Algebraic Graph Algorithms Part I

Marek Cygan & Piotr Sankowski

University of Warsaw Algorithmic Trends 19.02.2014

Outline - Part I & II

- Algebraic algorithms idea
- Simple example perfect matchings
- Shortest cycles in directed graphs
- Shortest paths in directed graphs
- Dynamic matrix algorithms
 - determinant and inverse
- Dynamic graph algorithms
 transitivo closuro
 - transitive closure
- Static graph algorithms
 matchings in graphs

Matrix Multiplication

$$C = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} \times \begin{bmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{bmatrix}$$

Naive algorithm

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} = a_{i,1} b_{1,j} + a_{i,2} b_{2,j} + \ldots + a_{i,n} b_{n,j}.$$

requires *n* operations to compute each element of *C*. This gives $\sim n^3$ operations in total.

Strassen's Algorithm

$$\begin{bmatrix} c_{1,1} & c_{1,2} \\ c_{2,1} & c_{2,2} \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \times \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{bmatrix}$$

$$Q_{1} = (a_{1,1} + a_{2,2})(b_{1,1} + b_{2,2})$$

$$Q_{2} = (a_{2,1} + a_{2,2})b_{1,1}$$

$$Q_{3} = a_{1,1}(b_{1,2} - b_{2,2})$$

$$Q_{4} = a_{2,2}(-b_{1,1} + b_{2,1})$$

$$Q_{5} = (a_{1,1} + a_{1,2})b_{2,2}$$

$$Q_{6} = (-a_{1,1} + a_{2,1})(b_{1,1} + b_{1,2})$$

$$Q_{7} = (a_{1,2} - a_{2,2})(b_{2,1} + b_{2,2})$$

$$c_{1,1} = Q_{1} + Q_{4} - Q_{5} + Q_{7}$$

$$c_{2,1} = Q_{2} + Q_{4}$$

$$c_{1,2} = Q_{3} + Q_{5}$$

$$c_{2,2} = Q_{1} + Q_{3} - Q_{2} + Q_{6}$$

The matrix *C* can be computed with use of 7 multiplications instead 8!

Strassen Algorithm

After dividing the matrix in blocks we get

$$\begin{bmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{bmatrix} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix}$$

we have to do 2×2 matrix multiplication on blocks.

Using this recursive multiplication, we need

$$\sim n^{\log_2 7} = n^{2.81},$$

operations to multiply $n \times n$ matrices.

Fast Matrix Multiplication

The matrix multiplication exponent is denoted by ω .

The $n \times n$ by $n \times n$ multiplication requires

~ n^{ω} operations.

The best known bound is $\omega < 2.38$ — *Coppersmith, Winograd '90, Stathers '10, Williams '11.*

Fast Matrix Multiplication

In $O(n^{\omega})$ time for a $n \times n$ matrix we can:

- compute the determinant,
- compute the characteristic polynomial,
- compute the inverse matrix,
- solve the system of linear equations,
- compute the determinant of polynomial matrix,
- solve the system of linear equations over polynomials.

We will use these to solve graph problems.

Algebraic Algorithms

The determinant of the $n \times n$ matrix A is given as:

$$\det(A) = \sum_{p \in \Pi_n} \sigma(p) \prod_{i=0}^n a_{i,p_i}.$$

Is it possible to encode the graph problem in the matrix *A* in such a way that the element of the sum correspond to the solution of the problem?

By testing if the determinant is non-zero we will know if the problem has a solution.

Dynamic Problems

We want to solve given problem for a data structure that can be changed, e.g., we add and remove edges from the graph.

Can the algebraic methods be used in such a case?

YES

- if we can show dynamic algorithms for algebraic problems,
- if we can show appropriate reductions.

Example: Matchings

A *matching* in the graph G = (V, E) is a subset of edges $M \subseteq E$ such, that no two edges in M share a common endpoint.

A *perfect* matching is a matching of size |V|/2.

We want to:

- test if a graph contains a perfect matching,
- find any perfect matching in a graph,
- find the maximum matching in the graph.

A symbolic adjacency matrix of the bipartite graph:

$$\det \begin{pmatrix} x_{11} & 0 & x_{13} & 0 & 0 & 0 \\ x_{21} & x_{22} & 0 & 0 & 0 & 0 \\ x_{31} & 0 & 0 & x_{34} & 0 & 0 \\ 0 & x_{42} & x_{43} & 0 & 0 & x_{46} \\ 0 & 0 & 0 & x_{54} & x_{55} & x_{56} \\ 0 & 0 & 0 & 0 & 0 & x_{66} \end{pmatrix} =$$

 $= -x_{13}x_{21}x_{34}x_{42}x_{55}x_{66} - x_{11}x_{22}x_{34}x_{43}x_{55}x_{66}.$

