
- p. 1/49

Algebraic Graph Algorithms
Part I

Marek Cygan & Piotr Sankowski

University of Warsaw

Algorithmic Trends 19.02.2014

- p. 2/49

Outline - Part I & II

� Algebraic algorithms - idea

� Simple example - perfect matchings

� Shortest cycles in directed graphs

� Shortest paths in directed graphs

� Dynamic matrix algorithms
� determinant and inverse

� Dynamic graph algorithms
� transitive closure

� Static graph algorithms
� matchings in graphs

- p. 3/49

Matrix Multiplication

C =











a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...

an,1 an,2 · · · an,n











×











b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...

bn,1 bn,2 · · · bn,n











Naive algorithm

ci,j =
n

∑
k=1

ai,kbk,j = ai,1b1,j + ai,2b2,j + . . . + ai,nbn,j.

requires n operations to compute each element of C.
This gives ∼ n3 operations in total.

- p. 4/49

Strassen’s Algorithm

[

c1,1 c1,2

c2,1 c2,2

]

=

[

a1,1 a1,2

a2,1 a2,2

]

×
[

b1,1 b1,2

b2,1 b2,2

]

Q1 = (a1,1 + a2,2)(b1,1 + b2,2)

Q2 = (a2,1 + a2,2)b1,1

Q3 = a1,1(b1,2 − b2,2)

Q4 = a2,2(−b1,1 + b2,1)

Q5 = (a1,1 + a1,2)b2,2

Q6 = (−a1,1 + a2,1)(b1,1 + b1,2)

Q7 = (a1,2 − a2,2)(b2,1 + b2,2)

c1,1 = Q1 + Q4 − Q5 + Q7

c2,1 = Q2 + Q4

c1,2 = Q3 + Q5

c2,2 = Q1 + Q3 − Q2 + Q6

The matrix C can be computed with use of 7
multiplications instead 8!

- p. 5/49

Strassen Algorithm

After dividing the matrix in blocks we get
[

C1,1 C1,2

C2,1 C2,2

]

=

[

A1,1 A1,2

A2,1 A2,2

]

×
[

B1,1 B1,2

B2,1 B2,2

]

we have to do 2 × 2 matrix multiplication on
blocks.

Using this recursive multiplication, we need

∼ nlog2 7 = n2.81,

operations to multiply n × n matrices.

- p. 6/49

Fast Matrix Multiplication

The matrix multiplication exponent is denoted
by ω.

The n × n by n × n multiplication requires
















a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

















×

















b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n

...
...

. . .
...

bn,1 bn,2 · · · bn,n

















∼ nω operations.

The best known bound is ω < 2.38 —
Coppersmith, Winograd ’90, Stathers ’10, Williams ’11.

- p. 7/49

Fast Matrix Multiplication

In O(nω) time for a n × n matrix we can:

� compute the determinant,

� compute the characteristic polynomial,

� compute the inverse matrix,

� solve the system of linear equations,

� compute the determinant of polynomial
matrix,

� solve the system of linear equations over
polynomials.

We will use these to solve graph problems.

- p. 8/49

Algebraic Algorithms

The determinant of the n × n matrix A is given
as:

det(A) = ∑
p∈Πn

σ(p)
n

∏
i=0

ai,pi
.

Is it possible to encode the graph problem in the
matrix A in such a way that the element of the
sum correspond to the solution of the problem?

By testing if the determinant is non-zero we will
know if the problem has a solution.

- p. 9/49

Dynamic Problems

We want to solve given problem for a data
structure that can be changed, e.g., we add and
remove edges from the graph.

Can the algebraic methods be used in such a
case?

YES

� if we can show dynamic algorithms for
algebraic problems,

� if we can show appropriate reductions.

- p. 10/49

Example: Matchings

A matching in the graph G = (V, E) is a subset
of edges M ⊆ E such, that no two edges in M
share a common endpoint.

A perfect matching is a matching of size |V|/2.

We want to:
� test if a graph contains a perfect matching,

� find any perfect matching in a graph,

� find the maximum matching in the graph.

