Maximal Matching via Gaussian Elimination

Piotr Sankowski

Uniwersytet Warszawski

Outline

- Maximum Matchings
- Lovásza's Idea,
- Maximum matchings,
- Rabin and Vazirani,
- Gaussian Elimination,
- Simple $O\left(n^{3}\right)$ time algorithm,
- $O\left(n^{\omega}\right)$ time for bipartite graphs,
- $O\left(n^{\omega}\right)$ time for non-bipartite graphs - idea,
- Weighed matching in bipartite graphs.

Previous Results

- $O(m \sqrt{n})$ time for bipartite graphs - Hopcroft and Karp '73,
- $O(m \sqrt{n})$ time for general graphs - Micali and Vazirani ' 80 ,

For dense graphs this gives $O\left(n^{2.5}\right)$ time.
Algebraic techniques:

- $O\left(n^{\omega}\right)=O\left(n^{2.38}\right)$ testing and computing the size - Lovász '79,
- $O\left(n^{\omega+1}\right)=O\left(n^{3.38}\right)$ finding - Rabin and Vazirani '89.

The Algebraic Matchings

New method based on Gaussian elimination.
Algebraic algorithms for finding maximum size matchings:

- simple $O\left(n^{3}\right)$ time,
- $O\left(n^{\omega}\right)=O\left(n^{2.38}\right)$ time,
- for weighted graphs $O\left(W n^{\omega}\right)=O\left(W n^{2.38}\right)$ time.

These algorithms are randomized Monte Carlo.

Fast Matrix Multiplication

Let ω be the matrix multiplication exponent. Twierdzenie 1 (Coppersmith and Winograd '90)

$$
\omega<2.376 .
$$

Twierdzenie 2 (Bunch and Hopcroft '74) LU-factorization (Gaussian elimination) can be computed in $O\left(n^{\omega}\right)$.

Twierdzenie 3 (Ibarra, Moran and Hui '82) Maximum size nonsingular submatrix can be computed in $O\left(n^{\omega}\right)$ time.

Symbolic Adjacency Matrix

The symbolic adjacency matrix of a bipartite graph:

$\tilde{A}(G)$
$\Longrightarrow\left(\begin{array}{cccccc}x_{11} & 0 & x_{13} & 0 & 0 & 0 \\ x_{21} & x_{22} & 0 & 0 & 0 & 0 \\ x_{31} & 0 & 0 & x_{34} & 0 & 0 \\ 0 & x_{42} & x_{43} & 0 & 0 & x_{46} \\ 0 & 0 & 0 & x_{54} & x_{55} & x_{56} \\ 0 & 0 & 0 & 0 & 0 & x_{66}\end{array}\right)$

Symbolic Adjacency Matrix

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{cccccc}
x_{11} & 0 & x_{13} & 0 & 0 & 0 \\
x_{21} & x_{22} & 0 & 0 & 0 & 0 \\
x_{31} & 0 & 0 & x_{34} & 0 & 0 \\
0 & x_{42} & x_{43} & 0 & 0 & x_{46} \\
0 & 0 & 0 & x_{54} & x_{55} & x_{56} \\
0 & 0 & 0 & 0 & 0 & x_{66}
\end{array}\right)= \\
=-x_{13} x_{21} x_{34} x_{42} x_{55} x_{66}-x_{11} x_{22} x_{34} x_{43} x_{55} x_{66} .
\end{gathered}
$$

The monomials in the determinant correspond to perfect matchings in G.

Symbolic Adjacency Matrix

The determinant is given as:

$$
\operatorname{det}(A)=\sum_{p \in \Pi_{n}} \sigma(p) \prod_{i=1}^{n} a_{i, p_{i}} .
$$

Each nonzero term in this sum chooses for every vertex i a different vertex p_{i}.

The terms in this sum correspond to perfect matchings.

