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Preface

Deviation inequalities, i.e. inequalities providing upper bounds on the quantities of the type
P(|X − a| ≥ t) (or P(X − a ≥ t)), where X is a random variable and a stands for the mean,
median or some other parameter of X, have always been among the main tools of probability
theory. The first, classical examples are the Markov and Chebyshev inequality. Although
general, they are quite weak and mathematicians quite soon realized the need to provide
stronger, exponential inequalities for special classes of random variables, of particular interest,
first of all for sums of independent random variables. Inequalities such as the Bernstein
inequality or its improved version by Bennett proved very useful for asymptotic analysis of
sums of i.i.d. random variables, for instance in the proof of the law of the iterated logarithm.
On the other hand in a more analytical setting some strong results for particular measures
have been obtained, that link the deviation inequalities with isoperimetric issues and yield
exponential inequalities for Lipschitz functions defined on special measure metric spaces. The
most important example is probably the isoperimetric theorem for the uniform measure on the
n-dimensional sphere, and as its consequence - the Gaussian isoperimetry. Such inequalities
have been successfully used outside the classical probability theory, for example in the local
theory of Banach spaces, where one of the most impressing results is the proof of Dvoretzky’s
theorem by V. Milman.

Those ideas have been recently replanted into the setting of general product spaces by M.
Talagrand. Since the only natural distance in such spaces is the Hamming distance, which
is not always useful, some other measures of distance between a point and a set have been
introduced and the isoperimetrical theorems for such distances allowed to obtain deviation
inequalities for much larger classes of functions of independent random variables, for example
for convex functions. However, the method of proof, relying on the induction with respect to
the number of coordinates, is quite technical and not always intuitive. An alternate method
has been proposed by M. Ledoux and has been further developed among others by P. Mas-
sart. At its core there are estimations of entropy of a random variable (called sometimes a
(modified) logarithmic Sobolev inequality), which together with a simple tensorization pro-
cedure lead to a useful bound on the entropy of a function of independent random variables,
which can be interpreted as a differential inequality for the moment generating function and
in some cases, via integration, yields an upper bound on the moment generating function,
which can be in turn transformed into a deviation inequality. In the following chapters of the
thesis, the author will introduce this method and present its various applications.

Chapter 1 contains the basic facts about Φ-entropies to be used in the sequel, e.g. their
variational characterization and tensorization property. In Chapter 2 the basic entropy esti-
mates are presented. The author presents also a refinement of these estimates in the special
case of the discrete cube. The entropy bounds are used to derive many concentration in-
equalities from various branches of probability theory, for instance the bounded difference
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inequality, Talagrand’s inequality for Rademacher chaos of order 2, tail inequalities for con-
figuration functions and convex functions. As an application of the last inequality the author
presents some inequalities for the eigenvalues of random matrices and Rademacher averages.
Although the presented results have been already known, the use of the entropy method and
the improved entropy bound for the discrete cube allow to simplify the proofs and/or im-
prove the numerical constants. Chapter 3 is devoted to connections between discrete Sobolev
inequalities, moment estimates and concentration of measure. The author introduces the
moment method by deriving tail inequalities for some special functions of independent ran-
dom variables with sub-Gaussian tails, e.g. suprema of empirical processes. The final part of
the chapter presents the recent powerful moment inequality by Boucheron, Bosquet, Lugosi
and Massart, which proof relies on tensorization property of Φ-entropy for some particular
functions Φ. As an application, moment and tail inequalities for U-statistics in Banach spaces
are proven.

The author would like to express his gratitude to the advisor at the Warsaw University, dr
hab. Rafal LataÃla and the advisor at the Vrije Universiteit van Amsterdam, prof. Aad van
der Vaart for introducing him to the subject, all the support and useful conversations.
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Chapter 1

Entropy and tensorization

1.1. Basic assumptions and definitions

For a smooth convex function Φ: I → R (I - a closed interval of the real line) and a probability
space (Ω,F , µ) let us consider a functional, defined on {X ∈ L1(µ) : X ∈ I a.e., EΦ(X) < ∞}
with the formula

EΦ,µ(X) := EΦ(X)− Φ(EX).

Let us notice that from the convexity of Φ it follows that EΦ,µ(X) is non-negative for every
X from the domain of EΦ,µ. Moreover, the domain is a convex subset of L1(µ).
In the following part of this chapter we will restrict our attention to functions Φ, such that
EΦ,µ is a convex functional for every probability space (Ω,F, µ), i.e.

EΦ,µ(pX + (1− p)Y ) ≤ pEΦ,µ(X) + (1− p)EΦ,µ(Y ) (1.1)

for every p ∈ [0, 1].

1.1.1. Entropy

The most important example of a functional obtained by the above definition is the so-called
entropy functional, corresponding to the function Φ(x) = x log x. As limx→0 x log x = 0,
we can consider here Φ as a function defined on [0,∞). We will denote EΦ,µX by EntµX.
Entropy satisfies the condition (1.1), since

EntX := EX log X − EX logEX = sup{EXY : EeY ≤ 1}. (1.2)

Indeed, consider a random variable Y , satisfying EeY ≤ 1. We will show at first that EntX ≥
EXY . We can assume that EntX < ∞. Let us also assume for a while that X > 0. We have

EXY − EntX = EX log(eY )− EX log
X

EX

= EX log(eY EX

X
)

= EX · E log(eY EX

X
)

X

EX

≤ EX · logEeY ≤ 0,
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where the first inequality follows from Jensen’s inequality applied to the probability measure
with density X/EX and the function log.
To obtain the same inequality for arbitrary random variable X we approximate X by Xn =
X+ 1

n1{X=0}. Random variables Xn are strictly positive, so they satisfy the desired inequality.
Moreover, it is not hard to notice that limn→∞ EntXn = EntX and limn→∞ EXnY = EXY .
The inequality has thus been proved.
To complete the proof of (1.2) it suffices to find a sequence of random variables Yn with
EeYn ≤ 1 and limn→∞ EXYn = EntX. Define

Yn =
{

log( X
EX )− 1

n if X > 0
Mn if X = 0,

where Mn is a number such that e−
1
n + eMn ≤ 1. We have

EeYn = Ee−
1
n

X

EX
1{X>0} + eMnP(X = 0) ≤ e−

1
n + eMn ≤ 1.

Moreover

EXYn = EX log(
X

EX
)1{X>0} −

1
n
EX1{X>0} + EXMn1{X=0}

= EX log(X)1{X>0} − EX log(EX)1{X>0} −
1
n
EX

= EX log X − EX logEX − 1
n
EX

= EntX − 1
n
EX,

so indeed limn→∞ EXYn = EntX.

¤

There is also another variational characterization of entropy, we will use in the sequel, namely

EntX = inf
u>0

E(X(log X − log u)− (X − u)) (1.3)

for any nonnegative random variable X, such that EX log X < ∞.
To prove (1.3) it suffices to notice that for x = EX ≥ 0 the function f(u) = −x log u− x + u
attains its minimum on R+ at u = x.

¤

1.1.2. Variance

Another important and well-known example is the variance of a random variable, which
corresponds to the function Φ(x) = x2. It is easy to check that the condition (1.1) is satisfied:

Var(pX + (1− p)Y ) = E(p(X − EX) + (1− p)(Y − EY ))2

≤ E(p(X − EX)2 + (1− p)(Y − EY )2)
= pVarX + (1− p)VarY,

where to get the inequality in the second line we used Jensen’s inequality.
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1.1.3. Further examples

The following Theorem from [12] generalizes the above examples.

Theorem 1 If Φ: I → R is a twice differentiable function, such that Φ′′ is strictly positive
in intI and 1/Φ′′ is concave, then Φ satisfies the condition (1.1).

Proof. For p ∈ [0, 1], let us define the function Fp : I2 → R with the formula

Fp(x, y) = pΦ(x) + (1− p)Φ(y)− Φ(px + (1− p)y).

From the convexity of Φ it follows that Fp is nonnegative. We claim that Fp is convex on I2.
Since Fp is continuous on I2 and twice differentiable in intI2, it is enough to show that the
matrix of second order derivatives is positively definite. We have

∂2Fp

∂x2
(x, y) = pΦ′′(x)− p2Φ′′(px + (1− p)y) ≥ 0,

since by the concavity of 1/Φ′′ we have

1
Φ′′(px + (1− p)y)

≥ p

Φ′′(x)
+

1− p

Φ′′(y)
≥ p

Φ′′(x)
.

Similarly ∂2Fp

∂y2 (x, y) ≥ 0.
To complete the proof of convexity of Fp, it is enough to show that det Hess(Fp) ≥ 0, or
equivalently

∂2Fp

∂x2
(x, y) · ∂2Fp

∂y2
(x, y) ≥

(
∂2Fp

∂x∂y
(x, y)

)2

.

After computing the mixed derivative, we see that the above inequality is equivalent to

(pΦ′′(x)−p2Φ′′(px+(1−p)y))((1−p)Φ′′(y)−(1−p)2Φ′′(px+(1−p)y)) ≥ (p(1−p)Φ′′(px+(1−p)y))2

or
Φ′′(x)Φ′′(y) ≥ pΦ′′(px + (1− p)y)Φ′′(y) + (1− p)Φ′′(px + (1− p)y)Φ′′(x).

But since Φ′′ is strictly positive, this is equivalent to the concavity of 1/Φ′′, which shows the
convexity of Fp.
Let now X, Y be two random variables in the domain of EΦ,µ. Define x0 = EX, y0 = EY .
From the convexity of Fp it follows that there exists a, b, c ∈ R (depending on p), such that

Fp(x0, y0) = ax0 + by0 + c,

Fp(x, y) ≥ ax + by + c

for all x, y ∈ I. Thus

EFp(X,Y ) ≥ E(aX + bY + c) = ax0 + by0 + c = Fp(x0, y0),

which is equivalent to (1.1).

¤

Example. From the above theorem, it follows that for all α ∈ (1, 2], the function Φα(x) = xα,
defined on I = [0,∞), satisfies the condition (1.1).
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1.2. Properties of EΦ,µ

The condition (1.1) implies the following generalization of the formula (1.2).

Theorem 2 Let Φ: I → R be a differentiable, convex function, satisfying the condition (1.1).
Assume that X is an integrable random variable, such that EΦ(X) < ∞.

EΦ,µ(X) = sup
Y : Ω→intI

Y ∈L1,EΦ(Y )<∞
{E(Φ′(Y )− Φ′(EY ))(X − Y ) + EΦ,µ(Y )}. (1.4)

Before we proceed with the proof of the above theorem, let us state the following

Lemma 1 Let ϕ : [x, x + ε) → R be a smooth convex function. Then

lim
h→0+

hϕ′(x + h) = 0.

Proof. For every h ∈ (0, ε) we have

ϕ(x + 2h)− ϕ(x + h)
h

≥ ϕ′(x + h) ≥ ϕ(x + h)− ϕ(x)
h

or equivalently

ϕ(x + 2h)− ϕ(x + h) ≥ hϕ(x + h) ≥ ϕ(x + h)− ϕ(x).

The lemma thus follows by the continuouity of ϕ.

¤

Proof of Theorem 2. First we will prove that

EΦ,µ(X) ≥ E(Φ′(Y )− Φ′(EY ))(X − Y ) + EΦ,µ(Y ). (1.5)

Assume temporarily that the values of X and Y are separated from the ends of the interval
I. By (1.1) the function ϕ : [0, 1] → R, defined as

ϕ(t) = EΦ,µ(X + t(Y −X))

is convex. Thus
EΦ,µ(X) = ϕ(0) ≥ ϕ(1)− ϕ′(1).

But

ϕ′(t) = EΦ′(X + t(Y −X)) · (Y −X)− Φ′(EX + tE(Y −X)) · E(Y −X)
= E(Φ′(X + t(Y −X))− Φ′(EX + tE(Y −X)))(Y −X)

and thus
EΦ,µ(X) ≥ E(Φ′(Y )− Φ′(EY ))(X − Y ) + EΦ,µ(Y ). (1.6)

Let now an, bn ∈ intI be monotone sequences converging respectively to the left and right
end of I, with a1 = b1. Define Xn = min(max(X, an), bn), Yn = min(max(Y, an), bn). By
(1.6) we have

EΦ,µ(Xn) ≥ E(Φ′(Yk)− Φ′(EYk))(Xn − Yk) + EΦ,µ(Yk)
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or equivalently

E(Φ(Xn)− Φ(Yk)− Φ′(Yk)(Xn − Yk)) ≥ −Φ′(EYk)E(Xn − Yk)− Φ(EYk) + Φ(EXn). (1.7)

Let us consider the left-hand side of (1.7). It is of the form EΨ(Xn, Yk) with Ψ(x, y) =
Φ(x)−Φ(y)− (x− y)Φ′(y). Note that by the convexity of Φ, we have Ψ ≥ 0. We will prove
that

lim
k→∞

lim
n→∞EΨ(Xn, Yk) = EΨ(X, Y ), (1.8)

provided that Ψ(X, Y ) is integrable. It will finish the proof of the desired inequality, since the
analogous limit of the right-hand side of (1.7) equals −Φ′(EY )E(X − Y )− Φ(EY ) + Φ(EX)
and

EΨ(X,Y ) ≥ −Φ′(EY )E(X − Y )− Φ(EY ) + Φ(EX)

is equivalent to (1.5) (in the case EΨ(X, Y ) = ∞ the above inequality is obvious). Let us
now notice that

∂

∂x
Ψ(x, y) = Φ′(x)− Φ′(y)

∂

∂y
Ψ(x, y) = −xΦ′′(y) + yΦ′′(y),

so (since, by the convexity of Φ, the function Φ′ is nondecreasing and Φ′′ is nonnegative) we
see that

• for any fixed x ∈ I the function y 7→ Ψ(x, y) is decreasing for y ≤ x and increasing for
y ≥ x,

• for any fixed y ∈ I the function x 7→ Ψ(x, y) is decreasing for x ≤ y and increasing for
x ≥ y.

