Algebraic Graph Algorithms Part I

Marek Cygan \& Piotr Sankowski

University of Warsaw
Algorithmic Trends 19.02.2014

Outline - Part I \& II

- Algebraic algorithms - idea
- Simple example - perfect matchings
- Shortest cycles in directed graphs
- Shortest paths in directed graphs
- Dynamic matrix algorithms
- determinant and inverse
- Dynamic graph algorithms
- transitive closure
- Static graph algorithms
- matchings in graphs

Matrix Multiplication

$$
C=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right] \times\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]
$$

Naive algorithm

$$
c_{i, j}=\sum_{k=1}^{n} a_{i, k} b_{k, j}=a_{i, 1} b_{1, j}+a_{i, 2} b_{2, j}+\ldots+a_{i, n} b_{n, j} .
$$

requires n operations to compute each element of C. This gives $\sim n^{3}$ operations in total.

Strassen's Algorithm

$$
\left.\begin{array}{ll}
c_{1,1} & c_{1,2} \\
c_{2,1} & c_{2,2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right] \times\left[\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right]
$$

The matrix C can be computed with use of 7 multiplications instead 8!

Strassen Algorithm

After dividing the matrix in blocks we get

$$
\left[\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right]=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right] \times\left[\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right]
$$

we have to do 2×2 matrix multiplication on blocks.

Using this recursive multiplication, we need

$$
\sim n^{\log _{2} 7}=n^{2.81}
$$

operations to multiply $n \times n$ matrices.

Fast Matrix Multiplication

The matrix multiplication exponent is denoted by ω.

The $n \times n$ by $n \times n$ multiplication requires

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right] \times\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \cdots & b_{1, n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n, 1} & b_{n, 2} & \cdots & b_{n, n}
\end{array}\right]
$$

$\sim n^{\omega}$ operations.
The best known bound is $\omega<2.38$ -
Coppersmith, Winograd '90, Stathers '10, Williams '11.

Fast Matrix Multiplication

In $O\left(n^{\omega}\right)$ time for a $n \times n$ matrix we can:

- compute the determinant,
- compute the characteristic polynomial,
- compute the inverse matrix,
- solve the system of linear equations,
- compute the determinant of polynomial matrix,
- solve the system of linear equations over polynomials.

We will use these to solve graph problems.

Algebraic Algorithms

The determinant of the $n \times n$ matrix A is given as:

$$
\operatorname{det}(A)=\sum_{p \in \Pi_{n}} \sigma(p) \prod_{i=0}^{n} a_{i, p_{i}} .
$$

Is it possible to encode the graph problem in the matrix A in such a way that the element of the sum correspond to the solution of the problem?

By testing if the determinant is non-zero we will know if the problem has a solution.

Dynamic Problems

We want to solve given problem for a data structure that can be changed, e.g., we add and remove edges from the graph.

Can the algebraic methods be used in such a case?

YES

- if we can show dynamic algorithms for algebraic problems,
- if we can show appropriate reductions.

Example: Matchings

A matching in the graph $G=(V, E)$ is a subset of edges $M \subseteq E$ such, that no two edges in M share a common endpoint.

A perfect matching is a matching of size $|V| / 2$.
We want to:

- test if a graph contains a perfect matching,
- find any perfect matching in a graph,
- find the maximum matching in the graph.

Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite graph:

G

$$
\tilde{B}(G)
$$

$$
\Longrightarrow\left(\begin{array}{cccccc}
x_{11} & 0 & x_{13} & 0 & 0 & 0 \\
x_{21} & x_{22} & 0 & 0 & 0 & 0 \\
x_{31} & 0 & 0 & x_{34} & 0 & 0 \\
0 & x_{42} & x_{43} & 0 & 0 & x_{46} \\
0 & 0 & 0 & x_{54} & x_{55} & x_{56} \\
0 & 0 & 0 & 0 & 0 & x_{66}
\end{array}\right)
$$

Symbolic Adjacency Matrix

$$
\begin{array}{r}
\operatorname{det}\left(\begin{array}{cccccc}
x_{11} & 0 & x_{13} & 0 & 0 & 0 \\
x_{21} & x_{22} & 0 & 0 & 0 & 0 \\
x_{31} & 0 & 0 & x_{34} & 0 & 0 \\
0 & x_{42} & x_{43} & 0 & 0 & x_{46} \\
0 & 0 & 0 & x_{54} & x_{55} & x_{56} \\
0 & 0 & 0 & 0 & 0 & x_{66}
\end{array}\right)= \\
=-x_{13} x_{21} x_{34} x_{42} x_{55} x_{66}-x_{11} x_{22} x_{34} x_{43} x_{55} x_{66}
\end{array}
$$

Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite graph:

G

Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite graph:

G

$$
\begin{gathered}
\operatorname{det}(\tilde{B}(G))= \\
-x_{13} x_{21} x_{34} x_{42} x_{55} x_{66} \\
-x_{11} x_{22} x_{34} x_{43} x_{55} x_{66}
\end{gathered}
$$

Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite graph:

G

$\operatorname{det}(\tilde{B}(G))=$
$-x_{13} x_{21} x_{34} x_{42} x_{55} x_{66}$
$-x_{11} x_{22} x_{34} x_{43} x_{55} x_{66}$.

Symbolic Adjacency Matrix

The determinant is given as:

$$
\operatorname{det}(A)=\sum_{p \in \Pi_{n}} \sigma(p) \prod_{i=1}^{n} a_{i, p_{i}}
$$

p assigns different vertex p_{i} to each vertex i.
The elements of the sum correspond to perfect matchings in the graph.

The determinant is non-zero iff the graph has a perfect matching.

Lovász's Idea

The polynomial $\operatorname{det}(\tilde{B}(G))$ can have exponentially many terms. Can we efficiently test whether it is non-zero?

Substitute random numbers into variables in $\tilde{B}(G)$ and compute the determinant of the resulting matrix B - random adjacency matrix.

With high probability $\operatorname{det} B \neq 0$ iff $\operatorname{det} \tilde{B}(G) \neq 0$, because „polynomials do not have many zeros".

Random Adjacency Matrix

There is a perfect matchings.

$\Longrightarrow\left(\begin{array}{cccccc}1 & 0 & -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\operatorname{det}(B)=2$

Random Adjacency Matrix

There is a perfect matchings.

$\Longrightarrow\left(\begin{array}{cccccc}1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\operatorname{det}(B)=0$

Random Adjacency Matrix

There is no perfect matchings.

$\Longrightarrow\left(\begin{array}{cccccc}1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Random Adjacency Matrix

There is no perfect matchings.

$$
\begin{gathered}
\Longrightarrow\left(\begin{array}{cccccc}
1 & 0 & -1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
\operatorname{det}(B)=0
\end{gathered}
$$

Zippel-Schwartz Lemma

Lemma 1 (Zippel, Schwartz) Let $f\left(x_{1}, \ldots, x_{k}\right)$ be a degree n polynomial over the field F. Polynomial f has no more than $\frac{n}{|F|}|F|^{k}$ zeros.

Let $F=\mathcal{Z}_{p}$ for some prime number $p=\Theta\left(n^{1+c}\right)$, then the operations in Z_{p} can be performed in constant time.

The probability of a false zero - we get zero value for a non-zero polynomial - equals $O\left(\frac{1}{n^{c}}\right)$.

Shortest Cycle Problem

We will study graphs $G=(V, E)$ with integer edge weights $w: E \rightarrow[-W, W]$ but without negative weight cylces.

In the shortest cycle problem we want to find the shortest cycle in a weighted graph G.

Directed and undirected problems are not equivalent.

When we bidirect an undirected graph new cycles appear, e.g., of length 2.

Shortest cycle problem

Complexity	Author
$O\left(n m+n^{2} \log n\right)$ dir.	Johnson (1977)
$O\left(n^{\omega}\right)$ nonnegative undir.	Itai \& Rodeh (1977)
$O\left(W^{0.681} n^{2.575}\right)$ dir.	Zwick (2000)
$O\left(n m+n^{2} \log \log n\right)$ dir.	Pettie (2004)
$O\left(n^{3} \log ^{3} \log n / \log ^{2} n\right)$ dir.	Chan (2007)
$\tilde{O}\left(W n^{\omega}\right)$ dir. and nonnega- tive undir..	Roditty \& Vassilevska- Williams (2011)
$\tilde{O}\left(W n^{\omega}\right)$	Cygan, S., Gabow '12

