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Outline

� Maximum Matchings

� Lovásza’s Idea,
� Maximum matchings,

� Rabin and Vazirani,
� Gaussian Elimination,

� Simple O(n3) time algorithm,

� O(nω) time for bipartite graphs,

� O(nω) time for non-bipartite graphs – idea,

� Weighed matching in bipartite graphs.
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Previous Results

� O(m
√

n) time for bipartite graphs — Hopcroft
and Karp ’73,

� O(m
√

n) time for general graphs — Micali
and Vazirani ’80,

For dense graphs this gives O(n2.5) time.

Algebraic techniques:
� O(nω) = O(n2.38) testing and computing the

size — Lovász ’79,

� O(nω+1) = O(n3.38) finding — Rabin and
Vazirani ’89.
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The Algebraic Matchings

New method based on Gaussian elimination.

Algebraic algorithms for finding maximum size
matchings:

� simple O(n3) time,

� O(nω) = O(n2.38) time,

� for weighted graphs O(Wnω) = O(Wn2.38)
time.

These algorithms are randomized Monte Carlo.
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Fast Matrix Multiplication

Let ω be the matrix multiplication exponent.
Twierdzenie 1 (Coppersmith and Winograd ’90)

ω < 2.376.

Twierdzenie 2 (Bunch and Hopcroft ’74)
LU-factorization (Gaussian elimination) can be
computed in O(nω).

Twierdzenie 3 (Ibarra, Moran and Hui ’82)
Maximum size nonsingular submatrix can be
computed in O(nω) time.
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Symbolic Adjacency Matrix

The symbolic adjacency matrix of a bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

Ã(G)


























x11 0 x13 0 0 0

x21 x22 0 0 0 0

x31 0 0 x34 0 0

0 x42 x43 0 0 x46

0 0 0 x54 x55 x56

0 0 0 0 0 x66


























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Symbolic Adjacency Matrix

det



















x11 0 x13 0 0 0

x21 x22 0 0 0 0

x31 0 0 x34 0 0

0 x42 x43 0 0 x46

0 0 0 x54 x55 x56

0 0 0 0 0 x66



















=

= −x13x21x34x42x55x66 − x11x22x34x43x55x66.

The monomials in the determinant correspond
to perfect matchings in G.
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Symbolic Adjacency Matrix

The determinant is given as:

det(A) = ∑
p∈Πn

σ(p)
n

∏
i=1

ai,pi
.

Each nonzero term in this sum chooses for
every vertex i a different vertex pi.

The terms in this sum correspond to perfect
matchings.
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Symbolic Adjacency Matrix

Twierdzenie 4 For a bipartite graph G,

det Ã(G) 6= 0 iff G has a perfect matching.

Substitute random numbers into Ã(G) and
compute the determinant of A(G) — random
adjacency matrix.

With high probability det A(G) 6= 0 iff

det Ã(G) 6= 0, because ’polynomials do not
have many zeros’ — this gives an efficient test
by Zuppel-Schwartz lemma.
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Lovász’s Idea

An O(nω) time (Monte Carlo) algorithm testing
whether graph G has a perfect matching:

substitute for variables in Ã(G)
radom elements from ZP

let A(G) be the resulting matrix
if det A(G) <> 0 then

return “YES”
else

return “NO”
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Lovász’s Idea

An O(nω+2) time (Monte Carlo) finding a
perfect matching in G:

M := ∅

for e ∈ E do
if G − e has a perfect matching then

remove e with its endpoints from G
add e to M
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Maximum Matching

Twierdzenie 5 (Lovász (79)) Let m be a maximum
matching size in G, then rank(Ã(G)) = m.

The rank of A(G) can be computed in O(nω)
time.

Let M a matching in then from Tutte’s theorem

ÃV(M),V(M)(G) is nonsingular, i.e.,

rank(Ã(G)) ≥ m.
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Maximum Matching

Let ÃX,Y(G) be maximum size nonsingular

submatrix of Ã(G).

The determinant of ÃX,Y is non-zero.

In det(ÃX,Y) there exists a nonzero permutation
p.

p gives a perfect matching of X and Y so

rank(Ã(G)) ≤ m.
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Rabin and Vazirani Algorithm

A−1
i,j = (−1)i+j det Aj,i/ det A, where Aj,i is the

matrix A with j-th row and i-th column
removed.

When G is bipartite then Aj,i = A(G − {uj, vi}).