The first property implies that for every x, Ψ(x, Yk) ≤ Ψ(x, a1) + Ψ(x, Y ). Indeed, consider
the case x ≥ a1. If Y ≤ a1 then Yk = max(Y, ak) ≥ Y , so Ψ(x, Y ) ≥ Ψ(x, Yk). If Y ∈ (a1, x)
then Yk = min(Y, bk) ≥ a1, so Ψ(x, a1) ≥ Ψ(x, Yk). If Y ≥ x then Yk = min(Y, bk) ≤ Y , so
Ψ(x, Y ) ≥ Ψ(x, Yk). The case x < a1 is similar.
By analogy, from the second property of the function Ψ it follows that Ψ(Xn, y) ≤ Ψ(a1, y)+
Ψ(X, y) for every y ∈ I. Thus, for fixed k, we have for every n

Ψ(Xn, Yk) ≤ Ψ(a1, Yk) + Ψ(X,Yk) ≤ Ψ(a1, Yk) + Ψ(X, a1) + Ψ(X,Y ).

Now, since Yk is separated from the boundary of I and Ψ(X, Y ),Ψ(X, a1) are integrable, by
the Lebesgue dominated convergence theorem we obtain that

lim
n→∞EΨ(Xn, Yk) = EΨ(X, Yk).

But
Ψ(X,Yk) ≤ Ψ(X, a1) + Ψ(X,Y )

and (as by assumption EΦ(X) < ∞) the right hand side is integrable, so again

lim
k→∞

EΨ(X,Yk) = EΨ(X,Y ),

which proves (1.5).
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It remains to show that EΦ,µ is indeed the supremum of expressions considered at the right
hand side of (1.5). It is obvious if the random variable X takes values in the interior of I,
since the supremum is then obtained for Y = X. In the general case we construct a sequence
Yn of random variables such that

lim
n→∞EΦ,µ(Yn) = EΦ,µ(X) and lim

n→∞E(Φ′(Yn)− Φ′(EYn))(X − Yn) = 0.

Let a and b denote respectively the left and right end of the interval I. Define

Yn = X +
1
n
1{X=a} −

1
n
1{X=b}.

Let us notice that in the case a = −∞ (resp. b = ∞) we have {X = a} = ∅ (resp.
{X = b} = ∅). The sequence Yn converges uniformly to X and Φ(Yn) converges uniformly to
Φ(X). Thus indeed limn→∞EΦ,µ(Yn) = EΦ,µ(X). Moreover

E(Φ′(Yn)− Φ′(EYn))(X − Yn) = Φ′
(

a +
1
n

)
· 1
n

Pr(X = a) + Φ′
(

b− 1
n

)
· 1
n

Pr(X = b)

− Φ′(EYn)(EX − EYn)

and by Lemma 1 the right-hand side converges to 0 as n →∞.

¤

Corollary 1 Let Ω = Ω1×Ω2 be a product space equipped with a product probability measure
µ = µ1 ⊗ µ2. For every integrable X : Ω → I with EΦ(X) < ∞ we have

EΦ,µ2(Eµ1X) ≤ Eµ1EΦ,µ2(X),

where EΦ,µ2(X) denotes the value of the functional EΦ,µ2 at the function ω2 7→ X(ω1, ω2)
with the first coordinate fixed.

Proof. By Theorem 2 we have

EΦ,µ2(Eµ1X) = sup
Y : Ω2→intI

Y ∈L1,EΦ(Y )<∞

{
E(Φ′(Y )− Φ′(Eµ2Y ))(Eµ1X − Y ) + EΦ,µ2(Y )

}

= sup
Y : Ω2→intI

Y ∈L1,EΦ(Y )<∞

{
Eµ1E(Φ′(Y )− Φ′(Eµ2Y ))(X − Y ) + EΦ,µ2(Y )

}

≤ Eµ1 sup
Y : Ω2→intI

Y ∈L1,EΦ(Y )<∞

{
Eµ2(Φ

′(Y )− Φ′(Eµ2Y ))(X − Y ) + EΦ,µ2(Y )
}

= Eµ1EΦ,µ2(X).

¤
The following theorem describes the basic property of functionals EΦ,µ, which we will call
the tensorization property.

Theorem 3 Consider a product probability space (Ω, µ), where Ω = Ω1 ×Ω2 × . . .×Ωn and
µ = µ1 ⊗ µ2 ⊗ . . .⊗ µn. Then for every function X in the domain of EΦ,µ we have

EΦ,µ(X) ≤
n∑

i=1

E EΦ,µi(X),

where EΦ,µi(X) denotes the value of the functional EΦ,µi at the function X, considered as a
function of ωi, with the other coordinates fixed.
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Proof. We will proceed by the induction with respect to n. For n = 1 the theorem is
trivial. Assume it is true for some n and consider µ = µ1⊗ . . .⊗µn+1 and a random variable
X in the domain of EΦ,µ. We have by the induction assumption

EΦ(X) = Eµn+1Eµ1⊗...⊗µnΦ(X) ≤ Eµn+1

(
Φ(Eµ1⊗...⊗µnX) + Eµ1⊗...⊗µn

n∑

i=1

EΦ,µi(X)

)
.

Thus it is enough to show that

Eµn+1Φ(Eµ1⊗...⊗µnX) ≤ Φ(EX) + EEΦ,µn+1X

or equivalently
EΦ,µn+1(Eµ1⊗...⊗µnX) ≤ Eµ1⊗...⊗µnEΦ,µn+1X.

But this is true due to Corollary 1.

¤
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Chapter 2

Logarithmic Sobolev inequalities

2.1. Basic inequalities

Let us start this chapter with the following theorem

Theorem 4 Let X1, . . . , Xn be independent random variables taking values in a measurable
space (Σ,F) and f : Σn → R a measurable function (with respect to the product σ-field).
Denote S = f(X1, . . . , Xn), Si = f(X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn), where (X1, . . . , Xn) and
(X̃1, . . . , X̃n) are independent random vectors, equal in distribution. Let us also assume that
ESeS < ∞. Then the following inequality holds

Ent eS ≤ E(eS
n∑

i=1

(S − Si)2+). (2.1)

Proof. Consider X, Y - i.i.d. real random variables. From Jensen’s inequality we have

logEeX ≥ E log eX = EX. (2.2)

Applying this inequality in the definition of entropy we immediately get

Ent eX = EeX(X − logEeX) (2.3)
≤ EeX(X − EX) (2.4)
= EeX(X − Y ) (2.5)

=
1
2
E(eX − eY )(X − Y ). (2.6)

But for x, y ∈ R we have

(x− y)(ex − ey) ≤ (x− y)2+ex + (y − x)2+ey, (2.7)

so

Ent eX ≤ 1
2
E(eX(X − Y )2+ + eY (Y −X)2+) = EeX(X − Y )2+, (2.8)

which is exactly (2.1) in dimension 1. A direct use of Theorem 3 allows us to finish the proof.

¤
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2.1.1. Deviation inequalities

Theorem 4 can be applied to derive in an easy way concentration inequalities for a wide class
of random variables, via the so called Herbst argument. The main idea is to transform (2.1)
into a differential inequality for the Laplace transform of a random variable. To show how it
works in practice we will prove the following fact:

Lemma 2 (Herbst argument) Let S be a random variable, such that for every λ ≥ 0
EeλS < ∞. If c ∈ R is such that

EnteλS ≤ cλ2EeλS

for all λ ≥ 0, then for all t ≥ 0 we have

P(S − ES ≥ t) ≤ e−
t2

4c .

Proof. Define F (λ) = EeλS and ψ(λ) = log F (λ). Notice that F (0) = 1, ψ(0) = 0 and
F ′(λ) = ESeλS . Thus, according to the assumption, we have

λF ′(λ)− F (λ) log F (λ) ≤ cλ2F (λ)

or, taking advantage of the fact that F (λ) > 0

λψ′(λ)− ψ

λ2
≤ c,

that is (
ψ(λ)

λ

)′
≤ c.

We also have

lim
λ→0+

ψ(λ)
λ

= ψ′(0) =
F ′(0)
F (0)

=
ES

1
= ES,

and so

ψ(λ)
λ

≤ ES + cλ,

for all λ > 0, which can be reformulated as

logEeλ(S−ES) ≤ cλ2.

Now we can apply Markov inequality to obtain

P(S − ES ≥ t) ≤ inf
λ>0

Eeλ(S−ES)

eλt
≤ inf

λ>0
ecλ2−λt = e−

t2

4c .

¤

Corollary 2 Let S, Si be defined as in Theorem 4. Denote c = ||∑n
i=1(S − Si)2+||∞. Then

for every t > 0 we have

P(S − ES ≥ t) ≤ e−
t2

4c . (2.9)
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Proof. Denote V+ =
∑n

i=1(S − Si)2+ and assume that V+ is bounded (otherwise the
statement is obvious). Inequality (2.1) for a random variable λS (λ ≥ 0) may be rewritten
as

Ent eλS ≤ Eλ2V+eλS , (2.10)

which implies

Ent eλS ≤ cλ2EeλS .

The statement to be proven follows now from Lemma 2.

¤

2.1.2. Bounded difference inequality

Corollary 2 allows us to derive (up to constants) the well-known bounded difference inequality
due to McDiarmid (cf. [17]).

Corollary 3 With the notation of Theorem 4, if there exist constants ci such that

|S − Si| ≤ ci i = 1, . . . , n,

then for all t ≥ 0

P(|S − ES| ≥ t) ≤ 2e
− t2

4
Pn

i=1
c2
i .

Remark Actually the constant 4 in the exponent may be replaced by 1/2, as it may be
proved with the so-called martingale method (comp. [17]).

2.2. Discrete cube

The probability space we will consider in the following part is the discrete cube Ω = {−1, +1}n

with the uniform probability measure. Our purpose is to obtain an improvement of Theorem
4 for this particular probability space. On the way we will also prove the Gross’ logarithmic
Sobolev inequality and use it to derive concentration inequalities for Gaussian measures.

Lemma 3 For all x ≥ y > 0

log(
x2 + y2

2x2
) ≥ y − x

x
.

Proof. The function f(t) = log(1+t2

2 )− t + 1 satisfies f(1) = 0 and for all t

f ′(t) =
2t

1 + t2
− 1 = −(1− t)2

1 + t2
≤ 0.

Thus f is nonincreasing and in consequence f(t) ≥ 0 for t ≤ 1. In particular f(y/x) ≥ 0,
which means

log(
x2 + y2

2x2
) ≥ y − x

x
.

¤
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Lemma 4 For every x, y ∈ R

x2 log x2 + y2 log y2 − (x2 + y2) log(
x2 + y2

2
) ≤ (x− y)2 (2.11)

Proof. Without loss of generality we can assume that x ≥ y ≥ 0. For a fixed y let f(x),
g(x) denote respectively the left and the right hand side of (4) as a function of x. Since
f(y) = g(y) = 0, to prove (4) it is enough to show that f ′(x) ≤ g′(x) for all x ≥ y. But

f ′(x) = 2x log(
2x2

x2 + y2
)

g′(x) = 2(x− y)

so the desired claim follows from Lemma 3.

¤

Lemma 5 For every x ≥ y > 0,

log x− log y ≥ 2 · x− y

x + y

Proof. Consider the function f(t) = log t− 2 t−1
t+1 , t > 0. We have

f ′(t) =
1
t
− 4

(t + 1)2
=

(t− 1)2

t(t + 1)2
≥ 0.

Moreover f(1) = 0. Thus for every t > 1, f(t) > 0 and therefore

log t ≥ 2(t− 1)
t + 1

.

Now it is enough to substitute t = x/y.

¤

Definition 1 For f : Ω → R and x = (x1, . . . , xn) ∈ Ω let us define the discrete gradient of
f in x along the i-th coordinate as

Dif(x) = f(x)− f(si(x)),

where si(x) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn).

Theorem 5 (Gross’ logarithmic Sobolev inequality) For every f : Ω → R the follow-
ing inequalities hold

(i)

Entf2 ≤ 1
2

n∑

i=1

E|Dif |2,

(ii)

Ent ef ≤ 1
8

n∑

i=1

Eef |Dif |2.
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Proof. From the tensorization property of entropy, it is enough to prove the theorem for
n = 1, which corresponds to Ω = {−1, +1}.
Denote f(1) = x, f(−1) = y. Then

Entf2 = Ef2(log f2 − E log f2) =
1
2
(x2 log x2 + y2 log y2 − (x2 + y2) log(

x2 + y2

2
)).

On the other hand
E|D1f |2 = (x− y)2,

so the part (i) follows from Lemma 4.
To prove the second part of the theorem, let us denote g = ef/2. From part (i) we have

Entef = Entg2 ≤ 1
2
E|D1g|2 =

1
2
(ex/2 − ey/2)2. (2.12)

We can assume that x > y. From Lemma 5 we have

ex/2 − ey/2 ≤ ex/2 + ey/2

2
(
x

2
− y

2
) ≤ 1

2
·
√

ex + ey

2
(x− y).

