
- p. 1/77

Maximal Matching via Gaussian
Elimination

Piotr Sankowski

Uniwersytet Warszawski

- p. 2/77

Outline

� Maximum Matchings

� Lovásza’s Idea,
� Maximum matchings,

� Rabin and Vazirani,
� Gaussian Elimination,

� Simple O(n3) time algorithm,

� O(nω) time for bipartite graphs,

� O(nω) time for non-bipartite graphs – idea,

� Weighed matching in bipartite graphs.

- p. 3/77

Previous Results

� O(m
√

n) time for bipartite graphs — Hopcroft
and Karp ’73,

� O(m
√

n) time for general graphs — Micali
and Vazirani ’80,

For dense graphs this gives O(n2.5) time.

Algebraic techniques:
� O(nω) = O(n2.38) testing and computing the

size — Lovász ’79,

� O(nω+1) = O(n3.38) finding — Rabin and
Vazirani ’89.

- p. 4/77

The Algebraic Matchings

New method based on Gaussian elimination.

Algebraic algorithms for finding maximum size
matchings:

� simple O(n3) time,

� O(nω) = O(n2.38) time,

� for weighted graphs O(Wnω) = O(Wn2.38)
time.

These algorithms are randomized Monte Carlo.

- p. 5/77

Fast Matrix Multiplication

Let ω be the matrix multiplication exponent.
Twierdzenie 1 (Coppersmith and Winograd ’90)

ω < 2.376.

Twierdzenie 2 (Bunch and Hopcroft ’74)
LU-factorization (Gaussian elimination) can be
computed in O(nω).

Twierdzenie 3 (Ibarra, Moran and Hui ’82)
Maximum size nonsingular submatrix can be
computed in O(nω) time.

- p. 6/77

Symbolic Adjacency Matrix

The symbolic adjacency matrix of a bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

Ã(G)


























x11 0 x13 0 0 0

x21 x22 0 0 0 0

x31 0 0 x34 0 0

0 x42 x43 0 0 x46

0 0 0 x54 x55 x56

0 0 0 0 0 x66



























- p. 7/77

Symbolic Adjacency Matrix

det



















x11 0 x13 0 0 0

x21 x22 0 0 0 0

x31 0 0 x34 0 0

0 x42 x43 0 0 x46

0 0 0 x54 x55 x56

0 0 0 0 0 x66



















=

= −x13x21x34x42x55x66 − x11x22x34x43x55x66.

The monomials in the determinant correspond
to perfect matchings in G.

- p. 8/77

Symbolic Adjacency Matrix

The determinant is given as:

det(A) = ∑
p∈Πn

σ(p)
n

∏
i=1

ai,pi
.

Each nonzero term in this sum chooses for
every vertex i a different vertex pi.

The terms in this sum correspond to perfect
matchings.

- p. 9/77

Symbolic Adjacency Matrix

Twierdzenie 4 For a bipartite graph G,

det Ã(G) 6= 0 iff G has a perfect matching.

Substitute random numbers into Ã(G) and
compute the determinant of A(G) — random
adjacency matrix.

With high probability det A(G) 6= 0 iff

det Ã(G) 6= 0, because ’polynomials do not
have many zeros’ — this gives an efficient test
by Zuppel-Schwartz lemma.

- p. 10/77

Lovász’s Idea

An O(nω) time (Monte Carlo) algorithm testing
whether graph G has a perfect matching:

substitute for variables in Ã(G)
radom elements from ZP

let A(G) be the resulting matrix
if det A(G) <> 0 then

return “YES”
else

return “NO”

- p. 11/77

Lovász’s Idea

An O(nω+2) time (Monte Carlo) finding a
perfect matching in G:

M := ∅

for e ∈ E do
if G − e has a perfect matching then

remove e with its endpoints from G
add e to M

- p. 12/77

Maximum Matching

Twierdzenie 5 (Lovász (79)) Let m be a maximum
matching size in G, then rank(Ã(G)) = m.

The rank of A(G) can be computed in O(nω)
time.

Let M a matching in then from Tutte’s theorem

ÃV(M),V(M)(G) is nonsingular, i.e.,

rank(Ã(G)) ≥ m.

