Algorithmic Trends
 Homework 5

Marek Cygan and Piotr Sankowski

April 25, 2014

The homework is due on $14 / 05 / 2014$.

Problem 1

Consider the following auction problem that is based on the knapsack problem. We are given n players. Every player has a private valuation v_{i} and publicly known size c_{i}. Moreover, the size C of the knapsacks in known publicly as well. The feasible allocation is given by a subset S of players, such that $\sum_{i \in S} c_{i} \leq C$. We assume that $c_{i} \leq C$ for all $1 \leq i \leq n$. The problem of computing the best feasible allocation corresponds exactly to the knapsack problem. The value of the allocation S is given by $\sum_{i \in S} v_{i}$.

- Consider the following algorithm for this problem. First, sort the players according to the decreasing valuation and greedily pack the knapsack according to this order. Let S_{1} be the obtained allocation. Next, sort the players in a nondecreasing order according to the ratio v_{i} / c_{i}, and greedily pack the knapsack according to this order. Let S_{2} be the allocation obtained this way. The algorithm returns the better one of the two allocations S_{1} and S_{2}. Prove that this algorithm is $1 / 2$-approximate?
- Show how to construct and incentive compatible auction using this algorithm? The auction should be incentive compatible with respect to the valuations only.

Problem 2

We are going to sell one item to n players in the "gender equal" way. In this set of n players n_{B} are boys and n_{G} are girls. ($n_{B}, n_{G}>0$ and $\left.n_{B}+n_{G}=n\right)$. Consider the following auction:

- every player submits his/her bid,
- let b_{B} be the boy that submitted the highest bid,
- let b_{G} be the girl that submitted the highest bid,
- the seller tosses a coin and:
- with probability $1 / 2$ the boy b_{B} wins and pays the bid submitted by girl b_{G},
- with probability $1 / 2$ the girl b_{G} wins and pays the bid submitted by boy b_{B}.

Prove that the auction is incentive compatible or show an example where it is not incentive compatible?

Problem 3

In the atomic splittable selfish routing game every player controls r_{i} units of flow, which can be divided and routed in an arbitrary way on paths from s_{i} to t_{i}. Given such game we can obtain a new game by replacing each player by two players that want to route $r_{i} / 2$ units of flow from s_{i} to t_{i}. This operation does not change the cost of an optimal flow. Prove that this splitting operation can reduce the price of anarchy?