Hence
1
2
E|D1g|2 ≤ 1

8
ex + ey

2
(x− y)2 =

1
8
Eef |D1f |2,

which together with (2.12) proves the one-dimensional version of part (ii).

¤

Corollary 4 Let γd be the standard Gaussian measure on Rd i.e. the measure with density
g(x) = 1

(2π)d/2 e−(x2
1+...+x2

d)/2. Then for every smooth enough (e.g. Lipschitz continuous)

function f : Rd → R the following statements are satisfied

Entγd
f2 ≤ 2

∫

Rd

|∇f |2dγd (2.13)

Entγd
ef ≤ 1

2

∫

Rn

ef |∇f |2dγd. (2.14)

In consequence for every 1-Lipschitz function f and every t ≥ 0

γd

({
f ≥

∫

Rd

fdγd + t

})
≤ e−t2/2. (2.15)

Proof. It is enough to prove the Corollary for C∞ functions with compact support. Then,
using a standard approximation technique, one can extend it to some more general classes
of functions, e.g. for Lipschitz functions, which by the Rademacher Theorem are almost
everywhere differentiable .
Let us also notice that we can focus on the first inequality, since (2.14) follows easily from
(2.13) by substituting ef/2 as the ”new” function f . Moreover, the tensorization property of
entropy allows us to restrict the proof to d = 1.
Consider a sequence of independent Rademacher variables (εi)∞i=1 and random variables

Sn = f(
ε1 + . . . + εn√

n
).
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By the Central Limit Theorem limn→∞ EntS2
n = Entγ1f

2 and limn→∞ Ef ′( ε1+...+εn√
n

)2 =
Eγ1(f

′)2. Theorem 5 implies that

EntS2
n ≤

1
2
E

n∑

i=1

(
f

(
ε1 + . . . + εn√

n

)
− f

(
ε1 + . . . + εn√

n
− 2

εi√
n

))2

.

But each component of the sum at the right hand side is equal to 4n−1f ′( ε1+...+εn√
n

)2+O(n−3/2)
and thus taking the limits with n →∞ yields exactly (2.13).
It remains to show the deviation inequality (2.15). But it is a direct consequence of the
inequality (2.14) and Lemma 2, since the Lipschitz condition guarantees that Eeλf < ∞ for
every λ ≥ 0.

¤

Another consequence of Theorem 5 is a refinement of Theorem 4 in the special case of
Rademacher variables.

Corollary 5 Consider independent Rademacher variables ε1, . . . , εn, ε̃1, . . . , ε̃n and a func-
tion f : {−1, +1}n → R. Denote S = f(ε1, . . . , εn), Si = f(ε1, . . . , εi−1, ε̃i, εi+1, . . . , εn).
Then

Ent eS ≤ 1
2
E(eS

n∑

i=1

(S − Si)2+). (2.16)

Proof. Let us consider the crucial case n = 1. Denote f(−1) = a, f(1) = b and assume
that a ≥ b. From Theorem 5 we have

Ent eS ≤ 1
8

ea + eb

2
(a− b)2 ≤ 1

8
ea(a− b)2 =

1
2
· 1
4
ea(a− b)2 =

1
2
E(S − S1)2+eS

¤

As an example of application of Corollary 5 we will consider Rademacher chaos of order 2,
i.e. a random variable defined as

S = sup
M∈F

n∑

i,j=1

εiεjMij ,

where F is a countable set of real symmetric matrices with zeros on the diagonal such that

sup
M∈F

sup
α,β∈Rn

||α||2=||β||2=1

n∑

i,j=1

Mijαiβj = K < ∞, (2.17)

where || · ||2 stands for the euclidean norm in Rn. Let us define a random variable Y by

Y = sup
M∈F




n∑

i=1




n∑

j=1

εjMij




2


1/2

.

We are interested in obtaining an upper bound on P(S − ES ≥ t) in terms of EY 2. Using
Corollary 5 we will prove the following theorem, which was first obtained by M. Talagrand
in [23].
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Theorem 6 For all t ≥ 0

P(S − ES ≥ t) ≤ e
− t2

16EY 2+16Kt . (2.18)

Proof. The proof will basically follow the arguments from [4] and Corollary 5 will just
allow us to slightly improve the constants.
Without loss of generality we can assume that F is finite, since when we take limits with
#F → ∞, inequality (2.18) will be preserved. We will also assume that K = 1 (the whole
generality of the theorem may be obtained from this special case by applying it to the random
variable S/K).
For fixed ε1, . . . , εn let M be the element of F for which the supremum in the definition of S
is obtained. Then, since M is symmetric and Mii = 0, we have

S − Si ≤

2

n∑

j=1

Mijεj


 (εi − ε̃i)

and thus

n∑

i=1

Eε̃i(S − Si)2+ ≤ 4
n∑

i=1




n∑

j=1

Mijεj




2

Eε̃i(εi − ε̃i)2 = 8
n∑

i=1




n∑

j=1

Mijεj




2

≤ 8Y 2.

Thus, from Corollary 5 we get

Ent eλS ≤ 4λ2EY 2eλS . (2.19)

But from Jensen’s inequality it follows that

Eλ(Y 2 − S)
eλS

EeλS
= E log

(
eλ(Y 2−S)

) eλS

EeλS
≤ log

EeλY 2

EeλS
,

so EλY 2eλS ≤ Ent eλS + EeλS logEeλY 2
, which combined with (2.19) gives us

EnteλS ≤ 4λ

1− 4λ
EeλS logEeλY 2

(2.20)

for all λ ∈ [0, 1/4).
It remains to find an upper bound on logEeλY 2

. Let us notice that

Y = sup
M∈F

sup
α∈Rn

||α||2≤1

n∑

i=1

n∑

j=1

εjαiMij =
n∑

i=1

n∑

j=1

εjαiMij

for some M , α, depending on the sample ε1, . . . , εn. Thus

Y − Yj ≤
(

n∑

i=1

Mijαi

)
(εj − ε̃j)

hence

Eε̃j (Y − Yj)2+ ≤ 2

(
n∑

i=1

Mijαi

)2
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and
n∑

j=1

Eε̃j (Y − Yj)2+ ≤ 2 sup
||α||2=1

n∑

j=1

(
n∑

i=1

Mijαi

)2

But

sup
||α||=1

n∑

j=1

(
n∑

i=1

Mijαi

)2

≤ 1

by (2.17) and our assumption K = 1. So finally we have (since (a2 − b2)+ ≤ 2a(a − b)2+ for
all a, b ≥ 0)

n∑

j=1

Eε̃j (Y
2 − Y 2

j )2+ ≤ 4Y 2
n∑

j=1

Eε̃j (Y − Yj)2+ ≤ 8Y 2

and thus by Corollary 5
EnteλY 2 ≤ 4λ2EY 2eλY 2

or denoting ψ(λ) = logEeλY 2
. (

ψ(λ)
λ

)′
≤ 4ψ′(λ).

Since ψ(0) = 0 and limλ→0+
ψ(λ)

λ = EY 2, integration of the above inequality yields

ψ(λ)
λ

− EY 2 ≤ 4ψ(λ),

and thus
logEeλY 2 ≤ λ

1− 4λ
EY 2

for all λ ∈ [0, 1/4), which combined with (2.20) gives

EnteλS ≤ 4λ2

(1− 4λ)2
EY 2EeλS .

Again if we denote ψ(λ) = logEeλS , the last inequality reads as
(

ψ(λ)
λ

)′
≤ 4EY 2

(1− 4λ)2
.

Thus (since limλ→0+
ψ(λ)

λ = ES)

1
λ

logEeλ(S−ES) =
ψ(λ)

λ
− ES ≤

∫ λ

0

4EY 2

(1− 4s)2
ds =

4λ

1− 4λ
EY 2

or equivalently

logEeλ(S−ES) ≤ 4λ2

1− 4λ
EY 2

for λ ∈ [0, 1/4). Now by Markov inequality for t ≥ 0 and λ ∈ [0, 1/4)

P(S − ES ≥ t) ≤ e
4λ2

1−4λ
EY 2−λt.

Substituting λ = (1− 1√
(t/EY 2)+1

)/4 gives

P(S − ES ≥ t) ≤ e−EY 2h( t
EY 2 )/4,
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where

h(u) = (
√

u + 1− 1)2 =
(

u√
u + 1 + 1

)2

≥ u2

4(u + 1)
.

Thus for all t ≥ 0

P(S − ES ≥ t) ≤ e
− t2

16EY 2+16t .

¤

2.3. Configuration functions and convex functions

So far we have been estimating the entropy of a function of independent random variables
X1, . . . , Xn by expressions involving their independent copies. In some situations it is useful
not to introduce such independent variables but rather to drop some of the variables Xi,
that is to approximate the statistic by functions, which do not depend on all of the variables
X1, . . . , Xn. The next theorem, due to S. Boucheron, G. Lugosi and P. Massart ([3]), will
constitute a good basis for such a method.

Theorem 7 Consider independent random variables X1, . . . , Xn with values in a measurable
space (Σ,F). Let f : Σn → R and fi : Σn−1 → R (i = 1, . . . , n) be measurable functions and
denote S = f(X1, . . . , Xn), Si = f(X1, . . . , Xi−1, Xi+1, . . . , Xn). If ESeS < ∞ then

EnteS ≤
n∑

i=1

E(φ(Si − S))eS),

where φ(x) = ex − x− 1.

Proof. Obviously we may consider X1, . . . , Xn as coordinates on a product space (Ω, µ),
µ = µ1 ⊗ . . . ⊗ µn. Let us notice that if we fix the values of all of the variables X1, . . . , Xn

except for Xi, then Si becomes a constant. Moreover by Fubini theorem EµiSeS < ∞ a.e.
(with respect to µ1⊗ . . .⊗ µi−1⊗ µi+1⊗ . . .⊗ µn). Therefore we may use (1.3) with u = eSi ,
X = eS to obtain

Entµie
S ≤ Eµi(e

S(S − Si)− (eS − eSi)) = Eµie
S(eSi−S − (Si − S)− 1) = Eµie

Sφ(Si − S).

The theorem follows now immediately from the tensorization property of entropy.

¤

2.3.1. Configuration functions

We will use Theorem 7 to obtain a result analogous to Theorem 4.3. in [17]. Before we
proceed, let us introduce a few definitions.

Definition 2 (The penalized Hamming distance) For a non-negative vector α = (α1, . . . , αn),
define d : Σn × Σn → R with the formula

dα(x, y) =
n∑

i=1

αi1xi 6=yi .
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Definition 3 Consider a measurable space (Σ,F). A measurable function f : Σn → R+ will
be called a c-configuration function if for every x ∈ Σn there is a non-negative unit vector
α ∈ Rn, such that

f(y) ≥ f(x)−
√

cf(x)dα(x, y)

for all y ∈ Σn.

Theorem 8 Let X1, . . . , Xn be independent random variables with values in a Polish space
(Σ,F), where F is the Borel σ-field on Σ. Then for every c-configuration function f : Σn →
R+, the random variable S = f(X1, . . . , Xn) satisfies the following deviation inequality

P(S ≥ ES + t) ≤ e−
t2

2cES+2ct .

Remark Boucheron, Lugosi and Massart in [3] define configuration function in a different
way. They consider the so called hereditary properties, i.e. properties P, defined for sequences
of arbitrary length, such that whenever a sequence (x1, . . . , xn) has the property P, so do
its all subsequences. The length of the longest subsequence satisfying a hereditary property
P is then called a configuration function. It is easy to see that such functions satisfy the
definition of 1-configuration functions. Indeed, let P be a hereditary property. Fix a vector
x = (x1, . . . , xn) and consider a sequence of indices i1 < . . . < im such that (xi1 , . . . , xim) is
one of the longest subsequences of x which satisfy the property P. Then f(x) = m and for
every vector y = (y1, . . . , yn)

f(y) ≥ #{k ∈ {1, . . . , m} : xik = yik} = f(x)−#{k : xik 6= yik} = f(x)−
√

f(x)dα(x, y),

where αj = 1/
√

f(x) if j = ik for some k and 0 otherwise.

Theorem 8 may be thus used to obtain concentration inequalities for instance for the length
of a longest increasing subsequence of an i.i.d sample. However the bounds provided by this
theorem in the case of hereditary properties may be improved as shown in [3].

To present another application of Theorem 8, arising in many situations in computer
science, let us consider independent random variables X1, . . . , Xn1 , Y1, . . . , Yn2 and define
the random variable L as the length of a longest common subsequence of (X1, . . . , Xn1) and
(Y1, . . . , Yn2). By an argument analogous to the one presented above for hereditary properties,
L is a 2-configuration function, hence by Theorem 8

P(L ≥ EL + t) ≤ e−
t2

4EL+4t .

Proof of Theorem 8. Let us fix x0 ∈ Σn and notice that for every x ∈ Σn we have for
some non-negative unit vector α

f(x)− n
√

cf(x) ≤ f(x)−
√

cf(x)dα(x, x0) ≤ f(x0).