- p. 11/49

Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B̃(G)


























x11 0 x13 0 0 0

x21 x22 0 0 0 0

x31 0 0 x34 0 0

0 x42 x43 0 0 x46

0 0 0 x54 x55 x56

0 0 0 0 0 x66



























- p. 12/49

Symbolic Adjacency Matrix

det



















x11 0 x13 0 0 0

x21 x22 0 0 0 0

x31 0 0 x34 0 0

0 x42 x43 0 0 x46

0 0 0 x54 x55 x56

0 0 0 0 0 x66



















=

= −x13x21x34x42x55x66 − x11x22x34x43x55x66.

- p. 13/49

Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒
det(B̃(G)) =

−x13x21x34x42x55x66

−x11x22x34x43x55x66.

- p. 13/49

Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒
det(B̃(G)) =

−x13x21x34x42x55x66

−x11x22x34x43x55x66.

- p. 13/49

Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒
det(B̃(G)) =

−x13x21x34x42x55x66

−x11x22x34x43x55x66.

- p. 14/49

Symbolic Adjacency Matrix

The determinant is given as:

det(A) = ∑
p∈Πn

σ(p)
n

∏
i=1

ai,pi
.

p assigns different vertex pi to each vertex i.

The elements of the sum correspond to perfect
matchings in the graph.

The determinant is non-zero iff the graph has a
perfect matching.

- p. 15/49

Lovász’s Idea

The polynomial det(B̃(G)) can have
exponentially many terms. Can we efficiently
test whether it is non-zero?

Substitute random numbers into variables in
B̃(G) and compute the determinant of the
resulting matrix B — random adjacency matrix.

With high probability det B 6= 0 iff det B̃(G) 6= 0,
because „polynomials do not have many zeros”.

- p. 16/49

Random Adjacency Matrix

There is a perfect matchings.

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B


























1 0 −1 0 0 0

1 −1 0 0 0 0

1 0 0 1 0 0

0 1 −1 0 0 −1

0 0 0 1 −1 1

0 0 0 0 0 1



























det(B) = 2

- p. 17/49

Random Adjacency Matrix

There is a perfect matchings.

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B


























1 0 −1 0 0 0

1 1 0 0 0 0

−1 0 0 −1 0 0

0 1 1 0 0 −1

0 0 0 −1 −1 1

0 0 0 0 0 1



























det(B) = 0

- p. 18/49

Random Adjacency Matrix

There is no perfect matchings.

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B


























1 0 −1 0 0 0

1 1 0 0 0 0

−1 0 0 0 0 0

0 1 1 0 0 −1

0 0 0 −1 −1 1

0 0 0 0 0 1



























det(B) = 0

- p. 19/49

Random Adjacency Matrix

There is no perfect matchings.

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B


























1 0 −1 0 0 0

1 −1 0 0 0 0

1 0 0 0 0 0

0 1 −1 0 0 −1

0 0 0 1 −1 1

0 0 0 0 0 1



























det(B) = 0

- p. 20/49

Zippel-Schwartz Lemma

Lemma 1 (Zippel, Schwartz) Let f (x1, . . . , xk) be
a degree n polynomial over the field F. Polynomial f
has no more than n

|F| |F|k zeros.

Let F = Zp for some prime number

p = Θ(n1+c), then the operations in Zp can be
performed in constant time.

The probability of a false zero – we get zero value

for a non-zero polynomial – equals O(1
nc).

- p. 21/49

Shortest Cycle Problem

We will study graphs G = (V, E) with integer
edge weights w : E → [−W, W] but without
negative weight cylces.

In the shortest cycle problem we want to find the
shortest cycle in a weighted graph G.

Directed and undirected problems are not
equivalent.

When we bidirect an undirected graph new
cycles appear, e.g., of length 2.

- p. 22/49

Shortest cycle problem

Complexity Author

O(nm + n2 log n) dir. Johnson (1977)

O(nω) nonnegative undir. Itai & Rodeh (1977)

O(W0.681n2.575) dir. Zwick (2000)

O(nm + n2 log log n) dir. Pettie (2004)

O(n3 log3 log n/ log2 n) dir. Chan (2007)

Õ(Wnω) dir. and nonnega-
tive undir..