Shortest Cycles: Idea

For directed graph $\vec{G}=(V, E)$ we define a symbolic $n \times n$ adjacency matrix $\tilde{A}(\vec{G})$ as

$$
\tilde{A}(\vec{G})_{i, j}=\left\{\begin{array}{cl}
x_{i, j} & \text { if }(i, j) \in E, \\
0 & \text { otherwise }
\end{array}\right.
$$

where $x_{i, j}$ are unique variables.
Theorem 2 There exists a cycle in G if and only if

$$
\operatorname{det}(\tilde{A}(\vec{G})+I)-1 \neq 0
$$

Determinant

An example of the adjacency matrix:
$\tilde{A}(\vec{G})+I$
\vec{G}

Determinant

\vec{G}

$$
\begin{aligned}
& \operatorname{det}(\tilde{A}(G))=x_{1,2} x_{2,3} x_{3,5} x_{5,6} x_{6,1}+ \\
& -x_{1,2} x_{2,4} x_{4,1}-x_{1,2} x_{2,4} x_{4,5} x_{5,6} x_{6,1}+ \\
& \quad+x_{1,2} x_{2,4} x_{4,3} x_{3,5} x_{5,6} x_{6,1}+ \\
& -x_{1,2} x_{2,4} x_{4,1} x_{5,6} x_{6,5}+x_{5,6} x_{6,5}+1
\end{aligned}
$$

Terms of the determinant correspond to cycle packings in the graph.

Some Definitions

Let $\operatorname{deg}_{y}^{*}(p)$ be the term of p with the smallest degree in y :

$$
\operatorname{deg}_{y}^{*}\left(y^{10}+5 y^{4}+x y^{3}+x^{2}\right)=3 .
$$

Similarly, $\operatorname{term}_{y}^{*}(p)$ denotes term of degree $\operatorname{deg}_{y}^{*}(p)$.

Weights

For the directed graph $\vec{G}=(V, E)$ with weights $w: E \rightarrow[-W, W]$ we define the symbolic $n \times n$ adjacency matrix $\tilde{A}(\vec{G})$ as

$$
\tilde{A}(\vec{G}, w)_{i, j}=\left\{\begin{array}{cl}
x_{i, j} y^{w(i j)} & \text { if }(i, j) \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

where $x_{i, j}$ are unique variables.
Theorem 3 The weight of the shortest cycle in \vec{G} is equal to $\operatorname{deg}_{y}^{*}(\operatorname{det}(\tilde{A}(\vec{G}, w)+I)-1)$.

Determinant

An example of the adjacency matrix:

Determinant

$$
\begin{aligned}
& \operatorname{det}(\tilde{A}(\vec{G}, w)+I)=x_{1,2} x_{2,3} x_{3,5} x_{5,6} x_{6,1} y^{5}+ \\
& -x_{1,2} x_{2,4} x_{4,1} y^{3}-x_{1,2} x_{2,4} x_{4,5} x_{5,6} x_{6,1} y^{5}+ \\
& +x_{1,2} x_{2,4} x_{4,3} x_{3,5} x_{5,6} x_{6,1} y^{6}+ \\
& -x_{1,2} x_{2,4} x_{4,1} x_{5,6} x_{6,5} y^{5}+x_{5,6} x_{6,5} y^{2}+1
\end{aligned}
$$

We already know that the terms correspond to cycle packings.

Hence, the degree of y correspond to their weights.

Strojohann's Algorithm

Some of these problems can be solved for matrix polynomials as well.

Theorem 4 (Strojohann '03) Let A be a matrix polynomial of degree W and size $n \times n$, let b be a vector polynomial of degree W and size n, then in
$O\left(W n^{\omega}\right)$ time we can compute:

- determinant $\operatorname{det}(A)$,
- solve linear system of equations, i.e., $A^{-1} b$, with high probability.

Some Problems

The matrix $\tilde{A}(\vec{G}, w)+I$ is a symbolic matrix we cannot efficiently compute its determinant.
\Rightarrow we can substitute random numbers for the variables.

The matrix $\tilde{A}(\vec{G}, w)+I$ is not a polynomial we cannot apply Strojohann's theorem directly.
\Rightarrow we can use

$$
(\tilde{A}(\vec{G}, w)+I) y^{W}
$$

Algorithm for the Shortest Cycle

1: Substitute random numbers for variables in $\tilde{A}(G)+I$ to obtain A.
2: Compute $\delta=\operatorname{det}\left(A y^{W}\right)-y^{n W}$ using Strojohann's theorem.
3: Return $\operatorname{deg}_{y}^{*}(\delta)-n W$.

