Algorithmic Trends

Homework 2

Marek Cygan and Piotr Sankowski March 26, 2014 The homework is due on 09/04/2014

Problem 1. In the MAX-SAT-A-A problem we are given a CNF-SAT formula with m clauses and an integer k. The question is whether there is an assignment satisfying at least m/2 + k clauses. Show that this problem admits a kernel with $\mathcal{O}(k)$ clauses.

Problem 2. We say that a string s is a substring of s' if one can obtain s from s' by removing some (possibly empty) prefix and some (possibly empty) suffix. In the Shortest Superstring problem we are given a set of strings s_1, \ldots, s_n of length at most m, and one is to find a shortest string that contains all strings s_i as substrings.

- 1. Show that this problem is solvable in $2^n(n+m)^{\mathcal{O}(1)}$ time.
- 2. Show that this problem is solvable in $2^n(n+m)^{\mathcal{O}(1)}$ time and polynomial space.

Problem 3. In the FEEDBACK VERTEX SET IN TOURNAMENTS (FVST) we are given a directed clique, called a tournament, together with an integer k, and the goal is to remove at most k vertices to make the graph acyclic.

- 1. Show that this problem is solvable in $c^k n^{\mathcal{O}(1)}$ time.
- 2. Show that this problem is solvable in $2^k n^{\mathcal{O}(1)}$ time.