Thus supx∈Σn(f(x)2 − n
√

cf(x)) < ∞ and in consequence ||S||∞ < ∞ and EλSeλS < ∞ for
every λ.
Define for i = 1, . . . , n the functions fi : Σn−1 → R+ by

fi(x1, . . . , xi−1, xi+1, . . . , xn) = inf
y∈Σ

f(x1, . . . , xn−1, y, xn+1, . . . , xn)
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and set Si = fi(X1, . . . , Xi−1, Xi+1, . . . , Xn). Theorem 7 gives us

EnteλS ≤ EeλS
n∑

i=1

φ(λ(Si − S)). (2.21)

But from the Taylor extension of the exponential function we have φ(x) = eξx2/2 for some ξ
between 0 and x. Now from the monotonicity of ex we have

φ(x) ≤ 1
2
x2 (2.22)

for x ≤ 0.
On the other hand, by the definition of Si, we have Si ≤ S and thus from (2.21) and (2.22)
we obtain for λ ≥ 0

EnteλS ≤ λ2

2
EeλS

n∑

i=1

(S − Si)2.

Now by the definition of configuration functions

f(x1, . . . , xn)− fi(x1, . . . , xi−1, xi+1, . . . , xn) ≤
√

cf(x)αi,

for i = 1, . . . , n, where α = (α1, . . . , αn) is a positive unit vector corresponding to (x1, . . . , xn).
Therefore

(S − Si)2 ≤ cSα2
i

and in consequence

EnteλS ≤ c
λ2

2
ESeλS .

In other words, we have obtained a differential inequality for F (λ) = EeλS , namely

λF ′(λ)− F (λ) log F (λ) ≤ c
λ2

2
F ′(λ).

Let us define ψ(λ) = log F (λ) and rewrite the above inequality as

λψ′(λ)− ψ(λ)
λ2

≤ c

2
ψ′(λ)

or (
ψ(λ)

λ

)′
≤ c

2
ψ′(λ).

Since limλ→0+ ψ(λ)/λ = ES and ψ(0) = 0, we can integrate the last inequality and obtain

log F (λ)− λES ≤ λ
c

2
log F (λ),

that is

logEeλ(S−ES) ≤ λ2c

2− λc
ES

for all λ ∈ [0, 2/c). Now

P(S ≥ ES + t) ≤ inf
λ∈[0,2/c)

e
λ2c

2−λc
ES−λt.

The infimum is obtained for λ = 2
c (1 − (t/ES + 1)−1/2) and equals e−2ESh(t/ES)/c, where

h(u) = (
√

u + 1− 1)2 ≥ u2/(4u + 4), which proves the theorem.

¤
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Remark The formulation of Theorem 8 involves the notion of a Polish space. Let us stress
that the only reason for this is the potential problem with measurability of functions fi defined
in the proof of the theorem. In general the infimum of a family of measurable functions need
not be measurable, however in this case measurability (at least with respect to the completed
σ-field) is guaranteed by Suslin Theorem. Of course in applications configuration functions
appear mainly in discrete mathematics, so measurability is not a real problem and Theorem
8 has been formulated in such an ”involved” way just for the sake of accuracy. It is also worth
mentioning that a version of this theorem (with slightly weaker constants) may be obtained
in a similar way from Theorem 4.

2.3.2. Deviation inequalities for convex functions

Corollary 6 Consider a convex, L-lipschitz function ϕ : [0, 1]n → R. Let Xi (i = 1, . . . , n)
be independent random variables with values in [0, 1]. Denote S = ϕ(X1, . . . , Xn).
Then for all t > 0 we have

P(S − ES ≥ t) ≤ e−t2/2L2
.

Proof. Let us define, similarly as in the proof of Theorem 8, ϕi : [0, 1]n−1 → R with the
formula

ϕi(x1, . . . , xi−1, xi+1, . . . , xn) = inf
y∈[0,1]

ϕ(x1, . . . , xi−1, y, xi+1, . . . , xn)

and denote Si = f(X1, . . . , Xn). We will show that

||
n∑

i=1

(S − Si)2||∞ ≤ L2.

For fixed x = (x1, . . . , xn) ∈ [0, 1]n, y = (y1, . . . , yn) ∈ [0, 1]n let xi be the point obtained
from x by replacing the i-th coordinate with yi ∈ [0, 1]. We will first find an upper bound for

M =
n∑

i=1

(ϕ(x)− ϕ(xi))2+.

Since for (n + 1)-tuples of points (x, x1, . . . , xn) such that ϕ(x) ≤ ϕ(xi) for all i, we have
M = 0, we can assume that

n∑

i=1

(ϕ(x)− ϕ(xi))+ > 0.

Let

z =
∑n

i=1(ϕ(x)− ϕ(xi))+xi

∑n
i=1(ϕ(x)− ϕ(xi))+

= (z1, . . . , zn)

From Jensen’s inequality it follows that
∑n

i=1(ϕ(x)− ϕ(xi))+ϕ(xi)∑n
i=1(ϕ(x)− ϕ(xi))+

≥ ϕ(z). (2.23)

Moreover

zi =

∑
j 6=i(ϕ(x)− ϕ(xj))+xi∑n
j=1(ϕ(x)− ϕ(xj))+

+
(ϕ(x)− ϕ(xi))+∑n
j=1(ϕ(x)− ϕ(xj))+

yi

= xi +
(ϕ(x)− ϕ(xi))+∑n
j=1(ϕ(x)− ϕ(xj))+

(yi − xi).
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Thus

||z − x||2 =
∑n

i=1(ϕ(x)− ϕ(xi))2+(yi − xi)2

(
∑n

i=1(ϕ(x)− ϕ(xi))+)2
≤ M

(
∑n

i=1(ϕ(x)− ϕ(xi))+)2
.

Now from the Lipschitz property of ϕ we get

ϕ(z) ≥ ϕ(x)−
√

ML∑n
i=1(ϕ(x)− ϕ(xi))+

(2.24)

Putting together (2.23) and (2.24) we conclude that

n∑

i=1

(ϕ(x)− ϕ(xi))+ϕ(xi) ≥
n∑

i=1

(ϕ(x)− ϕ(xi))+ϕ(x)−
√

ML

or equivalently

M =
n∑

i=1

(ϕ(x)− ϕ(xi))+(ϕ(x)− ϕ(xi)) ≤
√

ML,

that is

M ≤ L2.

Let now x̃i ∈ [0, 1]n−1 denote the vector, obtained from x by skipping its i-th coordinate.
The function ϕ is continuous, hence there exist numbers yi ∈ [0, 1] (i = 1, . . . , n), such that

ϕi(x̃i) = ϕ(x1, . . . , xi−1, yi, xi+1, . . . , xn),

then
n∑

i=1

(ϕ(x)− ϕi(x̃i))2 =
n∑

i=1

(ϕ(x)− ϕ(x1, . . . , xi−1, yi, xi+1, . . . , xn))2+ ≤ L2.

Now just like in the proof of Theorem 8 we have

EnteλS ≤ λ2

2
EeλS

n∑

i=1

(S − Si)2,

for λ ≥ 0, so

EnteλS ≤ λ2

2
L2EeλS ,

which by Herbst argument (Lemma 2) implies the Corollary.

¤

Remark Above we have derived a bound only for the upper-tail of S = ϕ(X1, . . . , Xn).
The same estimation for the lower-tail of a convex function (or equivalently upper-tail of
a concave function) has been obtained in [21] from logarithmic Sobolev inequalities derived
from transportation of measure approach. Moreover with use of some less general, tailored to
the situation logarithmic Sobolev inequalities, Corollary 6 may be generalized to separately
convex functions, i.e. functions which are convex with respect to every variable (compare
[13]).
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Concentration inequalities for convex functions of independent bounded random variables
appeared first in M. Talagrand’s paper [22] in the case of Rademacher random variables
and were generalized by the same author to arbitrary random variables in [24]. Talagrand
considers concentration around median which is however equivalent to concentration around
the mean in a sense that if a random variable concentrates around its median with the tail
Ke−ct2 for some K, c, then it concentrates around its mean with the tail of the form K ′e−c′t2

where K ′, c′ depend only on K,c and vice versa. It can be easily seen, since in the case of
both types of concentration we have

|EX −M | ≤ L,

with the constant L depending only on K,c (K ′,c′). Indeed, if X concentrates around median
we have by Jensen’s inequality

|EX −M | ≤ E|X −M | =
∫ ∞

0
P(|X −M | ≥ t)dt ≤

∫ ∞

0
Ke−ct2dt.

On the other hand we have
|M − EX| < t

for any t such that P(|X−EX| ≥ t) < 1/2 (and in the case of Gaussian concentration around
the mean, such t can be defined by K ′ and c′ alone).

Now, following [22], we can prove that the convexity assumption in Corollary 6 is important.
From the above remark it follows that it is enough to consider concentration around median.
Consider the discrete cube In = {−1, 1}n with the uniform probability measure and define

An = {x = (x1, . . . , xn) ∈ In :
n∑

i=1

xi ≤ 0}.

Now set
fn(y) = inf{||x− y|| : x ∈ An}.

The functions fn are of course 1-Lipschitz continuous and since uniform measure on In is the
product of n symmetric measures on {+1,−1} we can regard fn as functions of n independent
Rademacher variables. Obviously P(fn ≤ 0) = P(fn = 0) ≥ 1/2 and P(fn ≥ 0) = 1, so 0 is a
median of fn. However

fn(y) = 2(d(
∑n

i=1 yi)+
2

e)1/2,

so by the Central Limit Theorem we get that P(fn ≥ cn1/4) > 1/4 for some constant c and
every n, which shows that there cannot be a universal Gaussian bound on tail probabilities
for all 1-Lipschitz functions.

2.3.3. Random matrices

Concentration inequalities for convex functions may be used for instance to analyse deviation
from the mean for eigenvalues of random matrices. Namely, let Xij for 1 ≤ i ≤ j ≤ n be
independent random variables such that |Xij | ≤ 1 a.e. Denote Xji = Xij for i < j and
consider a random symmetric matrix A = (Xij)n

i,j=1. The spectral theorem asserts that all
eigenvalues of A are real, so we can consider a random variable λi (i = 1, . . . , n) defined as the
i-th largest eigenvalue of A (counting with multiplicities). We are interested in concentration
around mean for λi.
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The first obvious observation we have to make is that all symmetric matrices constitute a
linear space of dimension n(n+1)

2 , which can be identified with R
n(n+1)

2 . To be able to use
concentration inequalities for convex functions we need the following lemma

Lemma 6 For every k = 1, . . . , n the function ϕ : R
n(n+1)

2 → R given by

ϕ(A) = λ1(A) + . . . + λk(A)

is convex.

Proof. To show this lemma it is enough to prove the so-called Ky-Fan theorem, which
claims that

λ1(A)+ . . .+λk(A) = sup

{
k∑

i=1

xT
i Axi : x1, . . . , xk − an orthonormal system in Rn

}
. (2.25)

Indeed, the expression
∑k

i=1 xT
i Axi defines a linear function of A, hence having (2.25), we

can claim ϕ(A) to be convex as a pointwise supremum of linear functions. In the case of
k = 1, equality (2.25) is a basic theorem of linear algebra or functional analysis, which we
will assume to be known. On the other hand, the case of k = n reduces (2.25) to the theorem
about preserving the trace of a matrix under a change of basis transformation.
We will now prove (2.25). It is quite obvious that the right-hand side of (2.25) is greater than
the left-hand side, since we can diagonalize A with a unitary isomorphism of Rn and pick up
k orthonormal eigenvectors x1,. . . ,xk corresponding to k greatest eigenvalues. Then

k∑

i=1

xT
i Axi = λ1(A) + . . . + λk(A).

Since a unitary change of basis preserves orthogonality, we can assume that A is diagonal.
Now we will proceed in several steps. First of all let us introduce matrices Il, defined as
diagonal matrices (aij)n

i,j=1 with aii = 1 for i ≤ l and aii = 0 for i > l. It is quite obvious
that Il satisfies (2.25). To every orthonormal system x1, . . . , xk in Rn we can add some
vectors xk+1, . . . , xn in such a way that x1, . . . , xn form an orthonormal basis of Rn. As Il

is positively definite, we get

k∑

i=1

xT
i Ilxi ≤

n∑

i=1

xT
i Ilxi = trIl = l. (2.26)

Moreover it is clear that xT
i Ilxi ≤ 1, so

k∑

i=1

xT
i Ilxi ≤ k. (2.27)

Inequalities (2.26) and (2.27) give us

k∑

i=1

xT
i Ilxi ≤ min(k, l) = λ1(Il) + . . . + λk(Il),

which proves (2.25) for A = Il.
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A diagonal matrix A can be written as

A = (λ1 − λ2)I1 + (λ2 − λ3)I2 + . . . + (λn−1 − λn)In−1 + λnIn.

Now
k∑

i=1

xT
i Axi ≤

n−1∑

l=1

(min(l, k)(λl − λl+1)) + min(n, k)λn = λ1 + . . . + λk.

Equality (2.25) and therefore also Lemma 6 have thus been proved.

¤

We are now in position to derive deviation inequalities for λi.

Theorem 9 For all t > 0

P(|λ1 − Eλ1| ≥ t) ≤ 2e−
t2

4 ,

whereas for k = 2, . . . , n and t > 0 we have

P(|λk − Eλk| ≥ t) ≤ 4e
− t2

4(
√

k+
√

k−1)2 ≤ 4e−
t2

16k .

Proof.
Denote ϕk(A) =

∑k
i=1 λi(A). We have already proved that ϕk are convex. It remains to show

that they are Lipschitz functions of A with respect to the Hilbert-Schmidt norm, defined as

||A||HS =

√√√√
n∑

i,j=1

a2
ij =

√√√√
n∑

i=1

λi(A)2.