Dynamic Functions

Let $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{m}$ be an n argument function returning m results.

A dynamic algorithm for f supports following operations:

- initialization $\left(x_{1}, \ldots, x_{n}\right)$: set the input vector to $\left(x_{1}, \ldots, x_{n}\right)$,
- update $\left(k, x_{k}^{\prime}\right)$: change the k-th input to x_{k}^{\prime},
- query (k) : return the k-th result.

We will consider the problems of dynamically computing the determinant, the inverse matrix and the matrix rank.

Dynamic Matrix Functions

We are given the matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

$$
\operatorname{det}(A)=-2
$$

Dynamic Matrix Functions

We are given the matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

$$
\operatorname{det}(A)=-2
$$

After the change:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 2 \\
2 & 2 & 2
\end{array}\right] \quad \operatorname{det}(A)=-4
$$

Dynamic Matrix Functions

We are given the matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

$$
\operatorname{det}(A)=-2
$$

After the change:

$$
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
2 & 2 & 2 \\
1 & 2 & 2
\end{array}\right] \quad \operatorname{det}(A)=2
$$

Dynamic Matrix Inverse

Theorem 5 (Sherman and Morrison '49)
The problem of dynamically computing:

- the determinant,
- the inverse matrix,
for non-singular column updates can be solved with the following costs:
- initialization: $O\left(n^{\omega}\right)$ time,
- update: $O\left(n^{2}\right)$ time,
- query: $O(1)$ time.

Dynamic Matrix Functions

We are given the matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

$$
\operatorname{det}(A)=-2
$$

Dynamic Matrix Functions

We are given the matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

$$
\operatorname{det}(A)=-2
$$

After the change:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 2 \\
0 & 2 & 2
\end{array}\right] \quad \operatorname{det}(A)=0
$$

Dynamic Matrix Functions

We are given the matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

$$
\operatorname{det}(A)=-2
$$

After the change:

Dynamic Transitive Closure

For a given graph:

Is there a path from v_{1} to v_{4} ?

Dynamic Transitive Closure

For a given graph:

Is there a path from v_{1} to v_{4} ? YES

Dynamic Transitive Closure

For a given graph:

Is there a path from v_{1} to v_{4} ?

Dynamic Transitive Closure

For a given graph:

Is there a path from v_{1} to v_{4} ?

Dynamic Transitive Closure

	Update	Query
Henzinger and King '95	$\tilde{O}\left(n m^{0.58}\right)$	$\Theta(n / \log n)$
King and Sagert'99	$O\left(n^{2.26}\right)$	$O(1)$
King '99	$O\left(n^{2} \log n\right)$	$O(1)$
Demetrescu and Italiano '00	$O\left(n^{2}\right)$	$O(1)$
Roditty and Zwick '02	$O(m \sqrt{n})$	$O(\sqrt{n})$
Roditty and Zwick '04	$O(m+n \log n)$	$O(n)$
S. '04 (worst-case but randomized)	$O\left(n^{2}\right)$	$O(1)$

Symbolic Adjacency Matrix

Symbolic adjacency matrix of the graph:
(

Symbolic Adjacency Matrix

Let us compute $\operatorname{adj}(A)_{1,3}=\operatorname{det}\left(A^{3,1}\right)$.

$$
A \quad A^{3,1}
$$

$\left(\begin{array}{c|ccccc}1 & x_{1,2} & 0 & 0 & 0 & 0 \\ 0 & 1 & x_{2,3} & x_{2,4} & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & x_{3,5} & 0 \\ \hline x_{4,1} & 0 & x_{4,3} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & x_{5,6} \\ x_{6,1} & 0 & 0 & 0 & x_{6,5} & 1\end{array}\right) \Longrightarrow\left(\begin{array}{c|ccccc}0 & x_{1,2} & 0 & 0 & 0 & 0 \\ 0 & 1 & x_{2,3} & x_{2,4} & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & x_{4,3} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & x_{5,6} \\ 0 & 0 & 0 & 0 & x_{6,5} & 1\end{array}\right)$

Symbolic Adjacency Matrix

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{c|ccccc}
0 & x_{1,2} & 0 & 0 & 0 & 0 \\
0 & 1 & x_{2,3} & x_{2,4} & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & x_{4,3} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & x_{5,6} \\
0 & 0 & 0 & 0 & x_{6,5} & 1
\end{array}\right]= \\
& =x_{1,2} x_{2,3}-x_{1,2} x_{2,4} x_{4,3}+ \\
& -x_{1,2} x_{2,3} x_{5,6} x_{6,5}+x_{1,2} x_{2,4} x_{4,3} x_{5,6} x_{6,5} .
\end{aligned}
$$

The monomials of the determinant correspond to paths from v_{1} to v_{3} in G.