- p. 13/77

Maximum Matching

Let ÃX,Y(G) be maximum size nonsingular

submatrix of Ã(G).

The determinant of ÃX,Y is non-zero.

In det(ÃX,Y) there exists a nonzero permutation
p.

p gives a perfect matching of X and Y so

rank(Ã(G)) ≤ m.

- p. 14/77

Rabin and Vazirani Algorithm

A−1
i,j = (−1)i+j det Aj,i/ det A, where Aj,i is the

matrix A with j-th row and i-th column
removed.

When G is bipartite then Aj,i = A(G − {uj, vi}).

The matrix A(G)−1 codes which edges in G are
allowed, i.e., belong to some perfect matching.

- p. 15/77

Rabin and Vazirani Algorithm

An O(nω+1) = O(n3.38) time (Monte Carlo)
algorithm for finding a perfect matching in G:

M := ∅

while G is not empty do

compute A−1(G)
find allowed edge e ∈ E
remove e with its endpoints from G
add e to M

- p. 16/77

Gaussian Elimination

Twierdzenie 6 (Elimination Theorem) Niech

A =

(

a1,1 vT

u B

)

, A−1 =

(

â1,1 v̂T

û B̂

)

,

where â1,1 6= 0. Wtedy B−1 = B̂ − ûv̂T/â1,1.

This is a single step of Gaussian elimination.

- p. 17/77

An O(n3) Time Algorithm

A Monte Carlo algorithm that finds a perfect
matching in graph G in O(n3) time:

M := ∅

compute A−1(G)
while G non-empty do

fine arbitrary allowed edge e ∈ E
remove e with its endpoints from G
add e to M
update A−1(G)

using Gaussian elimination

- p. 18/77

Lazy Updates

u1vT
1 + . . . + ukvT

k =



 u1 . . . uk











vT
1
...

vT
k







- p. 19/77

Elimination Without Pivots

The following algorithm performs Gaussian
elimination without column or row pivoting in
O(nω) time.

for i := 1 to n do
lazily eliminate i-th row and i-th column
let k be such that 2k | i, but 2k+1 ∤ i
update rows and columns

with numbers i + 1, . . . , i + 2k

- p. 20/77

Elimination Without Pivots

In each step we need to multiply an n × 2k

matrix by an 2k × 2k matrix in

(n/2k)(2k)ω = n2k(ω−1) time.

The given value k appears n/2k times, so the
computations for this k require

n22k(ω−2) = n2(2ω−2)k time.

log n

∑
k=0

n2(2ω−2)k ≤ Cn2(2ω−2)log n = Cn2nω−2 = Cnω.

- p. 21/77

Matching Verification

Twierdzenie 7 Inclusion-wise maximal allowed
submatching M′ of a matching M in bipartite graph
G can be computed in O(nω) time (Monte Carlo).

u1 u2 u3 u4 . . . un−1 un

v1

√

v2

√

v3 ×
v4 ×
.

vn−1

√

vn

√

- p. 22/77

Elim. Without Column Pivots

Hopcroft-Bunch LU algorithm executes
Gaussian elimination with row but without
column pivots in O(nω) time.

for i := 1 to n do
find row j such that Ai,j 6= 0
lazily eliminate j-th row and i-th column
let k be such that 2k | i but 2k+1 ∤ i
update columns i + 1, . . . , i + 2k

- p. 23/77

Elim. Without Column Pivots

A B C

?

- p. 24/77

Bipartite Case

Twierdzenie 8 A perfect matching in a bipartite
graph can be found in O(nω) time using modified
Hopcroft-Bunch algorithm.

Can this result be extended to weighted
matching problem?

YES — the algorithm works in O(Wnω) time.

- p. 25/77

Idea

- p. 25/77

Idea

- p. 25/77

Idea

- p. 25/77

Idea

- p. 26/77

Bipartite Case

- p. 27/77

Some Definitions

A weighted bipartite n-vertex graph G is a tuple
G = (U, V, E, w), where

� U = {1, . . . , n} and V = {n + 1, . . . , 2n}
denote vertex sets,

� E ⊆ U × V denotes the edge set,

� the function w : E → Z+ ascribes weights to
the edges.