Consider two symmetric matrices A and B. Let x1,. . . ,xk be an orthonormal system of
vectors, such that Axi = λixi. We have

ϕk(A) =
k∑

i=1

xT
i Axi

ϕk(B) ≥
k∑

i=1

xT
i Bxi,

hence

ϕk(A)− ϕk(B) ≤
k∑

i=1

xT
i (A−B)xi ≤ ϕk(A−B) ≤ k

√∑k
i=1 λi(A−B)2

k
≤
√

k||A−B||HS .

By analogy
ϕk(B)− ϕk(A) ≤

√
k · ||A−B||HS ,

so ϕk(A) are indeed Lipschitz continuous with respect to || · ||HS , with Lipschitz constant
equal to

√
k.
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We identify the space of all symmetric matrices with R
n(n+1)

2 . Although the Hilbert-Schmidt
norm of a symmetric matrix is not exactly the same as the euclidean norm (||A|| = ∑

i≤j a2
ij)

of its image under the natural isomorphism between the two spaces, they satisfy

||A||HS ≤
√

2 · ||A||

so ϕk is
√

2k-Lipschitz continuous with respect to the euclidean norm.
Now we can take use of concentration inequalities for convex Lipschitz continuous functions
and write for any t > 0

P(|ϕk(A)− Eϕk(A)| ≥ t) ≤ 2e−
t2

4k .

For k = 1 the above inequality gives us concentration of λ1, but for other values of k we still
have to do some computations. Namely, since λk = ϕk − ϕk−1, we have for any θ ∈ [0, 1]

P(|λk−Eλk| ≥ t) ≤ P(|ϕk−Eϕk| ≥ θt)+P(|ϕk−1−Eϕk−1| ≥ (1−θt)) ≤ 2e−
θ2t2

4k +2e
− (1−θ)2t2

4(k−1) .

To finish the proof it is now enough to substitute θ =
√

k/(
√

k +
√

k − 1).

¤

Remark For comparison purposes let us mention the Gaussian counterpart of the above
theorem, which asserts that if H is a random symmetric matrix with Gaussian entries Xij ,
such that VarXij ≤ 1 then

P(|λk − Eλk| ≥ t) ≤ 2e−t2/4.

This statement follows easily from the obvious fact that λk is 1-Lipschitz continuous with
respect to the Hilbert-Schmidt norm and Gaussian concentration inequality for Lipschitz
functions (Corollary 2.15).

2.3.4. Rademacher averages

Another application of tail estimates for convex functions may be found in the area of prob-
ability in Banach spaces.

Corollary 7 Let (xi)n
i=1 be a sequence of vectors from a Banach space E. Define

σ2 = sup{
n∑

i=1

x∗(xi)2 : x∗ ∈ E∗, ||x∗|| ≤ 1}.

Let S be a random variable defined by

S = ||
n∑

i=1

εixi||,

where (εi)n
i=1 is a sequence of independent Rademacher variables. Then

P(S − ES ≥ t) ≤ e−t2/8σ2

for all t ≥ 0.
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Proof. Obviously, the function ϕ : Rn → R defined with the formula

ϕ(t1, . . . , tn) = ||
n∑

i=1

tixi||

is convex. Thus to prove the Corollary it is enough to find its Lipschitz constant. We have

|ϕ(t1, . . . , tn)− ϕ(s1, . . . , sn)| ≤ ||
n∑

i=1

(ti − si)xi||.

By the Hahn-Banach Theorem ||∑n
i=1(ti − si)xi|| = x∗(

∑n
i=1(ti − si)xi) for some x∗ ∈ E∗,

||x∗|| = 1. Hence, by the Cauchy-Schwarz inequality

|ϕ(t1, . . . , tn)− ϕ(s1, . . . , sn)| ≤
√√√√

n∑

i=1

(ti − si)2

√√√√
n∑

i=1

x∗(xi)2 ≤ σ ·
√√√√

n∑

i=1

(ti − si)2,

and thus ϕ is σ-Lipschitz.

¤

It is worth mentioning that Corollary 7 implies the following Khintchin-Kahane type inequal-
ity

Corollary 8 There exists a universal constant K such that for any Banach space E, x1, . . . , xn ∈
E and all p ≥ 1

||
n∑

i=1

εixi||p ≤ ||
n∑

i=1

εixi||1 + Kσp1/2,

with σ = (sup{∑n
i=1 x∗(xi)2 : x∗ ∈ E∗, ||x∗|| ≤ 1})1/2 ≤ ||∑n

i=1 εixi||2.
Proof. Using the notation from Corollary 7, we have

0 ≤ S ≤ ES + (S − ES)+,

hence

||S||p ≤ ||ES + (S − ES)+||p
≤ ES + ||(S − ES)+||p
= ES + (

∫ ∞

0
ptp−1P(S − ES > t)dt)1/p

≤ ES + (
∫ ∞

0
ptp−1e−t2/8σ2

dt)1/p

≤ ES + Kσp1/2.

Let us notice that to prove the Corollary it was enough to use the bound on the upper tail
of S.

¤
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Chapter 3

Moments estimates

In this chapter we present another method of deriving tail inequalities for random variables.
Roughly speaking, it relies on estimates of all the (integer) moments of a random variable,
which in some cases together with the Chebyshev inequality can yield exponential concentra-
tion. In the first section we explain the method on relatively easy examples of sub-Gaussian
random variables, in the second we present a powerful general moment inequality, discovered
recently by S. Boucheron, O.Bosquet, G. Lugosi and P. Massart (comp. [2]) and apply it
to some special random variables. What is especially interesting from our point of view,
is the fact that at the core of the proof of the aforementioned general inequality there are
tensorization properties of some entropy functionals.

3.1. Random variables with sub-Gaussian tails

Theorem 10 Let X1, . . . , Xn be independent mean zero random variables, such that for all i

P(|Xi| ≥ t) ≤ Ke−t2/L2
i

for all t ≥ 0. Then the random variable S =
∑n

i=1 Xi satisfies

P(|S − ES| ≥ t) ≤ e2e
− t2

C2
K

(
Pn

i=1
L2

i
)

for all t ≥ 0, with CK = 2e(D +
√

log K + log
√

2), where D is a universal constant.

Before we proceed with the proof of Theorem 10, we need three easy lemmas.

Lemma 7 Let X1, . . . , Xn be independent mean zero random variables and ε1, . . . , εn a se-
quence of independent Rademacher variables, independent of X1, . . . , Xn. Then for every
p ≥ 0 we have

E|
n∑

i=1

Xi|p ≤ 2pE|
n∑

i=1

εiXi|p.

Proof. Let the random vector (X̃i, . . . , X̃n) be an independent copy of (X1, . . . , Xn).
Then

E|
n∑

i=1

Xi|p = E|
n∑

i=1

(Xi − EXi)|p = E|
n∑

i=1

(Xi − EX̃i)|p ≤ E|
n∑

i=1

(Xi − X̃i)|p,
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where the last inequality follows from the Jensen inequality applied to the function t 7→
|t|p and the expectation with respect to (X̃i)n

i=1. Notice now that for every fixed sequence
ε1, . . . , εn, the random variable

∑n
i=1 εi(Xi − X̃i) has the same distribution. Hence

E|
n∑

i=1

Xi|p ≤ E|
n∑

i=1

εi(Xi − X̃i)|p ≤ E
∣∣∣∣∣
2

∑n
i=1 εiXi − 2

∑n
i=1 εiX̃i

2

∣∣∣∣∣
p

≤ E
|2∑n

i=1 εiXi|p + |2∑n
i=1 εiX̃i|p

2
= 2pE|

n∑

i=1

εiXi|p.

¤

Lemma 8 Let ϕ : R→ R be a convex function, ε1, . . . , εn a sequence of independent Rademacher
variables and a1, . . . , an, b1, . . . , bn two sequences of nonnegative real numbers, such that for
every i ai ≤ bi. Then

Eϕ(
n∑

i=1

aiεi) ≤ Eϕ(
n∑

i=1

εibi).

Proof. It is enough to prove the monotonicity of function f(t) = Eϕ(a + tε1), for every
choice of the parameter a. By the convexity assumption we have for 0 < s < t

ϕ(a + t)− ϕ(a + s)
t− s

≥ ϕ(a− s)− ϕ(a− t)
t− s

,

or equivalently

f(s) =
1
2
(ϕ(a + s) + ϕ(a− s)) ≤ 1

2
(ϕ(a + t) + ϕ(a− t)) = f(t).

¤

Lemma 9 Let X1, . . . , Xn, Y1, . . . , Yn be independent, symmetric random variables, such
that for all i = 1, . . . , n and t ≥ 0, we have P(|Xi| ≥ t) ≤ P(|Yi| ≥ t). Then for all p ≥ 1

E|
n∑

i=1

Xi|p ≤ E|
n∑

i=1

Yi|p.

Proof. Let ε1, . . . , εn be a sequence of independent Rademacher variables, independent
of (Xi)n

i=1 and (Yi)n
i=1. Let us notice that by symmetry Xi (Yi) has the same distribution as

εi|Xi| (εi|Yi|). Since we may consider |Xi| and |Yi| as defined on Ωi = (0, 1) as the ’inverse’
of their distribution functions, without loss of generality, we can assume that for = 1, . . . , n
|Xi| ≤ |Yi| a.e. Thus

E|
n∑

i=1

Xi|p = EX,Y Eε|
n∑

i=1

εi|Xi||p ≤ EX,Y Eε|
n∑

i=1

εi|Yi||p = E|
n∑

i=1

Yi|p,

where the inequality follows from Lemma 8.

¤

Lemma 10 Let γ be a Gaussian random variable with the density g(t) = 1√
2π

e−t2/2. Then
for every t ≥ 0, we have

1√
2
e−t2 ≤ P(|γ| ≥ t). (3.1)
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Proof. For every s, t ∈ R we have (s− t)2 ≥ s2

2 − t2. Therefore

√
π

2
=

∫ ∞

t
e−(s−t)2ds ≤

∫ ∞

t
et2e−s2/2ds,

which is equivalent to (3.1).

¤

Proof of Theorem 10. Let γ be a standard Gaussian random variable. Define C =
√

log K + log
√

2. Then for t ≥ 0, P(|Xi| − LiC ≥ t) ≤ Ke
− (t+LiC)2

L2
i ≤ Ke−C2

e
− t2

L2
i ≤

P(|Liγ| ≥ t), where the last inequality follows from Lemma 10. Thus for t ≥ 0

P((|Xi| − LiC)+ ≥ t) ≤ P(|Liγ| ≥ t).

Now we have for p ≥ 1

||
n∑

i=1

Xi||p ≤ 2||
n∑

i=1

εiXi||p = 2||
n∑

i=1

εi|Xi| ||p (3.2)

= 2||
n∑

i=1

εi(|Xi| − LiC)+ +
n∑

i=1

εi|Xi|1{|Xi|≤LiC} +
n∑

i=1

εiCLi1{|Xi|>LiC} ||p

≤ 2(||
n∑

i=1

εi(|Xi| − C)+||p + ||
n∑

i=1

εi(|Xi|1{|Xi|≤LiC} + LiC1{|Xi|>LiC}) ||p).

Let now γ1, . . . , γn be i.i.d. random variables, distributed identically as γ. We have ||∑n
i=1 Liγi||p ≤

D
√

p
√∑n

i=1 L2
i for some universal constant D. We may thus use Lemma 9 to bound the first

summand and the Khintchine inequality (conditionally to (Xi)n
i=1) to bound the other terms

at the right-hand side of (3.2). In consequence we obtain

||
n∑

i=1

Xi||p ≤ CK

e

√
p

√√√√
n∑

i=1

L2
i (3.3)

for all p ≥ 2. Let now t be an arbitrary nonnegative number. Define p = t2

C2
K

Pn
i=1 L2

i
. If p ≥ 2,

the Chebyshev inequality yields

P(|
n∑

i=1

Xi| ≥ t) ≤ E|∑n
i=1 Xi|p
tp

≤ Cp
Kpp/2(

∑n
i=1 L2

i )
p/2

eptp
= e−p.

On the other hand, if p < 2, then P(|∑n
i=1 Xi| ≥ t) ≤ e2e−p, which proves the Theorem.

¤

Let us now introduce another lemma, which, together with Theorem 10 will allow us to derive
a more general theorem, which may be considered a ’sub-Gaussian’ version of the bounded
differences inequality.
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Lemma 11 Let ϕ : R → R be a convex function and S = f(X1, . . . , Xn), where X1, . . . , Xn

are independent random variables. Denote as usual Si = f(X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn),
where (X̃1, . . . , X̃n) is an independent copy of (X1, . . . , Xn) and assume that

|S − Si| ≤ Fi(Xi, X̃i), i = 1,. . . ,n.

Then

Eϕ(S − ES) ≤ Eϕ(
n∑

i=1

εiFi(Xi, X̃i)), (3.4)

where ε1, . . . , εn is a sequence of independent Rademacher variables, independent of (Xi)n
i=1

and (X̃i)n
i=1.