Symbolic Adjacency Matrix

Twierdzenie 4 For a bipartite graph G, $\operatorname{det} \tilde{A}(G) \neq 0$ iff G has a perfect matching.

Substitute random numbers into $\tilde{A}(G)$ and compute the determinant of $A(G)$ - random adjacency matrix.

With high probability $\operatorname{det} A(G) \neq 0$ iff $\operatorname{det} \tilde{A}(G) \neq 0$, because 'polynomials do not have many zeros' - this gives an efficient test by Zuppel-Schwartz lemma.

Lovász's Idea

An $O\left(n^{\omega}\right)$ time (Monte Carlo) algorithm testing whether graph G has a perfect matching:
substitute for variables in $\tilde{A}(G)$ radom elements from \mathcal{Z}_{P}
let $A(G)$ be the resulting matrix if $\operatorname{det} A(G)<>0$ then
return "YES"
else
return " NO "

Lovász's Idea

An $O\left(n^{\omega+2}\right)$ time (Monte Carlo) finding a perfect matching in G :

$$
\begin{aligned}
& M:=\varnothing \\
& \text { for } e \in E \text { do }
\end{aligned}
$$

if $G-e$ has a perfect matching then remove e with its endpoints from G add e to M

Maximum Matching

Twierdzenie 5 (Lovász (79)) Let m be a maximum matching size in G, then $\operatorname{rank}(\tilde{A}(G))=m$.

The rank of $A(G)$ can be computed in $O\left(n^{\omega}\right)$ time.

Let M a matching in then from Tutte's theorem $\tilde{A}_{V(M), V(M)}(G)$ is nonsingular, i.e., $\operatorname{rank}(\tilde{A}(G)) \geq m$.

Maximum Matching

Let $\tilde{A}_{X, Y}(G)$ be maximum size nonsingular submatrix of $\tilde{A}(G)$.

The determinant of $\tilde{A}_{X, Y}$ is non-zero.
In $\operatorname{det}\left(\tilde{A}_{X, Y}\right)$ there exists a nonzero permutation p.
p gives a perfect matching of X and Y so $\operatorname{rank}(\tilde{A}(G)) \leq m$.

Rabin and Vazirani Algorithm

$A_{i, j}^{-1}=(-1)^{i+j} \operatorname{det} A^{j, i} / \operatorname{det} A$, where $A^{j, i}$ is the matrix A with j-th row and i-th column removed.

When G is bipartite then $A^{j, i}=A\left(G-\left\{u_{j}, v_{i}\right\}\right)$.
The matrix $A(G)^{-1}$ codes which edges in G are allowed, i.e., belong to some perfect matching.

Rabin and Vazirani Algorithm

An $O\left(n^{\omega+1}\right)=O\left(n^{3.38}\right)$ time (Monte Carlo) algorithm for finding a perfect matching in G :
$M:=\varnothing$
while G is not empty do
compute $A^{-1}(G)$
find allowed edge $e \in E$
remove e with its endpoints from G add e to M

Gaussian Elimination

Twierdzenie 6 (Elimination Theorem) Niech

$$
A=\left(\begin{array}{cc}
a_{1,1} & v^{T} \\
u & B
\end{array}\right), \quad A^{-1}=\left(\begin{array}{cc}
\hat{a}_{1,1} & \hat{v}^{T} \\
\hat{u} & \hat{B}
\end{array}\right)
$$

where $\hat{a}_{1,1} \neq 0$. Wtedy $B^{-1}=\hat{B}-\hat{u} \hat{v}^{T} / \hat{a}_{1,1}$.
This is a single step of Gaussian elimination.