The matrix A(G)−1 codes which edges in G are
allowed, i.e., belong to some perfect matching.
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Rabin and Vazirani Algorithm

An O(nω+1) = O(n3.38) time (Monte Carlo)
algorithm for finding a perfect matching in G:

M := ∅

while G is not empty do

compute A−1(G)
find allowed edge e ∈ E
remove e with its endpoints from G
add e to M



- p. 16/77

Gaussian Elimination

Twierdzenie 6 (Elimination Theorem) Niech

A =

(

a1,1 vT

u B

)

, A−1 =

(

â1,1 v̂T

û B̂

)

,

where â1,1 6= 0. Wtedy B−1 = B̂ − ûv̂T/â1,1.

This is a single step of Gaussian elimination.
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An O(n3) Time Algorithm

A Monte Carlo algorithm that finds a perfect
matching in graph G in O(n3) time:

M := ∅

compute A−1(G)
while G non-empty do

fine arbitrary allowed edge e ∈ E
remove e with its endpoints from G
add e to M
update A−1(G)

using Gaussian elimination
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Lazy Updates

u1vT
1 + . . . + ukvT

k =



 u1 . . . uk











vT
1
...

vT
k









- p. 19/77

Elimination Without Pivots

The following algorithm performs Gaussian
elimination without column or row pivoting in
O(nω) time.

for i := 1 to n do
lazily eliminate i-th row and i-th column
let k be such that 2k | i, but 2k+1 ∤ i
update rows and columns

with numbers i + 1, . . . , i + 2k



- p. 20/77

Elimination Without Pivots

In each step we need to multiply an n × 2k

matrix by an 2k × 2k matrix in

(n/2k)(2k)ω = n2k(ω−1) time.

The given value k appears n/2k times, so the
computations for this k require

n22k(ω−2) = n2(2ω−2)k time.

log n

∑
k=0

n2(2ω−2)k ≤ Cn2(2ω−2)log n = Cn2nω−2 = Cnω.
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Matching Verification

Twierdzenie 7 Inclusion-wise maximal allowed
submatching M′ of a matching M in bipartite graph
G can be computed in O(nω) time (Monte Carlo).

u1 u2 u3 u4 . . . un−1 un

v1

√

v2

√

v3 ×
v4 ×
. . . . . .

vn−1

√

vn

√
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Elim. Without Column Pivots

Hopcroft-Bunch LU algorithm executes
Gaussian elimination with row but without
column pivots in O(nω) time.

for i := 1 to n do
find row j such that Ai,j 6= 0
lazily eliminate j-th row and i-th column
let k be such that 2k | i but 2k+1 ∤ i
update columns i + 1, . . . , i + 2k
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Elim. Without Column Pivots

A B C

?
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Bipartite Case

Twierdzenie 8 A perfect matching in a bipartite
graph can be found in O(nω) time using modified
Hopcroft-Bunch algorithm.

Can this result be extended to weighted
matching problem?

YES — the algorithm works in O(Wnω) time.
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Idea
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Idea
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Idea
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Idea
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Bipartite Case
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Some Definitions

A weighted bipartite n-vertex graph G is a tuple
G = (U, V, E, w), where

� U = {1, . . . , n} and V = {n + 1, . . . , 2n}
denote vertex sets,

� E ⊆ U × V denotes the edge set,

� the function w : E → Z+ ascribes weights to
the edges.
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Some Definitions

In the maximum weighted bipartite matching
problem we seek

� a perfect matching M in a weighted bipartite
graph G,

� with maximum total weight
w(M) = ∑e∈M w(e).

The size of the maximum weighted matching
problem is given by n and W – the maximum
weight in w.
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Some Definitions

A weighted cover is a choice of labels
y(1), . . . , y(2n) such that

y(i) + y(j) ≥ w(ij),

for all i, j.

The minimum weighted cover problem is that of
finding a cover of minimum cost.
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Egerváry Theorem

Twierdzenie 9 (Egerváry ’31)

Let G = (U, V, E, w) be a weighted

bipartite graph.

The maximum weight of a perfect matching

of G is equal to weight of the minimum

weighted cover of G.
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From Cover to Matching
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From Cover to Matching

The equality graph Gp for p and G is defined as
� Gp = (U, V, E′),

� E′ = {uv : uv ∈ E and p(u) + p(v) = w(uv)}.