Proof. We will use induction with respect to n. For n = 0 the statement is obvious, since
both the left-hand and the right-hand side of (3.4) equal ϕ(0). Let us therefore assume that
the Theorem is true for n− 1. Then

Eϕ(S − ES) = Eϕ(S − EX̃n
Sn + EXnS − ES)

≤ Eϕ(S − Sn + EXnS − ES) = Eϕ(Sn − S + EXnS − ES)
= Eϕ(εn|S − Sn|+ EXnS − ES)
≤ Eϕ(εnFn(Xn, X̃n) + EXnS − ES),

with the last inequality following from Lemma 8. Now, denoting Z = EXnS, Zi = EXnSi, we
have for i = 1, . . . , n− 1

|Z − Zi| = |EXnS − EXnSi| ≤ EXn |S − Si| ≤ Fi(Xi, X̃i),

and thus for fixed Xn,X̃n and εn, we can apply the induction assumption to the function
t 7→ ϕ(εnF (Xn, X̃n) + t) instead of ϕ and EXn in the place of S, to obtain

Eϕ(S − ES) ≤ Eϕ

(
n∑

i=1

Fi(Xi, X̃i)εi

)
.

¤

Remark Let us notice that we can now provide an alternate proof of the bounded differences
inequality. Indeed if |S−Si| ≤ ci for i = 1, . . . , n, then, using the above lemma for ϕ(t) = |t|p
we get for p ≥ 2

E|S − ES|p ≤ E|
n∑

i=1

ciεi|p ≤ pp/2

√√√√
n∑

i=1

c2
i .

Thus, similarly as in the proof of Theorem 10, we obtain

P(|S − ES| ≥ t) ≤ e2e
− 2t2

e2
Pn

i=1
c2
i ,

which is (up to constants) the bounded difference inequality.

Theorem 11 In the setting of Lemma 11, assume that for i = 1, . . . , n and all t ≥ 0 we have

P(Fi(Xi, X̃i) ≥ t) ≤ Ke−t2/L2
i .

Then for all t ≥ 0

P(|S − ES| ≥ t) ≤ e2e
− 4t2

C2
K

Pn
i=1

L2
i .
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Proof. By Lemma 11 we have for p ≥ 2

E|S − ES|p ≤ E|
n∑

i=1

εiF (Xi, X̃i)|p.

But F (Xi, X̃i) are independent random variables and exactly as in the proof of Theorem 10
(inequalities (3.2) and (3.3)), we conclude that

E|
n∑

i=1

εiF (Xi, X̃i)|p ≤
Cp

K

(2e)p

(
p

n∑

i=1

L2
i

)p/2

.

Consider now t ≥ 0 and define p = 4t2

C2
K

Pn
i=1 L2

i
. If p ≥ 2, then

P(|S − ES| ≥ t) ≤ E|S − ES|p
tp

≤ Cp
Kpp/2(

∑n
i=1 L2

i )
p/2

2peptp
= e−p,

whereas if p < 2, we have P(|S − ES| ≥ t) ≤ e2e−p.

¤

Actually the following version of the above theorem is more useful in the applications

Theorem 12 In the setting of Lemma 11, assume that for i = 1, . . . , n

Fi(Xi, X̃i) ≤ Gi(Xi) + Gi(X̃i)

P(G(Xi) ≥ t) ≤ Ke−t2/L2
i .

for all t ≥ 0. Then for all t ≥ 0, we have

P(|S − ES| ≥ t) ≤ e2e
− t2

2C2
K

Pn
i=1

L2
i .

Proof. By Lemma 11 and Lemma 8, we have

||S − ES||p ≤ ||
n∑

i=1

εiF (Xi, X̃i)||p ≤ ||
n∑

i=1

εi(G(Xi) + G(X̃i))||p ≤ 2||
n∑

i=1

εiG(Xi)||p.

Thus for p ≥ 2

||S − ES||p ≤ CK

e

√
p

√√√√
n∑

i=1

L2
i ,

which implies the Theorem.

¤

The following Corollary generalizes Theorem 10.

Corollary 9 Let X1,. . . ,Xn be a sequence of independent random variables with values in
a measurable space (Σ,F) and T be a countable family of real measurable functions on Σ.
Assume that for all f ∈ T

|f | ≤ F
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for some F : Σ → R, satisfying

P(F (Xi) ≥ t) ≤ Ke−t2/L2
i

for i = 1, . . . , n. Let now S be the random variable defined with the formula

S = sup
f∈T

n∑

i=1

f(Xi).

Then, for all t ≥ 0

P(|S − ES| ≥ t) ≤ e2e
− t2

C2
K

Pn
i=1

L2
i .

Proof. It is enough to check the assumption of Theorem 12. We have

S − Si ≤ sup
f∈T

(f(Xi)− f(X̃i)) ≤ F (Xi) + F (X̃i),

which by symmetry yields
|S − Si| ≤ F (Xi) + F (X̃i).

¤

3.2. General moment inequalities

Now we are going to show how the moment method can be linked with the entropy method.
We will first state and prove a general moment inequality from ([2]), and then apply it to
obtain some tail and moment estimates for U-statistics in Banach spaces.

Theorem 13 Let X1, . . . , Xn be independent random variables taking values in a measur-
able space (Σ,F) and f : Σn → R a measurable function (with respect to the product σ-field).
Denote S = f(X1, . . . , Xn), Si = f(X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn), where (X1, . . . , Xn) and
(X̃1, . . . , X̃n) are independent random vectors, equal in distribution. Define V =

∑N
i=1 EX̃i

(S−
Si)2+. Then for all p ∈ N, p ≥ 2

E(S − ES)p
+ ≤ 2p/2κp/2

p

(
1− 1

p

)p/2

pp/2EV p/2 ≤ 2p/2κp/2EV p/2,

where

κp =
1
2

(
1−

(
1− 1

p

)p/2
)−1

and

κ = lim
p→∞κp =

√
e

2(
√

e− 1)
.

To prove the above Theorem we shall follow the arguments from [2]. First we need to
examine some properties of the functional Eα(X) = EXα − (EX)α, for α ∈ (1, 2]. Recall
from Chapter 1, that E satisfies the convexity condition (1.1).

Lemma 12 Let X be a nonnegative, integrable random variable and Y an independent copy
of X. Then

Eα(X) ≤ E(X − Y )+(Xα−1 − Y α−1).
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Proof. From the concavity of the function x 7→ xα−1, we have

Eα(X) = EXα − (EX)α

= EXα − (EX)(EY )α−1

≤ EXα − (EX)EY α−1

= EX(Xα−1 − Y α−1)

=
1
2
E(X − Y )(Xα−1 − Y α−1)

= E(X − Y )+(Xα−1 − Y α−1).

¤

Lemma 13 In the setting of Theorem 13, let p ≥ 2 and let α satisfy p/2 ≤ α ≤ p − 1. Let
us assume that E(S − ES)p

+ < ∞. Then

E(S − ES)p
+ ≤ (E(S − ES)α

+)p/α + α(p− α)EV (S − ES)p−2
+ .

Proof. The statement of the lemma can be expressed in terms of Ep/α (p/α ∈ (1, 2]) as

Ep/α((S − ES)α
+) ≤ α(p− α)EV (S − ES)p−2

+ . (3.5)

Thus, to prove the lemma, it is enough to show, that for every number m ∈ R, such that
E(S −m)p

+ < ∞, we have

Ep/α(F (S)) ≤ α(p− α)EV (S −m)p−2
+ , (3.6)

where F (s) = (s−m)α
+ (since (3.5) follows from (3.6) by substituting m = ES). Now, by the

tensorization property of E (Theorem 3) we can restrict our attention to the case n = 1. We
have thus V = EY (S−Y )2+ where Y is an independent copy of S. Since F is non-decreasing,
by Lemma 12, we have

Ep/α(F (S)) ≤ E(F (S)− F (Y ))1{S≥Y }(F (S)p/α−1 − F (Y )p/α−1)

= E(F (S)− F (Y ))1{S≥Y }((S −m)p−α
+ − (Y −m)p−α

+ ). (3.7)

But both F and the function x 7→ (x −m)p−α
+ are convex and non-decreasing, and thus for

x ≥ y we have

0 ≤ F (x)− F (y) ≤ (x− y)α(x−m)α−1
+

0 ≤ (x−m)p−α
+ − (y −m)p−α

+ ≤ (x− y)(p− α)(x−m)p−α−1
+ ,

hence

(F (S)− F (Y ))1{S≥Y }((S −m)p−α
+ − (Y −m)p−α

+ ) ≤ α(p− α)(S − Y )2+(S −m)p−2
+ ,

which together with (3.7) proves the 1-dimensional version of (3.6).

¤
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Proof of Theorem 13. The proof will consist of two parts. The first part will constitute
the Theorem for random variables S, such that E(S −ES)p

+ < ∞. We will use the induction
with respect to p. We have κ2 = 1, so for p = 2 the statement of the Theorem is

E(S − ES)2+ ≤ 2E
n∑

i=1

(S − Si)2+.

But E(S − ES)2+ ≤ ES2 − (ES)2, so it is enough to prove

VarS ≤ 2E
n∑

i=1

(S − Si)2+

and due to the tensorization property of the variance, we can restrict to n = 1. Let thus
X, Y be i.i.d. random variables. Then

VarX = E(X − EY )2 ≤ E(X − Y )2 = 2E(X − Y )2+.

Let us now proceed with the induction step. By Hölder’s inequality, for non-negative random
variables Y , we have

EY (S − ES)p−2
+ ≤ ||Y ||p/2||(S − ES)+||p−2

p .

Now, by Lemma 13, applied with α = p− 1, we obtain

E(S − ES)p
+ ≤

(
E(S − ES)p−1

+

) p
p−1 + (p− 1)||V ||p/2||(S − ES)+||p−2

p .

If we denote cp = 2||V ||p/2(1− 1/p) and xp = (E(S−ES)p
+)(pκpcp)−p/2, the above inequality

translates as

xpp
p/2cp/2

p κp/2
p ≤ x

p/(p−1)
p−1 (p− 1)p/2c

p/2
p−1κ

p/2
p−1 +

1
2
x1−2/p

p pp/2cp/2
p κp/2−1

p .

But κp−1 ≤ κp, cp−1 ≤ cp and by the induction assumption xp−1 ≤ 1, so this inequality yields

xp ≤
(

1− 1
p

)p/2

+
1

2κp
x1−2/p

p .

Consider now the function fp, defined on R+ as

fp(x) =
(

1− 1
p

)p/2

+
1

2κp
x1−2/p − x.

Since f ′p is decreasing, fp is strictly concave. Moreover, fp(0) > 0 and fp(1) = 0, so for x > 1
we have fp(x) < 0. Thus fp(xp) ≥ 0 implies xp ≤ 1.
What still remains to be done is to prove the Theorem for S, such that E(S−ES)p

+ = ∞. We
want to show that then also EV p/2 = ∞. To prove it we will once again use the induction,
this time with respect to the number of coordinates n. Let n = 1 and Y be an independent
copy of S. By Jensen’s inequality we have

E(S − ES)p
+ = E(S − EY )p

+ ≤ E(EY (S − Y )2+)p/2 = EV p/2,

which proves the Theorem in the case n = 1. For n > 1, let us notice that

||(S − ES)+||p ≤ ||(S − EXnS)+||p + ||(EXnS − ES)+||p,
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since for x, y ∈ R, we have (x+y)+ ≤ x++y+. Thus if E(S−ES)+ = ∞, then E(S−EXnS)p
+ =

∞ or E(EXnS − ES)p
+ = ∞. But we have

E(S − EXnS)p
+ = E(S − EX̃n

Sn)p
+ ≤ E(EX̃n

(S − Sn)2+)p/2 ≤ EV p/2,

so in the first case the Theorem is satisfied. On the other hand

E(
n−1∑

i=1

EX̃i
(EXnS−EXnSi)2+)p/2 ≤ E(

n−1∑

i=1

EXnEX̃i
(S−Si)2+)p/2 ≤ E(

n−1∑

i=1

EX̃i
(S−Si)2+)p/2 ≤ EV p/2.

If E(EXnS − ES)p
+ = ∞, then (by the induction assumption) the left hand side of the above

inequality is also infinite and so is EV p/2, which proves the Theorem.

¤

3.2.1. Application to U-statistics

Let now B be a separable Banach space, such that B∗ is separable. Let X1, . . . , XN ,
Y1, . . . , YN be independent random variables, with values in a Polish space Σ and h : Σ×Σ →
B be a measurable function. Assume that EXih(Xi, Yj) = 0 and EYjh(Xi, Yj) = 0 a.e. and
define

Z = ||
N∑

i,j=1

h(Xi, Yj)||.

We will need some additional facts, that will be stated without proofs.

Fact 1 (Theorem 11 in [2]) Let X1,. . . ,Xn be a sequence of independent random variables
with values in a measurable space (Σ,F) and T be a countable family of nonnegative mea-
surable functions on Σ. Let S = supf∈T

∑n
i=1 f(Xi). Then there exists a universal constant

K, such that for p = 2, 3, . . . we have

ESp ≤ Kp((ES)p + ppE max
i≤1≤n

sup
f∈T

f(Xi)p).

Fact 2 (Proposition 3.1. in [9]) Let X1,. . . ,Xn be a sequence of independent random vari-
ables with values in a measurable space (Σ,F) and T be a countable family of measurable
functions on Σ. Assume furthermore that for each f ∈ T we have Ef(Xi) = 0 for all i.
Consider the random variable

S = sup
f∈T

|
n∑

i=1

f(Xi)|.

Define now

σ2 = sup
f∈T

n∑

i=1

Ef(Xi)2.

Then there exists a universal constant K such that

ESp ≤ Kp((ES)p + pp/2σp + ppE max
1≤i≤n

sup
f∈T

|f(Xi)|p).

for p = 2, 3, . . .
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Let us stress here that both of the above facts can be proved using Theorem 13. We refer to
[2] for details. The latter Fact was first proved in [9] for all p ≥ 2, non necessarily natural,
from the upper tail bound for the random variable S.