An $O\left(n^{3}\right)$ Time Algorithm

A Monte Carlo algorithm that finds a perfect matching in graph G in $O\left(n^{3}\right)$ time:

$$
M:=\varnothing
$$

compute $A^{-1}(G)$
while G non-empty do
fine arbitrary allowed edge $e \in E$ remove e with its endpoints from G add e to M update $A^{-1}(G)$
using Gaussian elimination

Lazy Updates

$$
u_{1} v_{1}^{T}+\ldots+u_{k} v_{k}^{T}=\left(u_{1}|\ldots| u_{k}\right)\left(\frac{v_{1}^{T}}{\vdots} \frac{v_{k}^{T}}{}\right)
$$

Elimination Without Pivots

The following algorithm performs Gaussian elimination without column or row pivoting in $O\left(n^{\omega}\right)$ time.

for $i:=1$ to n do

lazily eliminate i-th row and i-th column let k be such that $2^{k} \mid i$, but $2^{k+1} \nmid i$ update rows and columns

$$
\text { with numbers } i+1, \ldots, i+2^{k}
$$

Elimination Without Pivots

In each step we need to multiply an $n \times 2^{k}$ matrix by an $2^{k} \times 2^{k}$ matrix in $\left(n / 2^{k}\right)\left(2^{k}\right)^{\omega}=n 2^{k(\omega-1)}$ time.

The given value k appears $n / 2^{k}$ times, so the computations for this k require $n^{2} 2^{k(\omega-2)}=n^{2}\left(2^{\omega-2}\right)^{k}$ time.

$$
\sum_{k=0}^{\log n} n^{2}\left(2^{\omega-2}\right)^{k} \leq C n^{2}\left(2^{\omega-2}\right)^{\log n}=C n^{2} n^{\omega-2}=C n^{\omega}
$$

Matching Verification

Twierdzenie 7 Inclusion-wise maximal allowed submatching M^{\prime} of a matching M in bipartite graph G can be computed in $O\left(n^{\omega}\right)$ time (Monte Carlo).

	u_{1}	u_{2}	u_{3}	u_{4}	\ldots	u_{n-1}	u_{n}
v_{1}	\sqrt{l}						
v_{2}		\sqrt{l}					
v_{3}			\times				
v_{4}				\times			
\cdots					\ddots		
v_{n-1}						$\sqrt{ }$	
v_{n}							\sqrt{l}

Elim. Without Column Pivots

Hopcroft-Bunch LU algorithm executes Gaussian elimination with row but without column pivots in $O\left(n^{\omega}\right)$ time.

for $i:=1$ to n do

find row j such that $A_{i, j} \neq 0$
lazily eliminate j-th row and i-th column let k be such that $2^{k} \mid i$ but $2^{k+1} \nmid i$ update columns $i+1, \ldots, i+2^{k}$

Elim. Without Column Pivots

Bipartite Case

Twierdzenie 8 A perfect matching in a bipartite graph can be found in $O\left(n^{\omega}\right)$ time using modified Hopcroft-Bunch algorithm.

Can this result be extended to weighted matching problem?

YES - the algorithm works in $O\left(W n^{\omega}\right)$ time.

Idea

Weighted Matching

Reduction in $O\left(W t^{0}\right)$ time

Unweighted Matching $O\left(n^{(\omega)}\right)$ time

Idea

Weighted Matching

Equality Subgraph

Unweighted Matching

Idea

Idea

Bipartite Case

Weighted Bipartite Matching
\checkmark

Weighted Matc
Weights
Vertex Cover

Some Definitions

A weighted bipartite n-vertex graph G is a tuple $G=(U, V, E, w)$, where

- $U=\{1, \ldots, n\}$ and $V=\{n+1, \ldots, 2 n\}$ denote vertex sets,
- $E \subseteq U \times V$ denotes the edge set,
- the function $w: E \rightarrow \mathcal{Z}_{+}$ascribes weights to the edges.

Some Definitions

In the maximum weighted bipartite matching problem we seek

- a perfect matching M in a weighted bipartite graph G,
- with maximum total weight

$$
w(M)=\sum_{e \in M} w(e) .
$$

The size of the maximum weighted matching problem is given by n and W - the maximum weight in w.