Roditty & Vassilevska-
Williams (2011)

Õ(Wnω) Cygan, S., Gabow ’12

- p. 23/49

Shortest Cycles: Idea

For directed graph
−→
G = (V, E) we define a symbolic

n × n adjacency matrix Ã(
−→
G) as

Ã(
−→
G)i,j =

{

xi,j if (i, j) ∈ E,

0 otherwise,

where xi,j are unique variables.

Theorem 2 There exists a cycle in G if and only if

det
(

Ã(
−→
G) + I

)

− 1 6= 0.

- p. 24/49

Determinant

An example of the adjacency matrix:
−→
G

=⇒

Ã(
−→
G) + I



























1 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

0 0 1 0 x3,5 0

x4,1 0 x4,3 1 0 0

0 0 0 0 1 x5,6

x6,1 0 0 0 x6,5 1



























- p. 25/49

Determinant

−→
G

=⇒

det(Ã(G)) = x1,2x2,3x3,5x5,6x6,1+

−x1,2x2,4x4,1 − x1,2x2,4x4,5x5,6x6,1+

+x1,2x2,4x4,3x3,5x5,6x6,1+

−x1,2x2,4x4,1x5,6x6,5 + x5,6x6,5 + 1.

Terms of the determinant correspond to cycle packings
in the graph.

- p. 26/49

Some Definitions

Let deg∗
y(p) be the term of p with the smallest

degree in y:

deg∗
y(y

10 + 5y4 + xy3 + x2) = 3.

Similarly, term∗
y(p) denotes term of degree

deg∗
y(p).

- p. 27/49

Weights

For the directed graph
−→
G = (V, E) with weights

w : E → [−W, W] we define the symbolic n × n

adjacency matrix Ã(
−→
G) as

Ã(
−→
G , w)i,j =

{

xi,jy
w(ij) if (i, j) ∈ E,

0 otherwise,

where xi,j are unique variables.

Theorem 3 The weight of the shortest cycle in
−→
G is equal

to deg∗
y

(

det
(

Ã(
−→
G , w) + I

)

− 1
)

.

- p. 28/49

Determinant

An example of the adjacency matrix:

−→
G

=⇒

Ã(
−→
G , w) + I



























1 x1,2y 0 0 0 0

0 1 x2,3y x2,4y 0 0

0 0 1 0 x3,5y 0

x4,1y 0 x4,3y 1 0 0

0 0 0 0 1 x5,6y

x6,1y 0 0 0 x6,5y 1



























- p. 29/49

Determinant

−→
G

=⇒

det(Ã(
−→
G , w)+ I) = x1,2x2,3x3,5x5,6x6,1y5+

−x1,2x2,4x4,1y3 − x1,2x2,4x4,5x5,6x6,1y5+

+x1,2x2,4x4,3x3,5x5,6x6,1y6+

−x1,2x2,4x4,1x5,6x6,5y5 + x5,6x6,5y2 + 1.

We already know that the terms correspond to cycle
packings.

Hence, the degree of y correspond to their weights.

- p. 30/49

Strojohann’s Algorithm

Some of these problems can be solved for matrix
polynomials as well.

Theorem 4 (Strojohann ’03) Let A be a matrix
polynomial of degree W and size n × n, let b be a
vector polynomial of degree W and size n, then in
O(Wnω) time we can compute:

� determinant det(A),

� solve linear system of equations, i.e., A−1b,

with high probability.

- p. 31/49

Some Problems

The matrix Ã(
−→
G , w) + I is a symbolic matrix —

we cannot efficiently compute its determinant.

⇒ we can substitute random numbers for the
variables.

The matrix Ã(
−→
G , w) + I is not a polynomial —

we cannot apply Strojohann’s theorem directly.

⇒ we can use

(Ã(
−→
G , w) + I)yW .

- p. 32/49

Algorithm for the Shortest Cycle

1: Substitute random numbers for variables in
Ã(G) + I to obtain A.