Corollary 10 Let X1, . . . , Xn be independent centered random variables with values in a
Banach space B, such that B∗ is separable. Then there exists a universal constant K, such
that for all p ≥ 2 we have the following estimate

E||
n∑

i=1

Xi||p ≤ Kp((E||
n∑

i=1

Xi||)p + pp/2(
n∑

i=1

E||Xi||2)p/2 + ppE
n∑

j=1

||Xi||p).

Proof. The proof involves just expressing the norm || · || as supv〈v, · 〉 over a countable
set of elements v ∈ B∗ and applying Fact 2.

¤

The next theorem is an improvement of classical Rosenthal inequalities, due to R. LataÃla
([11],[9])

Fact 3 (Inequality R1 in [9]) Let X1, . . . , Xn be independent, nonnegative random vari-
ables. Then for all p ≥ 1

E(
n∑

i=1

Xi)p ≤ (2e)p max

(
e

p
pp

n∑

i=1

EXp
i , ep(

n∑

i=1

EXi)p

)
.

Fact 4 (Inequality (2.6) in [9]) Let X1, . . . , Xn be independent nonnegative random vari-
ables. Then for all p > 1 and α ≥ 0

pαp
n∑

i=1

EXp
i ≤ 2(1 + pα)max

(
pαpE max

1≤i≤n
Xp

i , (
n∑

i=1

EXi)p

)
.

We will also use the following technical lemma

Lemma 14 Let B be a Banach space such that B∗ is separable. Let Σ be a Polish space,
equipped with a Borel probability measure. Then there exists a countable set T of functions
g : Σ → B∗ with E||g||2 ≤ 1, such that

(E||f ||2)1/2 = sup
g∈T

E〈g, f〉

for every measurable function f : Σ → B, such that E||f ||2 = 1.

Proof. For every vector v ∈ B let Γ(v) = {w ∈ B∗ : 〈w, v〉 = ||v||, ||w|| = 1}. By the
Hahn-Banach Theorem Γ(v) 6= ∅ for every v. Moreover Γ(v) is closed in B∗ and hence
complete in the metric induced from B∗. We would like to choose a measurable function
g̃ : B → B∗ such that for every v ∈ B, g̃(v) ∈ Γ(v) (i.e. g̃ is a measurable selection of Γ). For
this purpose we will use the following theorem, which can be found in ([5]), p. 65.
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Fact 5 Let X be separable metric space, (T,F) a measurable space, Γ a multifunction from T
to the collection of complete, nonempty subsets of X. If for each open set U ⊆ X, Γ−1(U) =
{t : Γ(t) ∩ U 6= ∅} ∈ F , then Γ admits a measurable selection.

For an open set U ⊂ B∗, let us consider the set Γ−1(U) = {v ∈ B : Γ(v) ∩ U 6= ∅}. Since
Γ−1(

⋃
Ui) =

⋃
Γ−1(Ui) and every open subset of B∗ is a countable union of open balls,

to check the assumption of the above fact, it is enough to prove the Borel measurability of
Γ−1(U) in the case when U is an open ball. Let thus w,r denote respectively the centre and
the radius of U .
Let A = {w1, w2, . . .} be a countable set, dense in the unit sphere of B∗. If v ∈ Γ−1(U), then
there exists w∞ ∈ U , with ||w∞|| = 1, 〈w, v〉 = ||v||. Thus for some ε > 0, there exists a
sequence wn ∈ A, ||wn − w|| < r − ε, such that limn→∞〈wn, v〉 = ||v||.
On the other hand, if there exists such a sequence, then there exists a subsequence wnk

,
converging to some w∞ in the ∗-weak topology. Then 〈w∞, v〉 = ||v|| and ||w−w∞|| ≤ r− ε,
||w|| = 1, so w∞ ∈ U and v ∈ Γ−1(U). Thus

Γ−1(U) =
⋃

ε∈Q+

⋂

ρ∈Q+

⋃

u∈A,||u−w||<r−ε

{v : |〈u, v〉 − ‖v‖| < ρ}.

Since {v : |〈u, v〉 − ||v||| < ρ} is closed in B, we conclude that Γ−1(U) is Borel measurable.
We have thus proved that there exists a measurable function g̃ : B → B∗, such that ||v|| =
〈g̃(x), v〉 and ||g̃(v)|| = 1 for all v ∈ B. Thus, for every f ∈ L2(Σ, B) there exists g ∈
L2(Σ, B∗), such that ||f(x)|| = 〈g(x), f(x)〉 and ||g(x)|| = 1 for all x ∈ Σ.
Now we are ready to construct the set T . Let B = {w1, w2, . . .} be a countable set, dense in
B∗. Every function from L2(Σ, B∗) can be approximated in this space by bounded functions
and such functions can be approximated by B-valued step functions i.e. functions of the form

h(x) =
n∑

i=1

wi1Ai(x),

where Ai are Borel subsets of Σ. Now, since every Borel measure on a Polish space is regular,
we can approximate such step functions by B-valued step functions such that every set Ai is
a finite sum of open sets from a countable basis. All such functions constitute a countable
set, which we will denote by S.
Recall, that for fixed f ∈ L2(Σ, B), we denote by g a function from L2(Σ, B∗), such that
||f(x)|| = 〈g(x), f(x)〉 and ||g(x)|| = 1 for all x ∈ Σ. Define h = g||f ||/(E||f ||2)1/2. We have

E||h||2 = 1,

E〈h, f〉 = (E||f ||2)1/2.

Consider a sequence g̃n ∈ S, such that g̃n → h in L2(Σ, B∗). Then

|E〈g̃n, f〉 − (E||f ||2)1/2| ≤ E|〈g̃n − h, f〉| ≤ E(||g̃n − h|| · ||f ||) ≤ (E||g̃n − h||2)1/2(E||f ||2)1/2.

The expression at the right-hand side converges to 0 as n →∞, so we get

lim
n→∞〈g̃n, f〉 = (E||f ||2)1/2.

Moreover (E||h||2)1/2 − (E||h − g̃n||2)1/2 ≤ (E||g̃n||2)1/2 ≤ (E||h||2)1/2 + (E||h − g̃n||2)1/2, so
limn→∞ E||g̃n||2 = 1. Define gn = g̃n/(E||g̃n||2)1/2. We have

lim
n→∞E〈gn, f〉 = lim

n→∞
E〈g̃n, f〉

(E||g̃n||2)1/2
=

(E||f ||2)1/2

1
= (E||f ||2)1/2,
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On the other hand, for every g ∈ L2(Σ, B∗), with E||g||2 ≤ 1, we have E〈g, f〉 ≤ E||f ||||g|| ≤
(E||f ||2)1/2, so

(E||f ||2)1/2 = sup{E〈 g

(E||g||2)1/2
, f〉 : g ∈ S}

Since the set T = {g/(E||g||2)1/2 : g ∈ S} is countable and for all h ∈ T we have E||h||2 = 1,
the lemma has been proved.

¤

We will now use the moment method to find a bound for the upper tail of Z, following the
idea from [11]. For convenience and consistency with the previous part we will use sometimes
the notation XN+i = Yi. Let T be a countable set dense in the unit ball of B∗. By the
Hahn-Banach theorem we have

Z = sup
v∈T

〈v,
N∑

i,j=1

h(Xi, Yj)〉

Let us now fix a sample (Xi)2N
i=1 and consider a sequence vn ∈ T , such that

lim
n→∞〈vn,

n∑

i,j=1

h(Xi, Yj)〉 = Z.

Pointwise, we have

N∑

k=1

(Z − Zk)2+ =
N∑

k=1

lim
n→∞(〈vn,

N∑

i,j=1

h(Xi, Yj)〉 − Zk)2+

and by the Lebesgue dominated convergence theorem

EX̃

N∑

k=1

(Z − Zk)2+ = lim
n→∞EX̃

N∑

k=1

(〈vn,
N∑

i,j=1

h(Xi, Yj)〉 − Zk)2+.

But for each n

N∑

k=1

EX̃(〈vn,
n∑

i,j=1

h(Xi, Yj)〉 − Zk)2+ ≤
N∑

k=1

EX̃(〈vn,
N∑

j=1

h(Xk, Yj)− h(X̃k, Yj)〉)2

=
N∑

k=1

〈vn,
N∑

j=1

h(Xk, Yj)〉2 +
N∑

k=1

EX〈vn,
N∑

j=1

h(Xk, Yj)〉2

≤ sup
v∈T

N∑

k=1

〈v,
N∑

j=1

h(Xk, Yj)〉2 + sup
v∈T

N∑

k=1

EX〈v,
N∑

j=1

h(Xk, Yj)〉2

with the equality following from the assumption EXh = 0 a.e. After handling the case of
k > N in an analogous way we finally obtain

2N∑

k=1

EX̃(Z − Zk)2+ ≤ sup
v∈T

N∑

i=1

〈v,
N∑

j=1

h(Xi, Yj)〉2 + sup
v∈T

N∑

i=1

EX〈v,
N∑

j=1

h(Xi, Yj)〉2 (3.8)

+ sup
v∈T

N∑

j=1

〈v,
N∑

i=1

h(Xi, Yj)〉2 + sup
v∈T

N∑

j=1

EY 〈v,
N∑

i=1

h(Xi, Yj)〉2
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Thus by Theorem 13 we get

E(Z − EZ)p ≤ Kppp/2


E(sup

v∈T

N∑

i=1

〈v,
N∑

j=1

h(Xi, Yj)〉2)p/2 + EY (sup
v∈T

N∑

i=1

EX〈v,
N∑

j=1

h(Xi, Yj)〉2)p/2

+ E(sup
v∈T

N∑

j=1

〈v,

N∑

i=1

h(Xi, Yj)〉2)p/2 + EX(sup
v∈T

N∑

j=1

EY 〈v,

N∑

i=1

h(Xi, Yj)〉2)p/2


 (3.9)

≤ Kppp/2(A + B + C + D).

Let us notice that two latter terms are analogous to the former, so in what follows we will
not put attention to them in any of partial computations, but just include their influence at
the final steps. Let us thus handle the first term at the right hand side of (3.9), denoting for
the time being

S = sup
v∈T

N∑

i=1

〈v,
N∑

j=1

h(Xi, Yj)〉2.

Fact 1, applied conditionally to Y gives

ESp/2 ≤ Kp


EY (EX sup

v∈T

N∑

i=1

〈v,
N∑

j=1

h(Xi, Yj)〉2)p/2 + pp/2E max
1≤i≤N

sup
v∈T

〈v,
N∑

j=1

h(Xi, Yj)〉p



= Kp


EY (EX sup

v∈T

N∑

i=1

〈v,
N∑

j=1

h(Xi, Yj)〉2)p/2 + pp/2E max
1≤i≤N

||
N∑

j=1

h(Xi, Yj)||p

 .

Since the first term at the right-hand side of the last inequality is greater then the second
term at the right-hand side of (3.9), after taking into account the analogous contributions
from C and D we get

E(Z − EZ)p
+ ≤ Kp


pp/2EY (EX sup

v∈T

N∑

i=1

〈v,
N∑

j=1

h(Xi, Yj)〉2)p/2 + ppE max
1≤i≤N

||
N∑

j=1

h(Xi, Yj)||p

+ pp/2EX(EY sup
v∈T

N∑

j=1

〈v,
N∑

i=1

h(Xi, Yj)〉2)p/2 + ppE max
1≤j≤N

||
N∑

i=1

h(Xi, Yj)||p

 .

(3.10)

Obviously

(EX sup
v∈T

N∑

i=1

〈v,
N∑

j=1

h(Xi, Yj)〉2)1/2 ≤ (EX

N∑

i=1

sup
v∈T

〈v,
N∑

j=1

h(Xi, Yj)〉2)1/2

= (EX

N∑

i=1

||
N∑

j=1

h(Xi, Yj)||2)1/2 =: S.

This estimate is quite crude, however it will allow us to replace the ’troublesome’ random
variable by one that can be handled with the use of Fact 2. Indeed, by Lemma 14, there exists
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a countable set V, consisting of elements f = (f1, . . . , fn), such that for each i, fi : Σ → B∗

and
∑n

i=1 E||fi(Xi)||2 ≤ 1 and

S = sup
f∈V

|
N∑

i=1

N∑

j=1

EX〈fi(Xi), h(Xi, Yj)〉|.

Hence, identifying f ∈ V with the function y 7→ ∑
i EX〈fi(Xi), h(Xi, Yj)〉, we have

S = sup
f∈V

|
N∑

j=1

f(Yj)|,

so we can apply to S the inequality from Fact 2. In this case we get

σ2 = sup
f∈V

EY

N∑

j=1

(
N∑

i=1

EX〈fi(Xi), h(Xi, Yj)〉
)2

≤ sup



E

N∑

i,j=1

〈fi(Xi), h(Xi, Yj)〉gj(Yj) : fi : Σ → B∗, gj : Σ → R,

N∑

i=1

E||fi(Xi)||2 ≤ 1,
N∑

j=1

Egj(Yj)2 ≤ 1





2

For simplicity reasons and analogy with the real-valued case, let us denote the square root of
the right-hand side by ||h||(1)

L2→L2 . Similarly, we define

||h||(2)
L2→L2

= sup



E

N∑

i,j=1

〈fj(Yj), h(Xi, Yj)〉gi(Xi) : fj : Σ → B∗, gi : Σ → R,

N∑

j=1

E||fj(Yj)||2 ≤ 1,
N∑

i=1

Egi(Xi)2 ≤ 1



 .