A symbolic adjacency matrix of the bipartite graph:

 $det(\tilde{B}(G)) =$ $-x_{13}x_{21}x_{34}x_{42}x_{55}x_{66}$ $-x_{11}x_{22}x_{34}x_{43}x_{55}x_{66}.$

A symbolic adjacency matrix of the bipartite graph:

- $\det(\tilde{B}(G)) =$
- $-x_{13}x_{21}x_{34}x_{42}x_{55}x_{66}$

 $-x_{11}x_{22}x_{34}x_{43}x_{55}x_{66}.$

A symbolic adjacency matrix of the bipartite graph:

- $\det(\tilde{B}(G)) = -x_{13}x_{21}x_{34}x_{42}x_{55}x_{66}$
 - $-x_{11}x_{22}x_{34}x_{43}x_{55}x_{66}.$

The determinant is given as:

$$\det(A) = \sum_{p \in \Pi_n} \sigma(p) \prod_{i=1}^n a_{i,p_i}.$$

p assigns different vertex p_i to each vertex *i*.

The elements of the sum correspond to perfect matchings in the graph.

The determinant is non-zero iff the graph has a perfect matching.

Lovász's Idea

The polynomial det($\tilde{B}(G)$) can have exponentially many terms. Can we efficiently test whether it is non-zero?

Substitute random numbers into variables in $\tilde{B}(G)$ and compute the determinant of the resulting matrix B — *random adjacency matrix*.

With high probability det $B \neq 0$ iff det $\tilde{B}(G) \neq 0$, because "polynomials do not have many zeros".

There is a perfect matchings.

There is a perfect matchings.

There is no perfect matchings.

There is no perfect matchings.

Zippel-Schwartz Lemma

Lemma 1 (Zippel, Schwartz) Let $f(x_1, ..., x_k)$ be a degree n polynomial over the field F. Polynomial f has no more than $\frac{n}{|F|}|F|^k$ zeros.

Let $F = Z_p$ for some prime number $p = \Theta(n^{1+c})$, then the operations in Z_p can be performed in constant time.

The probability of a *false zero* – we get zero value for a non-zero polynomial – equals $O(\frac{1}{n^c})$.

Shortest Cycle Problem

We will study graphs G = (V, E) with integer edge weights $w : E \rightarrow [-W, W]$ but without negative weight cylces.

In the *shortest cycle problem* we want to find the shortest cycle in a weighted graph *G*.

Directed and undirected problems are not equivalent.

When we bidirect an undirected graph new cycles appear, e.g., of length 2.

Shortest cycle problem

Complexity	Author
$O(nm + n^2 \log n) dir.$	Johnson (1977)
$O(n^{\omega})$ nonnegative undir.	Itai & Rodeh (1977)
$O(W^{0.681}n^{2.575})$ dir.	Zwick (2000)
$O(nm + n^2 \log \log n) dir.$	Pettie (2004)
$O(n^3 \log^3 \log n / \log^2 n) dir.$	Chan (2007)
$\tilde{O}(Wn^{\omega})$ dir. and nonnega-	Roditty & Vassilevska-
tive undir	Williams (2011)
$\tilde{O}(Wn^{\omega})$	Cygan, S., Gabow '12

Shortest Cycles: Idea

For directed graph $\overrightarrow{G} = (V, E)$ we define a symbolic $n \times n$ adjacency matrix $\widetilde{A}(\overrightarrow{G})$ as

$$\tilde{A}(\overrightarrow{G})_{i,j} = \begin{cases} x_{i,j} & \text{if } (i,j) \in E, \\ 0 & \text{otherwise,} \end{cases}$$

where $x_{i,j}$ are unique variables.

Theorem 2 There exists a cycle in G if and only if

$$\det\left(\tilde{A}(\overrightarrow{G})+I\right)-1\neq 0.$$

Determinant

An example of the adjacency matrix:

Determinant

 $det(\tilde{A}(G)) = x_{1,2}x_{2,3}x_{3,5}x_{5,6}x_{6,1} +$ $-x_{1,2}x_{2,4}x_{4,1} - x_{1,2}x_{2,4}x_{4,5}x_{5,6}x_{6,1} +$ $+x_{1,2}x_{2,4}x_{4,3}x_{3,5}x_{5,6}x_{6,1} +$ $-x_{1,2}x_{2,4}x_{4,1}x_{5,6}x_{6,5} + x_{5,6}x_{6,5} + 1.$

Terms of the determinant correspond to cycle packings in the graph.

Some Definitions

Let $deg_y^*(p)$ be the term of p with the smallest degree in y:

$$\deg_y^*(y^{10} + 5y^4 + xy^3 + x^2) = 3.$$

Similarly, term^{*}_y(p) denotes term of degree deg^{*}_y(p).