- p. 28/77

Some Definitions

In the maximum weighted bipartite matching
problem we seek

� a perfect matching M in a weighted bipartite
graph G,

� with maximum total weight
w(M) = ∑e∈M w(e).

The size of the maximum weighted matching
problem is given by n and W – the maximum
weight in w.

- p. 29/77

Some Definitions

A weighted cover is a choice of labels
y(1), . . . , y(2n) such that

y(i) + y(j) ≥ w(ij),

for all i, j.

The minimum weighted cover problem is that of
finding a cover of minimum cost.

- p. 30/77

Egerváry Theorem

Twierdzenie 9 (Egerváry ’31)

Let G = (U, V, E, w) be a weighted

bipartite graph.

The maximum weight of a perfect matching

of G is equal to weight of the minimum

weighted cover of G.

- p. 31/77

From Cover to Matching

- p. 32/77

From Cover to Matching

The equality graph Gp for p and G is defined as
� Gp = (U, V, E′),

� E′ = {uv : uv ∈ E and p(u) + p(v) = w(uv)}.

Lemat 10
Consider a weighted bipartite graph G and a
minimum weighted vertex cover p of G.
The matching M is a perfect matchings in Gp iff it is
a maximum weighted perfect matchings in G.

- p. 33/77

From Paths to Cover

- p. 34/77

From Paths to Cover

Let M be a maximum weighted matching in a
weighted bipartite graph G = (U, V, E, w).

1. construct a directed weighted graph
D = (U ∪ V ∪ {r}, A, wd),

2. for all uv ∈ E, u ∈ U and v ∈ V, add an edge
(u, v) to A, wd((u, v)) := −w(uv),

3. for all uv ∈ M, u ∈ U and v ∈ V, add an edge
(v, u) to A, wd((v, u)) := wuv,

No negative-weight cycles in D.

- p. 35/77

From Paths to Cover

- p. 36/77

From Paths to Cover

1. add zero weight edges (r, v) for each v ∈ V,

2. compute distances in D from r,

3. set yu := dist(r, u) for u ∈ U,

4. set yv := −dist(r, v) for v ∈ V.

Lemat 11 The y found by the above algorithm is a
minimum weighted vertex cover in G.

- p. 37/77

From Paths to Cover

dist(r, u) is a potential function

wd((u, v)) ≥ dist(r, v)− dist(r, u)

For uv ∈ E we have an edge (u, v) in D and

wd((u, v)) ≥ dist(r, v)− dist(r, u),

−w(uv) ≥ −y(v)− y(u).

w(uv) ≤ y(v) + y(u).

Thus y is a vertex cover.

- p. 38/77

From Paths to Cover

dist(r, u) is a potential function

wd((u, v)) ≥ dist(r, v)− dist(r, u)

For uv ∈ M we have an edge (v, u) in D and

wd((v, u)) ≥ dist(r, u)− dist(r, v),

w(uv) ≥ y(u) + y(v).

Summing up the above inequality for all edges
in M we obtain that w(y) ≤ w(M).

Thus y is minimum.

- p. 39/77

From Matching Weights to Paths

- p. 40/77

From Matching Weights to Paths

Consider a weighted bipartite graph
G = (U, V, E, w).
� add a new vertex s to U,
� add a new vertex t to V,
� connect s with all vertices from V with zero

weight edges,

� connect the vertex t with the vertex u in U.

Let us denote by G(u) the resulting graph and
by M(u) the maximum weighted perfect
matching in this graph.

- p. 41/77

From Matching Weights to Paths

- p. 42/77

From Matching Weights to Paths

Lemat 12 The distances in D satisfy

dist(r, u) := w(M)− w(M(u)) for u ∈ U.

Consider the matchings M(u) and M,
� direct all edges in M from V to U,

� direct all edges in M(u) from U to V,

� we obtain a directed path p from s to t in D,

� and a set C of even length alternating cycles.

- p. 43/77

From Matching Weights to Paths

- p. 44/77

From Matrices to Matching Weights

- p. 45/77

From Matrices to Matchings

For G = (U, V, E, w), define a n × n matrix
B̃(G, x) by

B̃(G, x)i,j = xw(ij)zi,j,

where zi,j are distinct variables corresponding to
edges in G.