Now |ES|2 ≤ ES2 = E
∑N

i=1 ||
∑N

j=1 h(Xi, Yj)||2 and finally

EY max
1≤j≤N

sup
f∈V

|f(Yj)|p = EY max
1≤j≤N

sup
f∈V

|
N∑

i=1

EX〈fi(Xi), h(Xi, Yj)〉|p

≤ EY max
1≤j≤N

sup
f∈V

(
N∑

i=1

EX ||fi(Xi)|| · ||h(Xi, Yj)||)p

≤ EY max
1≤j≤N

(
N∑

i=1

||h(Xi, Yj)||2)p/2.

After collecting the above estimations, using Fact 2 and plugging the result into (3.10), we
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obtain

E(Z − EZ)p
+ ≤ Kp


pp/2(E

N∑

i=1

||
N∑

j=1

h(Xi, Yj)||2)p/2 + pp(||h||(1)
L2→L2

)p (3.11)

+ p3p/2EY max
1≤j≤N

(
N∑

i=1

||h(Xi, Yj)||2)p/2 + ppE
N∑

i=1

||
N∑

j=1

h(Xi, Yj)||p

+ pp/2(E
N∑

j=1

||
N∑

i=1

h(Xi, Yj)||2)p/2 + pp(|h||(2)
L2→L2

)p

+ p3p/2EX max
1≤i≤N

(
N∑

j=1

||h(Xi, Yj)||2)p/2 + ppE
N∑

j=1

||
N∑

i=1

h(Xi, Yj)||p

 .

Let us note that the fourth and the eight terms at the right-hand side have been obtained
by changing maximum into sum in the appropriate term from (3.10). We will now handle
the fourth term by applying conditionally to X Corollary 10 (we stick to the introduced
convention to derive only one of two analogous terms, derived from X and Y part of (3.9)
respectively).
What we get is

ppE
N∑

i=1

||
N∑

j=1

h(Xi, Yj)||p ≤ Kp


ppEX

N∑

i=1

(EY ||
N∑

j=1

h(Xi, Yj)||)p (3.12)

+ p3p/2EX

N∑

i=1

(
N∑

j=1

EY ||h(Xi, Yj)||2)p/2 + p2p
N∑

i,j=1

E||h(Xi, Yj)||p

 .

We would like to turn the outer sums in i into the maximum over i and the sum in i, j into
the maximum over i, j. To achieve this we will use Facts 3 and 4. Before we continue let
us note that since for any fixed α we have 1 + pα ≤ Kp, in the sequel we will ommit the
multiplicative constant in front of the right-hand side of the inequality in Fact 4 and write
just Kp instead.
Let us start with the first term. Applying Fact 4 with α = 1 and p/2 instead of p yields

pp
N∑

i=1

EX(EY ||
N∑

j=1

h(Xi, Yj)||)p ≤ Kppp/2


pp/2EX max

1≤i≤N
(EY ||

N∑

j=1

h(Xi, Yj)||)p

+ (
N∑

i=1

E||
N∑

j=1

h(Xi, Yj)||2)p/2


 , (3.13)

where to get the last term at the right-hand side we have used the Jensen inequality. This
term coincides with the first term at the right-hand side of (3.11).
Now we are going to proceed with the second term at the right-hand side of 3.12. We apply
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Fact 4 again, this time with p/2 and α = 3 to obtain

p3p/2EX

N∑

i=1

(
N∑

j=1

EY ||h(Xi, Yj)||2)p/2 ≤ Kp


p3p/2EX max

1≤i≤N
(

N∑

j=1

EY ||h(Xi, Yj)||2)p/2

+ (
N∑

i,j=1

E||h(Xi, Yj)||2)p/2


 . (3.14)

We can see that the first term at the right-hand side has already appeared with the same
order of the multiplicative constant in (3.11).
What remains is the last term at the right-hand side of (3.12). We use Fact 4 with α = 2
and p/2, conditionally to X and obtain

p2p
N∑

i,j=1

E||h(Xi, Yj)||p ≤ Kp

(
p2p

N∑

i=1

E max
1≤j≤N

||h(Xi, Yj)||p (3.15)

+ EX

N∑

i=1

(
N∑

j=1

EY ||h(Xi, Yj)||2)p/2


 .

To get rid of the second term we use Fact 4 again, this time with p/2 and α = 0 to get

EX

N∑

i=1

(
N∑

j=1

|h(Xi, Yj)||2)p/2 ≤ Kp


EX max

1≤i≤N
(

N∑

j=1

EY h(Xi, Yj)||2)p/2 + (
N∑

i,j=1

||h(Xi, Yj)||2)p


 .

Since both terms, that we have obtained, have already appeared with greater order of the
multiplicative constants in front, we can see that the second term at the right-hand side of
(3.15) is negligible.
Thus the last thing that remains is the first term at the right-hand side of (3.15). To bound
it, we apply to EX Fact 4 with p/2 and α = 4. We obtain

p2p
N∑

i=1

E max
1≤j≤N

||h(Xi, Yj)||p ≤ Kp(p2pE max
1≤i,j≤N

||h(Xi, Yj)||p+EX(EY

N∑

i=1

max
1≤j≤N

||h(Xi, Yj)||2)p/2).

The second term may be bounded from above by EX(
∑N

i=1(EY
∑N

j=1 ||h(Xi, Yj)||2))p/2. Thus
applying Fact 3 to EX we can see that it is dominated by

Kp


pp/2EX

N∑

i=1

(EY

N∑

j=1

||h(Xi, Yj)||2)p/2 + (
N∑

i,j=1

E||h(Xi, Yj)||2)p/2


 .

The first term has already appeared above at the right-hand side of (3.12) and has been
bounded in (3.14). Thus we can collect all the terms and using (3.12) and (3.11) obtain
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Theorem 14 There exists a universal constant K, such that for all p ∈ N, p > 2, we have

E(Z − EZ)p
+ ≤ Kp


(

N∑

i,j=1

E||h(Xi, Yj)||2)p/2

+ pp/2(E
N∑

i=1

||
N∑

j=1

h(Xi, Yj)||2)p/2 + pp/2(E
N∑

j=1

||
N∑

i=1

h(Xi, Yj)||2)p/2

+ pp(||h||(1)
L2→L2

)p + pp(||h||(2)
L2→L2

)p

+ ppEX max
1≤i≤N

(EY ||
N∑

j=1

h(Xi, Yj)||)p + ppEY max
1≤j≤N

(EX ||
N∑

i=1

h(Xi, Yj)||)p

+ p3p/2EX max
1≤i≤N

(EY

N∑

j=1

||h(Xi, Yj)||2)p/2 + p3p/2EY max
1≤j≤N

(EX

N∑

i=1

||h(Xi, Yj)||2)p/2

+ p2pE max
1≤i,j≤N

||h(Xi, Yj)||p
)

. (3.16)

We are interested in turning the above moment inequality into a bound on the upper tail of
Z. We can do it for bounded kernels. Let us define

A2 =
N∑

i,j=1

E||h(Xi, Yj)||2

B2 = E
N∑

i=1

||
N∑

j=1

h(Xi, Yj)||2

C = ||h||(1)
L2→L2

+ ||h||(2)
L2→L2

D2 = max





∣∣∣∣∣∣

∣∣∣∣∣∣
EY

N∑

j=1

||h(·, Yj)||2
∣∣∣∣∣∣

∣∣∣∣∣∣
∞

,

∣∣∣∣∣

∣∣∣∣∣EX

N∑

i=1

||h(Xi, ·)||2
∣∣∣∣∣

∣∣∣∣∣
∞





E = max
1≤i,j≤N

||h(Xi, Yj)||∞

F = max





∣∣∣∣∣∣

∣∣∣∣∣∣
EY ||

N∑

j=1

h(·, Yj)||
∣∣∣∣∣∣

∣∣∣∣∣∣
∞

,

∣∣∣∣∣

∣∣∣∣∣EX ||
N∑

i=1

h(Xi, ·)||
∣∣∣∣∣

∣∣∣∣∣
∞



 .

Then Theorem 14 implies

E(Z − EZ)p
+ ≤ Kp(pp/2(A + B)p + pp(C + F )p + p3p/2Dp + p2pF p).

This implies the following

Theorem 15 There exists a universal constant K, such that if h is bounded, then for all
t ≥ 0

P(S − ES ≥ t) ≤ K exp

(
− 1

K
min

(
t2

A2 + B2
,

t

C + F
,

t2/3

D2/3
,

t1/2

E1/2

))
.

47



Let us now comment on the special case, when Xi, Yj are i.i.d random variables. The main
interest in inequalities as the one above is their usefulness in proving limit theorems. For
example, the real line version of the above theorem has been used to prove the law of iterated
logarithm for U-statistics (see [8]). Therefore we are interested in the order of growth of the
coefficients A, . . . , F with the size of the sample (N). Let us therefore take a closer look at
the behaviour of those coefficients. We have

A2 = N2E||h(X, Y )||2,
D2 ≤ N max(||EX ||h(X, ·)||2||∞, ||EY ||h(·, Y )||2||∞),
F ≤ N max(||EX ||h(X, ·)||||∞, ||EY ||h(·, Y )||||∞),
C ≤ N

(
sup{E〈f(X), h(X,Y )〉g(Y ) : f : Σ → B∗, g : Σ → R, E||f(X)||2 ≤ 1,Eg(Y )2 ≤ 1}

+sup{E〈f(Y ), h(X, Y )〉g(X) : f : Σ → B∗, g : Σ → R, E||f(Y )||2 ≤ 1,Eg(X)2 ≤ 1}) ,

where the last line is an easy consequence of the Cauchy-Schwarz inequality. The coefficient
E does not depend on the size of the sample. We have however still to deal with B. Let us
notice that whenever B2 is of order N2, Theorem 15 shows that the upper deviation of Z
from its mean is of order N (i.e. P(Z −EZ ≥ tN) may be bounded by a function depending
only on t and vanishing at infinity).
We would like to emphasize that there exists a class of Banach spaces, for which B2 is indeed
of order N2 for every h and even more, both B2 and ES2 can be bounded from above by
KA2, where K is a constant, depending only on the space B. What we have in mind here
is the class of Banach spaces of type 2. Below, we define this class and explain how the tail
and moment inequalities for U-statistics can be improved in that case.

Definition 4 A Banach space B is of type p, if there exists a constant T , such that for every
n ∈ N and every x1, . . . , xn ∈ B, we have

(
E||

n∑

i=1

εixi||2
)1/2

≤ T

(
n∑

i=1

||xi||p
)1/p

.

Remark It is easy to see that every Hilbert space has type 2. Also the spaces Lq for q ≥ 2
have type 2. The spaces Lp for 1 ≤ p ≤ 2 have type p. The proof can be found for example
in ([20]).
Let us now notice that for every Banach space valued independent centered random variables
X1, . . . , Xn, we have

E||
n∑

i=1

Xi||p ≤ 2pE||
n∑

i=1

εiXi||p,

where ε1, . . . , εn is a sequence of independent Rademacher random variables, independent of
X1, . . . , Xn. The proof is analogous to the real case. (comp. Lemma 7). Thus for spaces of
type 2, we get

E||
n∑

i=1

Xi||2 ≤ 4||
n∑

i=1

εiXi||2 ≤ 4T 2
n∑

i=1

E||Xi||2

and applying it to random variables h(Xi, Yj), we get

ES2 = E||
N∑

i,j=1

h(Xi, Yj)||2 ≤ 4T 2
N∑

i=1

E||
N∑

j=1

h(Xi, Yj)||2 ≤ 16T 4
N∑

i,j=1

E||h(Xi, Yj)||2.
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Thus indeed, the both ES2 and B2 ca be bounded by A2. Let us also take a look at the
coefficient F . We have

(EY ||
N∑

j=1

h(Xi, Yj)||)p ≤ (EY ||
N∑

j=1

h(Xi, Yj)||2)p/2 ≤ (4T 2
N∑

j=1

EY ||h(Xi, Yj)||2)p/2

Since this quantity appears at the right hand side of moment inequality (3.16), with a greater
order of the multiplicative constant in front, we can skip the term corresponding to F at the
right-hand side.
The above remarks, together with the inequality

EZp ≤ E((Z − EZ)+ + EZ)p ≤ Kp(E(Z − EZ)p
+ + (EZ)p)

give us the following

Theorem 16 For every Banach space of type 2, there exist constants K, L, depending only
on the constant in the definition of type, such that for all p ∈ N, p > 2, we have

EZp ≤ Kp


pp/2(

N∑

i,j=1

E||h(Xi, Yj)||2)p/2

+ pp(||h||(1)
L2→L2

)p + pp(||h||(2)
L2→L2

)p

+ p3p/2EX max
1≤i≤N

(EY

N∑

j=1

||h(Xi, Yj)||2)p/2 + p3p/2EY max
1≤j≤N

(EX

N∑

i=1

||h(Xi, Yj)||2)p/2

+ p2pE max
1≤i,j≤N

||h(Xi, Yj)||p
)

. (3.17)

and

P(S ≥ t) ≤ L exp

(
− 1

L
min

(
t2

A2
,

t

C
,

t2/3

D2/3
,

t1/2

E1/2

))
. (3.18)

for all t ≥ 0.
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