Weights

For the directed graph $\overrightarrow{G} = (V, E)$ with weights $w: E \rightarrow [-W, W]$ we define the symbolic $n \times n$ adjacency matrix $\widetilde{A}(\overrightarrow{G})$ as

$$\widetilde{A}(\overrightarrow{G},w)_{i,j} = \begin{cases} x_{i,j}y^{w(ij)} & \text{if } (i,j) \in E, \\ 0 & \text{otherwise,} \end{cases}$$

where $x_{i,j}$ are unique variables.

Theorem 3 The weight of the shortest cycle in \overrightarrow{G} is equal to $\deg_y^* \left(\det \left(\widetilde{A}(\overrightarrow{G}, w) + I \right) - 1 \right)$.

Determinant

An example of the adjacency matrix:

$$\tilde{A}(\overrightarrow{G},w) + I$$

<i>1</i>	<i>x</i> _{1,2} <i>y</i>	0	0	0	0	
0	1	<i>x</i> _{2,3} <i>y</i>	<i>x</i> _{2,4} <i>y</i>	0	0	
0	0	1	0	<i>x</i> _{3,5} <i>y</i>	0	
<i>x</i> _{4,1} <i>y</i>	0	<i>x</i> _{4,3} <i>y</i>	1	0	0	
0	0	0	0	1	<i>x</i> _{5,6} <i>y</i>	
x _{6,1} y	0	0	0	<i>x</i> _{6,5} <i>y</i>	1	

 \mathbf{N}

Determinant

$$\det(\tilde{A}(\vec{G},w)+I) = x_{1,2}x_{2,3}x_{3,5}x_{5,6}x_{6,1}y^5 +$$

$$\Rightarrow \begin{array}{l} -x_{1,2}x_{2,4}x_{4,1}y^3 - x_{1,2}x_{2,4}x_{4,5}x_{5,6}x_{6,1}y^5 +$$

$$+x_{1,2}x_{2,4}x_{4,3}x_{3,5}x_{5,6}x_{6,1}y^6 +$$

$$-x_{1,2}x_{2,4}x_{4,1}x_{5,6}x_{6,5}y^5 + x_{5,6}x_{6,5}y^2 + 1.$$

We already know that the terms correspond to cycle packings.

Hence, the degree of *y* correspond to their weights.

Strojohann's Algorithm

Some of these problems can be solved for matrix polynomials as well.

Theorem 4 (Strojohann '03) Let A be a matrix polynomial of degree W and size $n \times n$, let b be a vector polynomial of degree W and size n, then in $O(Wn^{\omega})$ time we can compute:

determinant det(A),

■ solve linear system of equations, i.e., A⁻¹b, with high probability.

Some Problems

The matrix $\tilde{A}(\vec{G}, w) + I$ is a symbolic matrix we cannot efficiently compute its determinant. \Rightarrow we can substitute random numbers for the variables.

The matrix $\tilde{A}(\vec{G}, w) + I$ is not a polynomial we cannot apply Strojohann's theorem directly. \Rightarrow we can use

$$(\tilde{A}(\overrightarrow{G},w)+I)y^{W}.$$

Algorithm for the Shortest Cycle

- ^{1:} Substitute random numbers for variables in $\tilde{A}(G) + I$ to obtain A.
- 2: Compute $\delta = \det(Ay^W) y^{nW}$ using Strojohann's theorem.

3: Return
$$\deg_y^*(\delta) - nW$$
.

Dynamic Functions

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be an *n* argument function returning *m* results.

- A dynamic algorithm for *f* supports following operations:
- initialization(x_1, \ldots, x_n): set the input vector to (x_1, \ldots, x_n) ,
- **update**(k, x'_k): change the *k*-th input to x'_k ,
- **query(***k***):** return the *k*-th result.

We will consider the problems of dynamically computing the determinant, the inverse matrix and the matrix rank.

We are given the matrix:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

$$\det(A) = -2$$

We are given the matrix:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

 $\det(A) = -2$

After the change:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

 $\det(A) = -4$

We are given the matrix:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

 $\det(A) = -2$

After the change:

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

 $\det(A) = 2$

Dynamic Matrix Inverse

Theorem 5 (Sherman and Morrison '49)
The problem of dynamically computing:
the determinant,

• *the inverse matrix,*

for non-singular column updates can be solved with the following costs:

- initialization: $O(n^{\omega})$ time,
- update: $O(n^2)$ time,
- **query:** *O*(1) *time.*

We are given the matrix:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

$$\det(A) = -2$$

We are given the matrix:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

 $\det(A) = -2$

After the change:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$

 $\det(A) = 0$

We are given the matrix:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

 $\det(A) = -2$

After the change:

For a given graph:

Is there a path from v_1 to v_4 ?

