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Outline - Part I & II

� Algebraic algorithms - idea

� Simple example - perfect matchings

� Shortest cycles in directed graphs

� Shortest paths in directed graphs

� Dynamic matrix algorithms
� determinant and inverse

� Dynamic graph algorithms
� transitive closure

� Static graph algorithms
� matchings in graphs
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Matrix Multiplication

C =











a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

... . . . ...

an,1 an,2 · · · an,n











×











b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

... . . . ...

bn,1 bn,2 · · · bn,n











Naive algorithm

ci,j =
n

∑
k=1

ai,kbk,j = ai,1b1,j + ai,2b2,j + . . . + ai,nbn,j.

requires n operations to compute each element of C.
This gives ∼ n3 operations in total.
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Strassen’s Algorithm

[

c1,1 c1,2

c2,1 c2,2

]

=

[

a1,1 a1,2

a2,1 a2,2

]

×
[

b1,1 b1,2

b2,1 b2,2

]

Q1 = (a1,1 + a2,2)(b1,1 + b2,2)

Q2 = (a2,1 + a2,2)b1,1

Q3 = a1,1(b1,2 − b2,2)

Q4 = a2,2(−b1,1 + b2,1)

Q5 = (a1,1 + a1,2)b2,2

Q6 = (−a1,1 + a2,1)(b1,1 + b1,2)

Q7 = (a1,2 − a2,2)(b2,1 + b2,2)

c1,1 = Q1 + Q4 − Q5 + Q7

c2,1 = Q2 + Q4

c1,2 = Q3 + Q5

c2,2 = Q1 + Q3 − Q2 + Q6

The matrix C can be computed with use of 7
multiplications instead 8!
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Strassen Algorithm

After dividing the matrix in blocks we get
[

C1,1 C1,2

C2,1 C2,2

]

=

[

A1,1 A1,2

A2,1 A2,2

]

×
[

B1,1 B1,2

B2,1 B2,2

]

we have to do 2 × 2 matrix multiplication on
blocks.

Using this recursive multiplication, we need

∼ nlog2 7 = n2.81,

operations to multiply n × n matrices.



- p. 6/49

Fast Matrix Multiplication

The matrix multiplication exponent is denoted
by ω.

The n × n by n × n multiplication requires
















a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

















×

















b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n

...
...

. . .
...

bn,1 bn,2 · · · bn,n

















∼ nω operations.

The best known bound is ω < 2.38 —
Coppersmith, Winograd ’90, Stathers ’10, Williams ’11.
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Fast Matrix Multiplication

In O(nω) time for a n × n matrix we can:

� compute the determinant,

� compute the characteristic polynomial,

� compute the inverse matrix,

� solve the system of linear equations,

� compute the determinant of polynomial
matrix,

� solve the system of linear equations over
polynomials.

We will use these to solve graph problems.
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Algebraic Algorithms

The determinant of the n × n matrix A is given
as:

det(A) = ∑
p∈Πn

σ(p)
n

∏
i=0

ai,pi
.

Is it possible to encode the graph problem in the
matrix A in such a way that the element of the
sum correspond to the solution of the problem?

By testing if the determinant is non-zero we will
know if the problem has a solution.
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Dynamic Problems

We want to solve given problem for a data
structure that can be changed, e.g., we add and
remove edges from the graph.

Can the algebraic methods be used in such a
case?

YES

� if we can show dynamic algorithms for
algebraic problems,

� if we can show appropriate reductions.
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Example: Matchings

A matching in the graph G = (V, E) is a subset
of edges M ⊆ E such, that no two edges in M
share a common endpoint.

A perfect matching is a matching of size |V|/2.

We want to:
� test if a graph contains a perfect matching,

� find any perfect matching in a graph,

� find the maximum matching in the graph.
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Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B̃(G)


























x11 0 x13 0 0 0

x21 x22 0 0 0 0

x31 0 0 x34 0 0

0 x42 x43 0 0 x46

0 0 0 x54 x55 x56

0 0 0 0 0 x66


























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Symbolic Adjacency Matrix

det



















x11 0 x13 0 0 0

x21 x22 0 0 0 0

x31 0 0 x34 0 0

0 x42 x43 0 0 x46

0 0 0 x54 x55 x56

0 0 0 0 0 x66



















=

= −x13x21x34x42x55x66 − x11x22x34x43x55x66.
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Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒
det(B̃(G)) =

−x13x21x34x42x55x66

−x11x22x34x43x55x66.
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Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒
det(B̃(G)) =

−x13x21x34x42x55x66

−x11x22x34x43x55x66.
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Symbolic Adjacency Matrix

A symbolic adjacency matrix of the bipartite
graph:

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒
det(B̃(G)) =

−x13x21x34x42x55x66

−x11x22x34x43x55x66.
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Symbolic Adjacency Matrix

The determinant is given as:

det(A) = ∑
p∈Πn

σ(p)
n

∏
i=1

ai,pi
.

p assigns different vertex pi to each vertex i.