Some Definitions

A weighted cover is a choice of labels $y(1), \ldots, y(2 n)$ such that

$$
y(i)+y(j) \geq w(i j)
$$

for all i, j.
The minimum weighted cover problem is that of finding a cover of minimum cost.

Egerváry Theorem

Twierdzenie 9 (Egerváry '31)

Let $G=(U, V, E, w)$ be a weighted bipartite graph.
The maximum weight of a perfect matching of G is equal to weight of the minimum weighted cover of G.

From Cover to Matching

Weighted Bipartite Matching

V
Weighted Matc
Weights
Matrix Polynomials
Shortest Paths
Vertex Cover
Equality Subgraph

Unweighted Bipartite Matching

From Cover to Matching

The equality graph G_{p} for p and G is defined as

- $G_{p}=\left(U, V, E^{\prime}\right)$,
- $E^{\prime}=\{u v: u v \in E$ and $p(u)+p(v)=w(u v)\}$.

Lemat 10

Consider a weighted bipartite graph G and a minimum weighted vertex cover p of G.
The matching M is a perfect matchings in G_{p} iff it is a maximum weighted perfect matchings in G.

From Paths to Cover

Weighted Bipartite Matching

From Paths to Cover

Let M be a maximum weighted matching in a weighted bipartite graph $G=(U, V, E, w)$.

1. construct a directed weighted graph

$$
D=\left(U \cup V \cup\{r\}, A, w_{d}\right),
$$

2. for all $u v \in E, u \in U$ and $v \in V$, add an edge (u, v) to $A, w_{d}((u, v)):=-w(u v)$,
3. for all $u v \in M, u \in U$ and $v \in V$, add an edge (v, u) to $A, w_{d}((v, u)):=w_{u v}$,

No negative-weight cycles in D.

From Paths to Cover

R

r

From Paths to Cover

1. add zero weight edges (r, v) for each $v \in V$,
2. compute distances in D from r,
3. set $y_{u}:=\operatorname{dist}(r, u)$ for $u \in U$,
4. set $y_{v}:=-\operatorname{dist}(r, v)$ for $v \in V$.

Lemat 11 The y found by the above algorithm is a minimum weighted vertex cover in G.

From Paths to Cover

$\operatorname{dist}(r, u)$ is a potential function

$$
w_{d}((u, v)) \geq \operatorname{dist}(r, v)-\operatorname{dist}(r, u)
$$

For $u v \in E$ we have an edge (u, v) in D and

$$
\begin{gathered}
w_{d}((u, v)) \geq \operatorname{dist}(r, v)-\operatorname{dist}(r, u), \\
-w(u v) \\
\geq-y(v)-y(u) . \\
w(u v) \leq y(v)+y(u) .
\end{gathered}
$$

Thus y is a vertex cover.

From Paths to Cover

$\operatorname{dist}(r, u)$ is a potential function

$$
w_{d}((u, v)) \geq \operatorname{dist}(r, v)-\operatorname{dist}(r, u)
$$

For $u v \in M$ we have an edge (v, u) in D and

$$
w_{d}((v, u)) \geq \operatorname{dist}(r, u)-\operatorname{dist}(r, v)
$$

$$
w(u v) \geq y(u)+y(v)
$$

Summing up the above inequality for all edges in M we obtain that $w(y) \leq w(M)$.

Thus y is minimum.

From Matching Weights to Paths

Weighted Bipartite Matching

From Matching Weights to Paths

Consider a weighted bipartite graph
$G=(U, V, E, w)$.

- add a new vertex s to U,
- add a new vertex t to V,
- connect s with all vertices from V with zero weight edges,
- connect the vertex t with the vertex u in U.

Let us denote by $G(u)$ the resulting graph and by $M(u)$ the maximum weighted perfect matching in this graph.