For a given graph:

Is there a path from v_1 to v_4 ? YES

For a given graph:

Is there a path from v_1 to v_4 ?

For a given graph:

Is there a path from v_1 to v_4 ?

	Update	Query
Henzinger and King '95	$\tilde{O}(nm^{0.58})$	$\Theta(n/\log n)$
King and Sagert '99	$O(n^{2.26})$	<i>O</i> (1)
King '99	$O(n^2 \log n)$	<i>O</i> (1)
Demetrescu and Italiano '00	$O(n^2)$	<i>O</i> (1)
Roditty and Zwick '02	$O(m\sqrt{n})$	$O(\sqrt{n})$
Roditty and Zwick '04	$O(m + n \log n)$	<i>O</i> (<i>n</i>)
<i>S. '04 (worst-case but randomized)</i>	$O(n^2)$	<i>O</i> (1)

Symbolic adjacency matrix of the graph:

Let us compute $\operatorname{adj}(A)_{1,3} = \operatorname{det}(A^{3,1})$.

The monomials of the determinant correspond to paths from v_1 to v_3 in G.

Theorem 6 (S. '04) Let \$\tilde{A}(\vec{G})\$ be a symbolic adjacency matrix of \$\vec{G}\$, substitute random numbers into variables in obtaining the matrix \$A\$:
there is a path from i to j in \$\vec{G}\$ iff \$(\vec{A}(\vec{G}) + I)_{ij}^{-1}\$ is non-zero (with high probability).

This allows us to compute the transitive closure by inverting the matrix once — can be easily used in the dynamic case.

Transitive Closure

Theorem 7 (S. '04)

Dynamic matrix inverse Update in $O(n^{\alpha})$ time Query in $O(n^{\beta})$ time can assume nonsingularity

 $\underline{\mathcal{M}}$

Dynamic transitive closure Update in $O(n^{\alpha})$ time Query in $O(n^{\beta})$ time randomized with one sided error

Algorithm for Transitive Closure

- Generate random adjacency matrix A from the adjacency matrix $\tilde{A}(\vec{G}) + I$ by substituting $x_{i,j}$ with a random numbers from Z_p .
- compute the adjoint of the matrix *A*

$$\operatorname{adj}(A) = \operatorname{det}(A)A^{-1},$$

• with high probability $adj(A)_{i,j} \neq 0$ iff there is a path from *i* to *j* in \overrightarrow{G} .

The algorithm works in $O(n^{\omega})$ time.

Single Source Shortest Paths

For a weighted directed graph G = (V, E), where $w : E \rightarrow \{-W, ..., 0, ..., W\}$ is the edge weight function, we denote by $dist_G(i, j)$ the distance from *i* to *j*.

For given source *s* we want to find distances from *s* to all other nodes in *G*, or detect negative length cycle.

Single Source Shortest Paths

Complexity	Author
$O(n^4)$	Shimbel (1955)
$O(n^2 m W)$	Ford (1956)
O(nm)	Bellman (1958), Moore (1959)
$O(n^{\frac{3}{4}}m\log W)$	Gabow (1983)
$O(\sqrt{n}m\log(nW))$	Gabow and Tarjan (1989)
$O(\sqrt{n}m\log(W))$	Goldberg (1993)
$O(n^{2.38}W)$	S. '05 and Yuster and Zwick '05

The Idea — Weighted Case

Theorem 8

$$\operatorname{dist}_{G}(i,j) = \operatorname{deg}_{u}^{*} \left(\operatorname{adj} \left(\widetilde{G}, w \right) + I \right)_{i,j} \right).$$

Corollary 9 *Let G be a directed weighted graph without negative length cycles then*

$$\operatorname{dist}_{G}(i,j) = \operatorname{deg}_{y}^{*}\left(\operatorname{adj}\left((\tilde{G},w) + I)y^{W}\right)_{i,j}\right) - (n-1)W.$$

Algorithm

- Generate random adjacency matrix A from the adjacency matrix $(\tilde{A}(G) + I)y^W$ by substituting $x_{i,j}$ with a random numbers from Z_p .
- Compute det(A^T) and $(A^T)^{-1}e_i$ with Storjohann's Algorithm,
- With high probability

$$\operatorname{dist}_{G}(i,j) = \operatorname{deg}_{\mathcal{Y}}^{*}\left(\left(\operatorname{det}(A^{T})\left(A^{T}\right)^{-1}e_{i}\right)_{j}\right),$$

because $\operatorname{adj}(A) = \operatorname{det}(A)A^{-1}$.

Conclusions

- The algebraic techniques can be used to construct the asymptotically fastest algorithms for:
- dynamic transitive closure,
- dynamic distances in graphs,
- dynamic vertex connectivity,
- dynamic maximum matchings,
- maximum matchings in graphs,
- maximum weighted matchings in graphs.