Dynamic Transitive Closure

Theorem 6 (S. '04) Let $\tilde{A}(\vec{G})$ be a symbolic adjacency matrix of \vec{G}, substitute random numbers into variables in obtaining the matrix A :

- there is a path from ito j in \vec{G} iff $(\tilde{A}(\vec{G})+I)_{i j}^{-1}$ is non-zero (with high probability).

This allows us to compute the transitive closure by inverting the matrix once - can be easily used in the dynamic case.

Transitive Closure

Theorem 7 (S. '04)

Dynamic matrix inverse
Update in $O\left(n^{\alpha}\right)$ time
Query in $O\left(n^{\beta}\right)$ time
can assume nonsingularity
Dynamic transitive closure
Update in $O\left(n^{\alpha}\right)$ time
Query in $O\left(n^{\beta}\right)$ time randomized with one sided error

Algorithm for Transitive Closure

- Generate random adjacency matrix A from the adjacency matrix $\tilde{A}(\vec{G})+I$ by substituting $x_{i, j}$ with a random numbers from Z_{p}.
- compute the adjoint of the matrix A

$$
\operatorname{adj}(A)=\operatorname{det}(A) A^{-1}
$$

- with high probability $\operatorname{adj}(A)_{i, j} \neq 0$ iff there is a path from i to j in \vec{G}.

The algorithm works in $O\left(n^{\omega}\right)$ time.

Single Source Shortest Paths

For a weighted directed graph $G=(V, E)$, where $w: E \rightarrow\{-W, \ldots, 0, \ldots, W\}$ is the edge weight function, we denote by $\operatorname{dist}_{G}(i, j)$ the distance from i to j.

For given source s we want to find distances from s to all other nodes in G, or detect negative length cycle.

Single Source Shortest Paths

Complexity	Author
$O\left(n^{4}\right)$	Shimbel (1955)
$O\left(n^{2} m W\right)$	Ford (1956)
$O(n m)$	Bellman (1958), Moore (1959)
$O\left(n^{\frac{3}{4}} m \log W\right)$	Gabow (1983)
$O(\sqrt{n} m \log (n W))$	Gabow and Tarjan (1989)
$O(\sqrt{n} m \log (W))$	Goldberg (1993)
$O\left(n^{2.38} W\right)$	S. ${ }^{\prime} 05$ and Yuster and Zwick ${ }^{\prime} 05$

The Idea - Weighted Case

Theorem 8

$$
\operatorname{dist}_{G}(i, j)=\operatorname{deg}_{u}^{*}\left(\operatorname{adj}(\tilde{A}(\vec{G}, w)+I)_{i, j}\right) .
$$

Corollary 9 Let G be a directed weighted graph without negative length cycles then
$\operatorname{dist}_{G}(i, j)=\operatorname{deg}_{y}^{*}\left(\operatorname{adj}\left((\tilde{A}(\vec{G}, w)+I) y^{W}\right)_{i, j}\right)-(n-1) W$.

Algorithm

- Generate random adjacency matrix A from the adjacency matrix $(\tilde{A}(G)+I) y^{W}$ by substituting $x_{i, j}$ with a random numbers from Z_{p}.
- Compute $\operatorname{det}\left(A^{T}\right)$ and $\left(A^{T}\right)^{-1} e_{i}$ with Storjohann's Algorithm,
- With high probability

$$
\operatorname{dist}_{G}(i, j)=\operatorname{deg}_{y}^{*}\left(\left(\operatorname{det}\left(A^{T}\right)\left(A^{T}\right)^{-1} e_{i}\right)_{j}\right)
$$

because $\operatorname{adj}(A)=\operatorname{det}(A) A^{-1}$.

Conclusions

The algebraic techniques can be used to construct the asymptotically fastest algorithms for:

- dynamic transitive closure,
- dynamic distances in graphs,
- dynamic vertex connectivity,
- dynamic maximum matchings,
- maximum matchings in graphs,
- maximum weighted matchings in graphs.