Lemat 13 (Karp, Upfal and Wigderson ’86)
The degree of x in det(B̃(G, x)) is the weight of the
maximum weight perfect matching in G.

- p. 46/77

From Matrices to Matchings

Twierdzenie 14 (Storjohann ’03)
Let A ∈ K[x]n×n be a polynomial matrix of degree
W and b ∈ K[x]n×1 be a polynomial vector of degree
W, then
� determinant det(A),

� rational system solution A−1b,

can be computed in Õ(nωW) operations in K.

Wniosek 15 The weight of the maximum weighted
bipartite perfect matching can be computed in

Õ(Wnω) time, with high probability.

- p. 47/77

From Matrices to Matchings

Define (n + 1)× (n + 1) matrix B̂(G, x) by

B̂(G, x) =











0

B̃(G, x)
...

0

1 · · · 1 0











.

We have

adj(B̂(G, x))n+1,i) = det(B̂(G, x)i,n+1)) =

where Ai,j is the matrix A with i-th row and j-th
column removed.

- p. 48/77

From Matrices to Matchings

We have

adj(B̂(G, x))n+1,i) = det(B̂(G, x)i,n+1)) =

= det(B̃(G(i), x)),

From KUW Lemma we get that

degx(adj(B̂(G, x))n+1,i)) = w(M(i)).

- p. 49/77

From Matrices to Matchings

Choose a prime number p of length Θ(log n).
Substitute random numbers from {1, . . . , p} for

zi,j in B̂(G, x) to obtain B(x).

Compute with Storjohann’s Theorem

v = adj(B(x))n+1,i) = (adj(B(x))en+1)i =

= det(B(x))
(

B(x)−1en+1

)

i

With high probability degx(vi) = w(M(i)).

- p. 50/77

Weighted Bipartite Matching

- p. 51/77

Back to SSSP

We can get back to single source shortest paths
with the following lemma.

Lemat 16 (Gabow 1983) An f (n, m, W) time
algorithm for maximum weighted perfect matchings
implies an f (n, m, W) time algorithm for SSSP with
negative weights.

Yet another algorithm for the SSSP problem
working in O(nωW) time.

- p. 52/77

Symbolic Adjacency Matrix

Symbolic adjacency matrix of a non-bipartite
graph is given as:

G Ã(G)

1

2 3

4

5

6 =⇒



























0 x12 x13 x14 x15 x16

−x12 0 x23 0 0 x26

−x13 −x23 0 x34 0 0

−x14 0 −x34 0 x45 0

−x15 0 0 −x45 0 x56

−x16 −x62 0 0 −x56 0



























- p. 53/77

Symbolic Adjacency Matrix

Twierdzenie 17 (Tutte (1947)) det Ã(G) 6= 0 iff
G has a perfect matching.

The determinant is given as:

det(A) = ∑
p∈Πn

σ(p)
n

∏
i=1

ai,pi
.

The non-zero term in this sum corresponds to
covering G with directed cycles.

- p. 54/77

Symbolic Adjacency Matrix

Even length cycle covers give matchings.

Consider a cycle cover p that contains a odd
length cycle C.

Contribution of p cancels with a contribution of
p′, where C is oriented in opposite direction,
because p′ has:
� the same variables,
� the same parity,

� opposite sign of elements on C.

- p. 55/77

Maximum Matchings

Twierdzenie 18 (Lovász (79)) Let m be the size of

maximum matching in G, then rank(Ã(G)) = 2m.

The rank of Ã(G) can be computed in O(nω)
time.

Let M be a matching then form Tutte theorem

ÃV(M),V(M)(G) is non-singular —

rank(Ã(G)) ≥ 2m.

- p. 56/77

Maximum Matchings

Let ÃX,Y(G) be maximum size nonsingular

submatrix Ã(G).

Let p be nonzero term of det(ÃX,Y(G)).

Let p′ be nonzero term in det(ÃY,X(G)) —
antisymmetry.