The elements of the sum correspond to perfect
matchings in the graph.

The determinant is non-zero iff the graph has a
perfect matching.
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Lovász’s Idea

The polynomial det(B̃(G)) can have
exponentially many terms. Can we efficiently
test whether it is non-zero?

Substitute random numbers into variables in
B̃(G) and compute the determinant of the
resulting matrix B — random adjacency matrix.

With high probability det B 6= 0 iff det B̃(G) 6= 0,
because „polynomials do not have many zeros”.
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Random Adjacency Matrix

There is a perfect matchings.

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B


























1 0 −1 0 0 0

1 −1 0 0 0 0

1 0 0 1 0 0

0 1 −1 0 0 −1

0 0 0 1 −1 1

0 0 0 0 0 1



























det(B) = 2
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Random Adjacency Matrix

There is a perfect matchings.

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B


























1 0 −1 0 0 0

1 1 0 0 0 0

−1 0 0 −1 0 0

0 1 1 0 0 −1

0 0 0 −1 −1 1

0 0 0 0 0 1



























det(B) = 0
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Random Adjacency Matrix

There is no perfect matchings.

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B


























1 0 −1 0 0 0

1 1 0 0 0 0

−1 0 0 0 0 0

0 1 1 0 0 −1

0 0 0 −1 −1 1

0 0 0 0 0 1



























det(B) = 0
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Random Adjacency Matrix

There is no perfect matchings.

G

1 1

2 2

3 3

4 4

5 5

6 6

=⇒

B


























1 0 −1 0 0 0

1 −1 0 0 0 0

1 0 0 0 0 0

0 1 −1 0 0 −1

0 0 0 1 −1 1

0 0 0 0 0 1



























det(B) = 0
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Zippel-Schwartz Lemma

Lemma 1 (Zippel, Schwartz) Let f (x1, . . . , xk) be
a degree n polynomial over the field F. Polynomial f
has no more than n

|F| |F|k zeros.

Let F = Zp for some prime number

p = Θ(n1+c), then the operations in Zp can be
performed in constant time.

The probability of a false zero – we get zero value

for a non-zero polynomial – equals O( 1
nc ).
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Shortest Cycle Problem

We will study graphs G = (V, E) with integer
edge weights w : E → [−W, W] but without
negative weight cylces.

In the shortest cycle problem we want to find the
shortest cycle in a weighted graph G.

Directed and undirected problems are not
equivalent.

When we bidirect an undirected graph new
cycles appear, e.g., of length 2.
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Shortest cycle problem

Complexity Author

O(nm + n2 log n) dir. Johnson (1977)

O(nω) nonnegative undir. Itai & Rodeh (1977)

O(W0.681n2.575) dir. Zwick (2000)

O(nm + n2 log log n) dir. Pettie (2004)

O(n3 log3 log n/ log2 n) dir. Chan (2007)

Õ(Wnω) dir. and nonnega-
tive undir..

Roditty & Vassilevska-
Williams (2011)

Õ(Wnω) Cygan, S., Gabow ’12
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Shortest Cycles: Idea

For directed graph
−→
G = (V, E) we define a symbolic

n × n adjacency matrix Ã(
−→
G ) as

Ã(
−→
G )i,j =

{

xi,j if (i, j) ∈ E,

0 otherwise,

where xi,j are unique variables.

Theorem 2 There exists a cycle in G if and only if

det
(

Ã(
−→
G ) + I

)

− 1 6= 0.
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Determinant

An example of the adjacency matrix:
−→
G

=⇒

Ã(
−→
G ) + I



























1 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

0 0 1 0 x3,5 0

x4,1 0 x4,3 1 0 0

0 0 0 0 1 x5,6

x6,1 0 0 0 x6,5 1


























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Determinant

−→
G

=⇒

det(Ã(G)) = x1,2x2,3x3,5x5,6x6,1+

−x1,2x2,4x4,1 − x1,2x2,4x4,5x5,6x6,1+

+x1,2x2,4x4,3x3,5x5,6x6,1+

−x1,2x2,4x4,1x5,6x6,5 + x5,6x6,5 + 1.