Lemat 10
Consider a weighted bipartite graph G and a
minimum weighted vertex cover p of G.
The matching M is a perfect matchings in Gp iff it is
a maximum weighted perfect matchings in G.



- p. 33/77

From Paths to Cover
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From Paths to Cover

Let M be a maximum weighted matching in a
weighted bipartite graph G = (U, V, E, w).

1. construct a directed weighted graph
D = (U ∪ V ∪ {r}, A, wd),

2. for all uv ∈ E, u ∈ U and v ∈ V, add an edge
(u, v) to A, wd((u, v)) := −w(uv),

3. for all uv ∈ M, u ∈ U and v ∈ V, add an edge
(v, u) to A, wd((v, u)) := wuv,

No negative-weight cycles in D.
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From Paths to Cover
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From Paths to Cover

1. add zero weight edges (r, v) for each v ∈ V,

2. compute distances in D from r,

3. set yu := dist(r, u) for u ∈ U,

4. set yv := −dist(r, v) for v ∈ V.

Lemat 11 The y found by the above algorithm is a
minimum weighted vertex cover in G.
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From Paths to Cover

dist(r, u) is a potential function

wd((u, v)) ≥ dist(r, v)− dist(r, u)

For uv ∈ E we have an edge (u, v) in D and

wd((u, v)) ≥ dist(r, v)− dist(r, u),

−w(uv) ≥ −y(v)− y(u).

w(uv) ≤ y(v) + y(u).

Thus y is a vertex cover.
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From Paths to Cover

dist(r, u) is a potential function

wd((u, v)) ≥ dist(r, v)− dist(r, u)

For uv ∈ M we have an edge (v, u) in D and

wd((v, u)) ≥ dist(r, u)− dist(r, v),

w(uv) ≥ y(u) + y(v).

Summing up the above inequality for all edges
in M we obtain that w(y) ≤ w(M).

Thus y is minimum.
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From Matching Weights to Paths
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From Matching Weights to Paths

Consider a weighted bipartite graph
G = (U, V, E, w).
� add a new vertex s to U,
� add a new vertex t to V,
� connect s with all vertices from V with zero

weight edges,

� connect the vertex t with the vertex u in U.

Let us denote by G(u) the resulting graph and
by M(u) the maximum weighted perfect
matching in this graph.
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From Matching Weights to Paths
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From Matching Weights to Paths

Lemat 12 The distances in D satisfy

dist(r, u) := w(M)− w(M(u)) for u ∈ U.

Consider the matchings M(u) and M,
� direct all edges in M from V to U,

� direct all edges in M(u) from U to V,

� we obtain a directed path p from s to t in D,

� and a set C of even length alternating cycles.
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From Matching Weights to Paths
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From Matrices to Matching Weights
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From Matrices to Matchings

For G = (U, V, E, w), define a n × n matrix
B̃(G, x) by

B̃(G, x)i,j = xw(ij)zi,j,

where zi,j are distinct variables corresponding to
edges in G.

Lemat 13 (Karp, Upfal and Wigderson ’86)
The degree of x in det(B̃(G, x)) is the weight of the
maximum weight perfect matching in G.
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From Matrices to Matchings

Twierdzenie 14 (Storjohann ’03)
Let A ∈ K[x]n×n be a polynomial matrix of degree
W and b ∈ K[x]n×1 be a polynomial vector of degree
W, then
� determinant det(A),

� rational system solution A−1b,

can be computed in Õ(nωW) operations in K.

Wniosek 15 The weight of the maximum weighted
bipartite perfect matching can be computed in

Õ(Wnω) time, with high probability.
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From Matrices to Matchings

Define (n + 1)× (n + 1) matrix B̂(G, x) by

B̂(G, x) =











0

B̃(G, x)
...

0

1 · · · 1 0











.

We have

adj(B̂(G, x))n+1,i) = det(B̂(G, x)i,n+1)) =

where Ai,j is the matrix A with i-th row and j-th
column removed.
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From Matrices to Matchings

We have

adj(B̂(G, x))n+1,i) = det(B̂(G, x)i,n+1)) =

= det(B̃(G(i), x)),

From KUW Lemma we get that

degx(adj(B̂(G, x))n+1,i)) = w(M(i)).
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From Matrices to Matchings

Choose a prime number p of length Θ(log n).
Substitute random numbers from {1, . . . , p} for

zi,j in B̂(G, x) to obtain B(x).

