v*) for each playeri =1,...,n.
OUTPUT: the set of winning bids W C {1,...,n} that

maximizes social welfare ) ;. v such that for all
i #j € Wwehave 5 N57 = Q.



Single-Minded Case

Lemma 22 The problem of determining the
allocation that maximizes social welfare is
NPO-complete.

Lemma 23 The problem of determining the
allocation that maximizes social welfare, even with

approximation better then m'/2~¢ is NP-complete.



Single-Minded Case

We will prove the existence of an incentive compatible
mechanism that achieves approximation factor of m!/2.

Moreover, in the case when |S;| = 2 for each i it is
possible to find the best allocation in polynomial time.

Similarly, when S; = {j',j' +1,...,k'} is a continous
segment of items it is possible to find the optimal
allocation as well.

There are more cases when it is possible to find
optimum.




Single-Minded IC

Let V. be the set of possible single-minded bids
for m items, and let A be the set of all possible
allocation of these items to n players.

Definition 24 The mechanism in the single minded
case is composed out of:

n the allocation function f : (Vi.)" — A,
n the payment functions p; : (V)" — R for
1=1,..., n.

The mechanism is efficient if f and p; can be
computed in polynomial time.



Single-Minded IC

The main hardness is to get an incentive
compatible mechanism that is efficient.

If efficiency was not an issue then we could:
= compute optimum allocation,

» set the prices according to VCG.

VCG works only when we can find optimum
and no approximation is possible.



Single-Minded IC

= sort the bids 2> >

\/\ : 55] BRVALER

mfori=1...ndo
v it SN (Ujew S7) = @ then W <~ WU {i}.

s Allocation: W is the set of winners,

Y
VIST/ISE

smallest index such that 57 N'S? # &, and for all k < j,
k#1i,5,NS5 =0
¢ if such j does not exist then p; = 0.

s Payments: fori € W, p; = where j is the




Single-Minded IC

Lemma 25 A single-minded mechanism, where the
losers pay 0, 1s incentive compatible if and only if
when it satisfies the following two conditions:

monotonicity: Every winner with bid (S7,v}) will
still be a winner for every v; > vf and S} C S}
(when other bids are fixed).

critical payment: Each winner pays the minimum
amount that is needed for him to win, i.e, the
infimum over valuations v’ such that (S}, v}) is
still a winning bid.



Single-Minded IC

Before we prove this lemma we are going to
show that the proposed mechanism satisties
these conditions:

monotonicity: By increasing v; or decreasing S
we move the bidder forward in the greedy
order.

critical payments: Observe that i wins with j
when i is before j in the greedy order. The
payment rule gives exactly the moment
when 1 is before j in greedy order.



Single-Minded IC

Proof of lemma: Observe that the player that

reports truth will never have negative utility:

= when he looses his utility is 0, because losers
pay 0,

= when he wins his utility is not smaller then the
critical price.

Let us now show that the player cannot increase
his utility by reporting (S’, v’) instead of his true
bid (S,v) = (S*,v*).




Single-Minded IC

When (5/,7") is a loosing bid or S’ does not

contain S, then it is clear that it is not worse to
report (S, v) .

Hence, let us assume that (S’, v’) is a winning
bidand S’ DO S.

First, we will show that the player will be no
worse when he reports (S,?") instead of (S/,7’).

Let us denote by p’ the payment of the player
for (S’,v’) and by p for (S, v').



Single-Minded IC

For every x < p, if player report (S, x) he will
lose because p is critical.

By monotonicity (S’, x) will be a loosing bid for
every x < p.

This why the critical payment p’ cannot be
smaller then p.

Hence when the player reports (S, v’) instead of
(S’,7") he still wins and pays no more.



Single-Minded IC

We are left to consider to show that reporting
(S,v) is no worse then reporting (S, v’).

Let us assume that (S, v) is a winning bid with
payment p.

As long as v’ is bigger then f, the player still
wins and pays exactly the same amount.

If o' < p the player loses and has zero utility.



Single-Minded IC

If (S, v) is a loosing bid, then v has to be smaller
then the critical payment.

Hence, the payment for any winning bid (S, v')
will be bigger then v.

Lemma 26 Let OPT be the allocation that
maximizes social welfare ) ;copr 0, and let W be the

outcome of the mechanism, then
ES x
LicopT Ui < /M )icopr U; -



Single-Minded IC

For everyi € W let
OPT; = {j € OPT,j > i|S; NS} # D} be the set

of elements of OPT, that were not taken into W
because of i (including 7).

We have OPT C {J;cy OPT;, and we will prove
that for all i € W, we have };copr, 07 < /mo;.

Observe that every j € OPT; was after 7 in the
(o /|S;F|
VISl

S
greedy order and so v <



Single-Minded IC

By summing up this inequality over all j € OPT;
we get.

*

v
Z vi < Z Z S
j€OPT; / VarH j€OPT; /

By applying Cauchy-Schwarz inequality we
obtain:

J15;1 < JIoPT| [ Y sz,
]EOPT ]EOPT



Single-Minded IC

Every 57 for j € OPT; intersects 5.

Because OPT is an allocation, these intersections need
to be disjoint, and |OPT;| < |S7|.

Slmllarly ZjEOPTi |S]*‘ S mn.

This way we obtain ) icopr, /|57 < /|57 |v/m.

By combining all inequalities this gives
)_jcopT; U; = \/MU;.
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