Terms of the determinant correspond to cycle packings
in the graph.
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Some Definitions

Let deg∗
y(p) be the term of p with the smallest

degree in y:

deg∗
y(y

10 + 5y4 + xy3 + x2) = 3.

Similarly, term∗
y(p) denotes term of degree

deg∗
y(p).
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Weights

For the directed graph
−→
G = (V, E) with weights

w : E → [−W, W] we define the symbolic n × n

adjacency matrix Ã(
−→
G ) as

Ã(
−→
G , w)i,j =

{

xi,jy
w(ij) if (i, j) ∈ E,

0 otherwise,

where xi,j are unique variables.

Theorem 3 The weight of the shortest cycle in
−→
G is equal

to deg∗
y

(

det
(

Ã(
−→
G , w) + I

)

− 1
)

.
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Determinant

An example of the adjacency matrix:

−→
G

=⇒

Ã(
−→
G , w) + I



























1 x1,2y 0 0 0 0

0 1 x2,3y x2,4y 0 0

0 0 1 0 x3,5y 0

x4,1y 0 x4,3y 1 0 0

0 0 0 0 1 x5,6y

x6,1y 0 0 0 x6,5y 1


























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Determinant

−→
G

=⇒

det(Ã(
−→
G , w)+ I) = x1,2x2,3x3,5x5,6x6,1y5+

−x1,2x2,4x4,1y3 − x1,2x2,4x4,5x5,6x6,1y5+

+x1,2x2,4x4,3x3,5x5,6x6,1y6+

−x1,2x2,4x4,1x5,6x6,5y5 + x5,6x6,5y2 + 1.

We already know that the terms correspond to cycle
packings.

Hence, the degree of y correspond to their weights.
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Strojohann’s Algorithm

Some of these problems can be solved for matrix
polynomials as well.

Theorem 4 (Strojohann ’03) Let A be a matrix
polynomial of degree W and size n × n, let b be a
vector polynomial of degree W and size n, then in
O(Wnω) time we can compute:

� determinant det(A),

� solve linear system of equations, i.e., A−1b,

with high probability.
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Some Problems

The matrix Ã(
−→
G , w) + I is a symbolic matrix —

we cannot efficiently compute its determinant.

⇒ we can substitute random numbers for the
variables.

The matrix Ã(
−→
G , w) + I is not a polynomial —

we cannot apply Strojohann’s theorem directly.

⇒ we can use

(Ã(
−→
G , w) + I)yW .
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Algorithm for the Shortest Cycle

1: Substitute random numbers for variables in
Ã(G) + I to obtain A.

2: Compute δ = det(AyW)− ynW using
Strojohann’s theorem.

3: Return deg∗
y(δ)− nW.
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Dynamic Functions

Let f : Rn → Rm be an n argument function
returning m results.

A dynamic algorithm for f supports following
operations:
� initialization(x1, . . . , xn): set the input vector

to (x1, . . . , xn),

� update(k,x′
k): change the k-th input to x′

k,

� query(k): return the k-th result.

We will consider the problems of dynamically
computing the determinant, the inverse matrix
and the matrix rank.
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





1 1 2

0 2 2

2 2 2



 det(A) = −4
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





2 1 2

2 2 2

1 2 2



 det(A) = 2
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Dynamic Matrix Inverse

Theorem 5 (Sherman and Morrison ’49)
The problem of dynamically computing:
� the determinant,
� the inverse matrix,

for non-singular column updates can be solved with
the following costs:

� initialization: O(nω) time,

� update: O(n2) time,

� query: O(1) time.
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





1 1 2

0 2 2

0 2 2



 det(A) = 0
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





1 1 2

0 2 2

0 2 2



 det(A) = 0
Algorithm returns
FALIURE.
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Dynamic Transitive Closure

For a given graph:

Is there a path from v1 to v4?
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Dynamic Transitive Closure

For a given graph:

Is there a path from v1 to v4? YES
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Dynamic Transitive Closure

For a given graph:

Is there a path from v1 to v4?
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Dynamic Transitive Closure

For a given graph:

Is there a path from v1 to v4?
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Dynamic Transitive Closure

Update Query

Henzinger and King ’95 Õ(nm0.58) Θ(n/ log n)

King and Sagert ’99 O(n2.26) O(1)

King ’99 O(n2 log n) O(1)

Demetrescu and Italiano ’00 O(n2) O(1)

Roditty and Zwick ’02 O(m
√

n) O(
√

n)

Roditty and Zwick ’04 O(m + n log n) O(n)

S. ’04 (worst-case but randomized) O(n2) O(1)
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Symbolic Adjacency Matrix

Symbolic adjacency matrix of the graph:

G

=⇒

Ã(
−→
G ) + I



























1 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

0 0 1 0 x3,5 0

x4,1 0 x4,3 1 0 0

0 0 0 0 1 x5,6

x6,1 0 0 0 x6,5 1


























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Symbolic Adjacency Matrix

Let us compute adj(A)1,3 = det(A3,1).