From Matching Weights to Paths

From Matching Weights to Paths

Lemat 12 The distances in D satisfy

$$
\operatorname{dist}(r, u):=w(M)-w(M(u)) \text { for } u \in U
$$

Consider the matchings $M(u)$ and M,

- direct all edges in M from V to U,
- direct all edges in $M(u)$ from U to V,
- we obtain a directed path p from s to t in D,
- and a set \mathcal{C} of even length alternating cycles.

From Matching Weights to Paths

From Matrices to Matching Weights

Weighted Bipartite Matching

From Matrices to Matchings

For $G=(U, V, E, w)$, define a $n \times n$ matrix $\tilde{B}(G, x)$ by

$$
\tilde{B}(G, x)_{i, j}=x^{w(i j)} z_{i, j},
$$

where $z_{i, j}$ are distinct variables corresponding to edges in G.

Lemat 13 (Karp, Upfal and Wigderson '86) The degree of x in $\operatorname{det}(\tilde{B}(G, x))$ is the weight of the maximum weight perfect matching in G.

From Matrices to Matchings

Twierdzenie 14 (Storjohann '03)

Let $A \in K[x]^{n \times n}$ be a polynomial matrix of degree W and $b \in K[x]^{n \times 1}$ be a polynomial vector of degree
W, then

- determinant $\operatorname{det}(A)$,
- rational system solution $A^{-1} b$, can be computed in $\tilde{O}\left(n^{\omega} W\right)$ operations in K.

Wniosek 15 The weight of the maximum weighted bipartite perfect matching can be computed in
$\tilde{O}\left(W n^{\omega}\right)$ time, with high probability.

From Matrices to Matchings

Define $(n+1) \times(n+1)$ matrix $\hat{B}(G, x)$ by

$$
\hat{B}(G, x)=\left[\begin{array}{ccc|c}
& & 0 \\
& \tilde{B}(G, x) & \vdots \\
& & 0 \\
\hline 1 & \cdots & 1 & 0
\end{array}\right] .
$$

We have

$$
\left.\left.\operatorname{adj}(\hat{B}(G, x))_{n+1, i}\right)=\operatorname{det}\left(\hat{B}(G, x)^{i, n+1}\right)\right)=
$$

where $A^{i, j}$ is the matrix A with i-th row and j-th column removed.

From Matrices to Matchings

We have

$$
\begin{gathered}
\left.\left.\operatorname{adj}(\hat{B}(G, x))_{n+1, i}\right)=\operatorname{det}\left(\hat{B}(G, x)^{i, n+1}\right)\right)= \\
=\operatorname{det}(\tilde{B}(G(i), x)),
\end{gathered}
$$

From KUW Lemma we get that

$$
\left.\operatorname{deg}_{x}\left(\operatorname{adj}(\hat{B}(G, x))_{n+1, i}\right)\right)=w(M(i)) .
$$

From Matrices to Matchings

Choose a prime number p of length $\Theta(\log n)$. Substitute random numbers from $\{1, \ldots, p\}$ for $z_{i, j}$ in $\hat{B}(G, x)$ to obtain $B(x)$.

Compute with Storjohann's Theorem

$$
\begin{gathered}
\left.v=\operatorname{adj}(B(x))_{n+1, i}\right)=\left(\operatorname{adj}(B(x)) e_{n+1}\right)_{i}= \\
=\operatorname{det}(B(x))\left(B(x)^{-1} e_{n+1}\right)_{i}
\end{gathered}
$$

With high probability $\operatorname{deg}_{x}\left(v_{i}\right)=w(M(i))$.

Weighted Bipartite Matching

Weighted Bipartite Matching

Back to SSSP

We can get back to single source shortest paths with the following lemma.

Lemat 16 (Gabow 1983) An $f(n, m, W)$ time algorithm for maximum weighted perfect matchings implies an $f(n, m, W)$ time algorithm for SSSP with negative weights.

Yet another algorithm for the SSSP problem working in $O\left(n^{\omega} W\right)$ time.