2: Compute δ = det(AyW)− ynW using
Strojohann’s theorem.

3: Return deg∗
y(δ)− nW.

- p. 33/49

Dynamic Functions

Let f : Rn → Rm be an n argument function
returning m results.

A dynamic algorithm for f supports following
operations:
� initialization(x1, . . . , xn): set the input vector

to (x1, . . . , xn),

� update(k,x′
k): change the k-th input to x′

k,

� query(k): return the k-th result.

We will consider the problems of dynamically
computing the determinant, the inverse matrix
and the matrix rank.

- p. 34/49

Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

- p. 34/49

Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





1 1 2

0 2 2

2 2 2



 det(A) = −4

- p. 34/49

Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





2 1 2

2 2 2

1 2 2



 det(A) = 2

- p. 35/49

Dynamic Matrix Inverse

Theorem 5 (Sherman and Morrison ’49)
The problem of dynamically computing:
� the determinant,
� the inverse matrix,

for non-singular column updates can be solved with
the following costs:

� initialization: O(nω) time,

� update: O(n2) time,

� query: O(1) time.

- p. 36/49

Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

- p. 36/49

Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





1 1 2

0 2 2

0 2 2



 det(A) = 0

- p. 36/49

Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





1 1 2

0 2 2

0 2 2



 det(A) = 0
Algorithm returns
FALIURE.

- p. 37/49

Dynamic Transitive Closure

For a given graph:

Is there a path from v1 to v4?

- p. 37/49

Dynamic Transitive Closure

For a given graph:

Is there a path from v1 to v4? YES

- p. 37/49

Dynamic Transitive Closure

For a given graph:

Is there a path from v1 to v4?

- p. 37/49

Dynamic Transitive Closure

For a given graph:

Is there a path from v1 to v4?

- p. 38/49

Dynamic Transitive Closure

Update Query

Henzinger and King ’95 Õ(nm0.58) Θ(n/ log n)

King and Sagert ’99 O(n2.26) O(1)

King ’99 O(n2 log n) O(1)

Demetrescu and Italiano ’00 O(n2) O(1)

Roditty and Zwick ’02 O(m
√

n) O(
√

n)

Roditty and Zwick ’04 O(m + n log n) O(n)

S. ’04 (worst-case but randomized) O(n2) O(1)

- p. 39/49

Symbolic Adjacency Matrix

Symbolic adjacency matrix of the graph:

G

=⇒

Ã(
−→
G) + I



























1 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

0 0 1 0 x3,5 0

x4,1 0 x4,3 1 0 0

0 0 0 0 1 x5,6

x6,1 0 0 0 x6,5 1



























- p. 40/49

Symbolic Adjacency Matrix

Let us compute adj(A)1,3 = det(A3,1).

A


























1 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

0 0 1 0 x3,5 0

x4,1 0 x4,3 1 0 0

0 0 0 0 1 x5,6

x6,1 0 0 0 x6,5 1



























=⇒

A3,1



























0 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

1 0 0 0 0 0

0 0 x4,3 1 0 0

0 0 0 0 1 x5,6

0 0 0 0 x6,5 1



























- p. 41/49

Symbolic Adjacency Matrix

det



















0 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

1 0 0 0 0 0

0 0 x4,3 1 0 0

0 0 0 0 1 x5,6

0 0 0 0 x6,5 1



















=

= x1,2x2,3 − x1,2x2,4x4,3+

−x1,2x2,3x5,6x6,5 + x1,2x2,4x4,3x5,6x6,5.

The monomials of the determinant correspond to
paths from v1 to v3 in G.

- p. 42/49

Dynamic Transitive Closure

Theorem 6 (S. ’04) Let Ã(
−→
G) be a symbolic

adjacency matrix of
−→
G , substitute random numbers

into variables in obtaining the matrix A:

� there is a path from i to j in
−→
G iff (Ã(

−→
G) + I)−1

ij

is non-zero (with high probability).

This allows us to compute the transitive closure
by inverting the matrix once — can be easily
used in the dynamic case.