Compute with Storjohann’s Theorem

v = adj(B(x))n+1,i) = (adj(B(x))en+1)i =

= det(B(x))
(

B(x)−1en+1

)

i

With high probability degx(vi) = w(M(i)).
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Weighted Bipartite Matching
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Back to SSSP

We can get back to single source shortest paths
with the following lemma.

Lemat 16 (Gabow 1983) An f (n, m, W) time
algorithm for maximum weighted perfect matchings
implies an f (n, m, W) time algorithm for SSSP with
negative weights.

Yet another algorithm for the SSSP problem
working in O(nωW) time.
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Symbolic Adjacency Matrix

Symbolic adjacency matrix of a non-bipartite
graph is given as:

G Ã(G)

1

2 3

4

5

6 =⇒



























0 x12 x13 x14 x15 x16

−x12 0 x23 0 0 x26

−x13 −x23 0 x34 0 0

−x14 0 −x34 0 x45 0

−x15 0 0 −x45 0 x56

−x16 −x62 0 0 −x56 0


























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Symbolic Adjacency Matrix

Twierdzenie 17 (Tutte (1947)) det Ã(G) 6= 0 iff
G has a perfect matching.

The determinant is given as:

det(A) = ∑
p∈Πn

σ(p)
n

∏
i=1

ai,pi
.

The non-zero term in this sum corresponds to
covering G with directed cycles.



- p. 54/77

Symbolic Adjacency Matrix

Even length cycle covers give matchings.

Consider a cycle cover p that contains a odd
length cycle C.

Contribution of p cancels with a contribution of
p′, where C is oriented in opposite direction,
because p′ has:
� the same variables,
� the same parity,

� opposite sign of elements on C.
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Maximum Matchings

Twierdzenie 18 (Lovász (79)) Let m be the size of

maximum matching in G, then rank(Ã(G)) = 2m.

The rank of Ã(G) can be computed in O(nω)
time.

Let M be a matching then form Tutte theorem

ÃV(M),V(M)(G) is non-singular —

rank(Ã(G)) ≥ 2m.
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Maximum Matchings

Let ÃX,Y(G) be maximum size nonsingular

submatrix Ã(G).

Let p be nonzero term of det(ÃX,Y(G)).

Let p′ be nonzero term in det(ÃY,X(G)) —
antisymmetry.

The sum p ∪ p′ gives an even length cycle cover

of at least |X| vertices in G — rank(Ã(G)) ≤ 2m
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Matching Verification

Twierdzenie 19 Inclusion-wise maximal allowed
submatching M′ of given matching M in G can be
computed in O(nω) time (Monte Carlo).

v1 v2 v3 v4 . . . vn−1 vn

v2

√

v1

√

v4 ×
v3 ×
. . . . . .

vn−1

√

vn

√
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General Graphs

bipartite graphs non-bipartite graphs

?

?

In non-bipartite graphs lazy updates are harder,
so we will take different approach.
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General Graphs

Algorithm for finding perfect matchings in
general graphs:

find inclusion-wise maximal matching M in G
find maximal allowed submatching M′ of M
match M′ and remove it from G
if |M′| ≥ n/8 then

find perfect matching in G
else

split G into smaller graphs
find perfect matching in each of them
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Canonical Decomposition

Elementarny graph is a graph that contains a
perfect matching such that the set of allowed
edges forms a connected subgraph.

Let us consider only elementary graphs.

For elementary G let ≡G be the following
relation:

u ≡G v iff G − {u, v} has no perfect matching.

The ≡G relation can be read of from A(G)−1.
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Canonical Decomposition

Twierdzenie 20 ≡G is an equivalence relation.

Canonical decomposition of G, is denoted by P(G)
and equals V(G)/ ≡G.
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Canonical Decomposition

Twierdzenie 21 (Decomposition Theorem) Let
G be elementary, S ∈ P(G), |S| ≥ 2, and let C be
some connected component of G − S. Wtedy:
1. The bipartite graph G′

S obtained from G by
contracting every component in G − S to a vertex
and removing edges in S, is elementary;

2. The component C is factor-critical;

3. The graph C′ obtained from G[V(C) ∪ S] by
contracting S to single vertex vc, is elementary;

4. P(C′) = {{vc}} ∪ {T ∩ V(C)|T ∈ P(G)}.
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition



- p. 75/77

Canonical Decomposition
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Canonical Decomposition
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Canonical Decomposition
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