Symbolic Adjacency Matrix

Symbolic adjacency matrix of a non-bipartite graph is given as:

Symbolic Adjacency Matrix

Twierdzenie 17 (Tutte (1947)) $\operatorname{det} \tilde{A}(G) \neq 0$ iff G has a perfect matching.

The determinant is given as:

$$
\operatorname{det}(A)=\sum_{p \in \Pi_{n}} \sigma(p) \prod_{i=1}^{n} a_{i, p_{i}} .
$$

The non-zero term in this sum corresponds to covering G with directed cycles.

Symbolic Adjacency Matrix

Even length cycle covers give matchings.
Consider a cycle cover p that contains a odd length cycle C.

Contribution of p cancels with a contribution of p^{\prime}, where C is oriented in opposite direction, because p^{\prime} has:

- the same variables,
- the same parity,
- opposite sign of elements on C.

Maximum Matchings

Twierdzenie 18 (Lovász (79)) Let m be the size of maximum matching in G, then $\operatorname{rank}(\tilde{A}(G))=2 m$.

The rank of $\tilde{A}(G)$ can be computed in $O\left(n^{\omega}\right)$ time.

Let M be a matching then form Tutte theorem $\tilde{A}_{V(M), V(M)}(G)$ is non-singular $\operatorname{rank}(\tilde{A}(G)) \geq 2 m$.

Maximum Matchings

Let $\tilde{A}_{X, Y}(G)$ be maximum size nonsingular submatrix $\tilde{A}(G)$.

Let p be nonzero term of $\operatorname{det}\left(\tilde{A}_{X, Y}(G)\right)$.
Let p^{\prime} be nonzero term in $\operatorname{det}\left(\tilde{A}_{Y, X}(G)\right)-$ antisymmetry.

The sum $p \cup p^{\prime}$ gives an even length cycle cover of at least $|X|$ vertices in $G — \operatorname{rank}(\tilde{A}(G)) \leq 2 m$

Matching Verification

Twierdzenie 19 Inclusion-wise maximal allowed submatching M^{\prime} of given matching M in G can be computed in $O\left(n^{\omega}\right)$ time (Monte Carlo).

General Graphs

bipartite graphs

non-bipartite graphs

In non-bipartite graphs lazy updates are harder, so we will take different approach.

General Graphs

Algorithm for finding perfect matchings in general graphs:
find inclusion-wise maximal matching M in G find maximal allowed submatching M^{\prime} of M match M^{\prime} and remove it from G
if $\left|M^{\prime}\right| \geq n / 8$ then
find perfect matching in G else
split G into smaller graphs find perfect matching in each of them

Canonical Decomposition

Elementarny graph is a graph that contains a perfect matching such that the set of allowed edges forms a connected subgraph.

Let us consider only elementary graphs.
For elementary G let \equiv_{G} be the following relation:
$u \equiv_{G} v$ iff $G-\{u, v\}$ has no perfect matching.
The \equiv_{G} relation can be read of from $A(G)^{-1}$.

Canonical Decomposition

Twierdzenie $20 \equiv_{G}$ is an equivalence relation.
Canonical decomposition of G, is denoted by $P(G)$ and equals $V(G) / \equiv_{G}$.

Canonical Decomposition

Twierdzenie 21 (Decomposition Theorem) Let

 G be elementary, $S \in P(G),|S| \geq 2$, and let C be some connected component of $G-S$. Wtedy:1. The bipartite graph G_{S}^{\prime} obtained from G by contracting every component in $G-S$ to a vertex and removing edges in S, is elementary;
2. The component C is factor-critical;
3. The graph C^{\prime} obtained from $G[V(C) \cup S]$ by contracting S to single vertex v_{c}, is elementary; 4. $P\left(C^{\prime}\right)=\left\{\left\{v_{c}\right\}\right\} \cup\{T \cap V(C) \mid T \in P(G)\}$.

Canonical Decomposition