- p. 43/49

Transitive Closure

Theorem 7 (S. ’04)
Dynamic matrix inverse

Update in O(nα) time

Query in O(nβ) time

can assume nonsingularity ⇒

⇒ Dynamic transitive closure

Update in O(nα) time

Query in O(nβ) time

randomized with one sided error

- p. 44/49

Algorithm for Transitive Closure

� Generate random adjacency matrix A from the

adjacency matrix Ã(
−→
G) + I by substituting xi,j

with a random numbers from Zp.

� compute the adjoint of the matrix A

adj(A) = det(A)A−1,

� with high probability adj(A)i,j 6= 0 iff there is a

path from i to j in
−→
G .

The algorithm works in O(nω) time.

- p. 45/49

Single Source Shortest Paths

For a weighted directed graph G = (V, E),
where w : E → {−W, . . . , 0, . . . , W} is the edge
weight function, we denote by distG(i, j) the
distance from i to j.

For given source s we want to find distances
from s to all other nodes in G, or detect negative
length cycle.

- p. 46/49

Single Source Shortest Paths

Complexity Author

O(n4) Shimbel (1955)

O(n2mW) Ford (1956)

O(nm) Bellman (1958), Moore (1959)

O(n
3
4 m log W) Gabow (1983)

O(
√

nm log(nW)) Gabow and Tarjan (1989)

O(
√

nm log(W)) Goldberg (1993)

O(n
2.38

W) S. ’05 and Yuster and Zwick ’05

- p. 47/49

The Idea — Weighted Case

Theorem 8

distG(i, j) = deg∗
u

(

adj
(

Ã(
−→
G , w) + I

)

i,j

)

.

Corollary 9 Let G be a directed weighted graph without
negative length cycles then

distG(i, j) = deg∗
y

(

adj
(

(Ã(
−→
G , w) + I)yW

)

i,j

)

− (n− 1)W.

- p. 48/49

Algorithm

� Generate random adjacency matrix A from the

adjacency matrix (Ã(G) + I)yW by
substituting xi,j with a random numbers from
Zp.

� Compute det(AT) and
(

AT
)−1

ei with
Storjohann’s Algorithm,

� With high probability

distG(i, j) = deg∗
y

(

(

det(AT)
(

AT
)−1

ei

)

j

)

,

because adj(A) = det(A)A−1.

- p. 49/49

Conclusions

The algebraic techniques can be used to construct the
asymptotically fastest algorithms for:

� dynamic transitive closure,

� dynamic distances in graphs,

� dynamic vertex connectivity,

� dynamic maximum matchings,

� maximum matchings in graphs,

� maximum weighted matchings in graphs.

	Outline - Part I & II
	Matrix Multiplication
	Strassen's Algorithm
	Strassen Algorithm
	Fast Matrix Multiplication
	Fast Matrix Multiplication
	Algebraic Algorithms
	Dynamic Problems
	Example: Matchings
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix

	Symbolic Adjacency Matrix
	Lovász's Idea
	Random Adjacency Matrix
	Random Adjacency Matrix
	Random Adjacency Matrix
	Random Adjacency Matrix
	Zippel-Schwartz Lemma
	Shortest Cycle Problem
	Shortest cycle problem
	Shortest Cycles: Idea
	Determinant
	Determinant
	Some Definitions
	Weights
	Determinant
	Determinant
	Strojohann's Algorithm
	Some Problems
	Algorithm for the Shortest Cycle
	Dynamic Functions
	Dynamic Matrix Functions
	Dynamic Matrix Functions
	Dynamic Matrix Functions

	Dynamic Matrix Inverse
	Dynamic Matrix Functions
	Dynamic Matrix Functions
	Dynamic Matrix Functions

	Dynamic Transitive Closure
	Dynamic Transitive Closure
	Dynamic Transitive Closure
	Dynamic Transitive Closure

	Dynamic Transitive Closure
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Symbolic Adjacency Matrix
	Dynamic Transitive Closure
	Transitive Closure
	Algorithm for Transitive Closure
	Single Source Shortest Paths
	Single Source Shortest Paths
	The Idea — Weighted Case
	Algorithm
	Conclusions