The sum p ∪ p′ gives an even length cycle cover

of at least |X| vertices in G — rank(Ã(G)) ≤ 2m

- p. 57/77

Matching Verification

Twierdzenie 19 Inclusion-wise maximal allowed
submatching M′ of given matching M in G can be
computed in O(nω) time (Monte Carlo).

v1 v2 v3 v4 . . . vn−1 vn

v2

√

v1

√

v4 ×
v3 ×
.

vn−1

√

vn

√

- p. 58/77

General Graphs

bipartite graphs non-bipartite graphs

?

?

In non-bipartite graphs lazy updates are harder,
so we will take different approach.

- p. 59/77

General Graphs

Algorithm for finding perfect matchings in
general graphs:

find inclusion-wise maximal matching M in G
find maximal allowed submatching M′ of M
match M′ and remove it from G
if |M′| ≥ n/8 then

find perfect matching in G
else

split G into smaller graphs
find perfect matching in each of them

- p. 60/77

Canonical Decomposition

Elementarny graph is a graph that contains a
perfect matching such that the set of allowed
edges forms a connected subgraph.

Let us consider only elementary graphs.

For elementary G let ≡G be the following
relation:

u ≡G v iff G − {u, v} has no perfect matching.

The ≡G relation can be read of from A(G)−1.

- p. 61/77

Canonical Decomposition

Twierdzenie 20 ≡G is an equivalence relation.

Canonical decomposition of G, is denoted by P(G)
and equals V(G)/ ≡G.

- p. 62/77

Canonical Decomposition

Twierdzenie 21 (Decomposition Theorem) Let
G be elementary, S ∈ P(G), |S| ≥ 2, and let C be
some connected component of G − S. Wtedy:
1. The bipartite graph G′

S obtained from G by
contracting every component in G − S to a vertex
and removing edges in S, is elementary;

2. The component C is factor-critical;

3. The graph C′ obtained from G[V(C) ∪ S] by
contracting S to single vertex vc, is elementary;

4. P(C′) = {{vc}} ∪ {T ∩ V(C)|T ∈ P(G)}.

- p. 63/77

Canonical Decomposition

- p. 64/77

Canonical Decomposition

- p. 65/77

Canonical Decomposition

- p. 66/77

Canonical Decomposition

- p. 67/77

Canonical Decomposition

- p. 68/77

Canonical Decomposition

- p. 69/77

Canonical Decomposition

- p. 70/77

Canonical Decomposition

- p. 71/77

Canonical Decomposition

- p. 72/77

Canonical Decomposition

- p. 73/77

Canonical Decomposition

- p. 74/77

Canonical Decomposition

- p. 75/77

Canonical Decomposition

- p. 76/77

Canonical Decomposition

- p. 77/77

Canonical Decomposition

	Outline
	Previous Results
	The Algebraic Matchings
	Fast Matrix Multiplication
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Lovász's Idea
	Lovász's Idea
	Maximum Matching
	Maximum Matching
	Rabin and Vazirani Algorithm
	Rabin and Vazirani Algorithm
	Gaussian Elimination
	An O(n3) Time Algorithm
	Lazy Updates
	Elimination Without Pivots
	Elimination Without Pivots
	Matching Verification
	Elim. Without Column Pivots
	Elim. Without Column Pivots
	Bipartite Case
	Idea
	Idea
	Idea
	Idea

	Bipartite Case
	Some Definitions
	Some Definitions
	Some Definitions
	Egerváry Theorem
	From Cover to Matching
	From Cover to Matching
	From Paths to Cover
	From Paths to Cover
	From Paths to Cover
	From Paths to Cover
	From Paths to Cover
	From Paths to Cover
	From Matching Weights to Paths
	From Matching Weights to Paths
	From Matching Weights to Paths
	From Matching Weights to Paths
	From Matching Weights to Paths
	From Matrices to Matching Weights
	From Matrices to Matchings
	From Matrices to Matchings
	From Matrices to Matchings
	From Matrices to Matchings
	From Matrices to Matchings
	Weighted Bipartite Matching
	Back to SSSP
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Maximum Matchings
	Maximum Matchings
	Matching Verification
	General Graphs
	General Graphs
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition
	Canonical Decomposition