A


























1 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

0 0 1 0 x3,5 0

x4,1 0 x4,3 1 0 0

0 0 0 0 1 x5,6

x6,1 0 0 0 x6,5 1



























=⇒

A3,1



























0 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

1 0 0 0 0 0

0 0 x4,3 1 0 0

0 0 0 0 1 x5,6

0 0 0 0 x6,5 1


























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Symbolic Adjacency Matrix

det



















0 x1,2 0 0 0 0

0 1 x2,3 x2,4 0 0

1 0 0 0 0 0

0 0 x4,3 1 0 0

0 0 0 0 1 x5,6

0 0 0 0 x6,5 1



















=

= x1,2x2,3 − x1,2x2,4x4,3+

−x1,2x2,3x5,6x6,5 + x1,2x2,4x4,3x5,6x6,5.

The monomials of the determinant correspond to
paths from v1 to v3 in G.
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Dynamic Transitive Closure

Theorem 6 (S. ’04) Let Ã(
−→
G ) be a symbolic

adjacency matrix of
−→
G , substitute random numbers

into variables in obtaining the matrix A:

� there is a path from i to j in
−→
G iff (Ã(

−→
G ) + I)−1

ij

is non-zero (with high probability).

This allows us to compute the transitive closure
by inverting the matrix once — can be easily
used in the dynamic case.
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Transitive Closure

Theorem 7 (S. ’04)
Dynamic matrix inverse

Update in O(nα) time

Query in O(nβ) time

can assume nonsingularity ⇒

⇒ Dynamic transitive closure

Update in O(nα) time

Query in O(nβ) time

randomized with one sided error
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Algorithm for Transitive Closure

� Generate random adjacency matrix A from the

adjacency matrix Ã(
−→
G ) + I by substituting xi,j

with a random numbers from Zp.

� compute the adjoint of the matrix A

adj(A) = det(A)A−1,

� with high probability adj(A)i,j 6= 0 iff there is a

path from i to j in
−→
G .

The algorithm works in O(nω) time.
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Single Source Shortest Paths

For a weighted directed graph G = (V, E),
where w : E → {−W, . . . , 0, . . . , W} is the edge
weight function, we denote by distG(i, j) the
distance from i to j.

For given source s we want to find distances
from s to all other nodes in G, or detect negative
length cycle.
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Single Source Shortest Paths

Complexity Author

O(n4) Shimbel (1955)

O(n2mW) Ford (1956)

O(nm) Bellman (1958), Moore (1959)

O(n
3
4 m log W) Gabow (1983)

O(
√

nm log(nW)) Gabow and Tarjan (1989)

O(
√

nm log(W)) Goldberg (1993)

O(n
2.38

W) S. ’05 and Yuster and Zwick ’05
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The Idea — Weighted Case

Theorem 8

distG(i, j) = deg∗
u

(

adj
(

Ã(
−→
G , w) + I

)

i,j

)

.

Corollary 9 Let G be a directed weighted graph without
negative length cycles then

distG(i, j) = deg∗
y

(

adj
(

(Ã(
−→
G , w) + I)yW

)

i,j

)

− (n− 1)W.
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Algorithm

� Generate random adjacency matrix A from the

adjacency matrix (Ã(G) + I)yW by
substituting xi,j with a random numbers from
Zp.

� Compute det(AT) and
(

AT
)−1

ei with
Storjohann’s Algorithm,

� With high probability

distG(i, j) = deg∗
y

(

(

det(AT)
(

AT
)−1

ei

)

j

)

,

because adj(A) = det(A)A−1.
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Conclusions

The algebraic techniques can be used to construct the
asymptotically fastest algorithms for:

� dynamic transitive closure,

� dynamic distances in graphs,

� dynamic vertex connectivity,

� dynamic maximum matchings,

� maximum matchings in graphs,

� maximum weighted matchings in graphs.
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