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The model
1. A set of  voters  = { , , , }. 

2. A set of  candidates  = { , , , }. 

Each voter  has a preference relation  over the set of candidates.

n V v1 v2 … vn

m C c1 c2 … cm

vi ≻i

v1 v2 v3 v4  v5 v6 v7 v8 v9 v10

A A A S C S V C B B 1
C B B C B C C S S C 0

B V S B V B B V A V 0

V C V V A V A A V S 0

S S C A S A S B C A 0

A : 3 B : 2 C : 2 V : 1 S : 2
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The model
1. A set of  voters  = { , , , }. 

2. A set of  candidates  = { , , , }. 

Each voter  has a preference relation  over the set of candidates.

n V v1 v2 … vn

m C c1 c2 … cm

vi ≻i

v1 v2 v3 v4  v5 v6 v7 v8 v9 v10

A A A S C S V C B B 4
C B B C B C C S S C 3

B V S B V B B V A V 2

V C V V A V A A V S 1

S S C A S A S B C A 0

A : 17 B : 25 C : 24 V : 17 S : 17
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The model
1. A set of  voters  = { , , , }. 

2. A set of  candidates  = { , , , }. 

Each voter  has a preference relation  over the set of candidates.

n V v1 v2 … vn

m C c1 c2 … cm

vi ≻i

v1 v2 v3 v4  v5 v6 v7 v8 v9 v10

A A A S C S V C B B 1
C B B C B C C S S C 1

B V S B V B B V A V 1

V C V V A V A A V S 1

S S C A S A S B C A 0

A : 7 B : 9 C : 8 V : 10 S : 6

VETO



The class of positional scoring rules

Each rule in this class is defined by a scoring vector . 

• A candidate ranked at position  by a voter  gets  points from . 

• The candidate with the highest number of points wins the election. 

Examples of positional scoring rules: 

Plurality:             

Borda:                 

Veto:                   

-approval:        

Formula One:   

α = (α1, α2, …, αm)

j v αj v

α = (1, 0, 0, …, 0)

α = (m − 1, m − 2, m − 3, …, 0)

α = (1, 1, 1, …,1, 0)

k α = (1, 1, …,1
k ones

, 0, 0, …, 0)

α = (25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, …, 0)
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Condorcet rules

v1 v2 v3 v4  v5 v6 v7 v8 v9 v10

A A A S C S V C B B
C B B C B C C S S C

B V S B V B B V A V

V C V V A V A A V S

S S C A S A S B C A

Condorcet winner: the candidate  that beats each other candidate in the 
                              head-to-head comparison. 

for each  we have 

c

c′ {vi ∈ V : c ≻i c′ } > {vi ∈ V : c′ ≻i c}
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Condorcet consistency: a rule selects the Condorcet winner, whenever such 
                                     exists.
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Copeland rule: each candidate  gets one point for each candidate she 
                        defeats in a head-to-head comparison. 

, where  

  iff   

Who will win in the election below? (Very irresolute rule!)

c

score(c) = {c′ : c ≻maj c′ }

c ≻maj c′ {vi ∈ V : c ≻i c′ } > {vi ∈ V : c′ ≻i c}



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to .

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

c1
c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

str(c1 → c3) ≥ min(str(c1 → c2), str(c2 → c3))
c1

c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

 
 

str(c1 → c3) ≥ min(str(c1 → c2), str(c2 → c3))
str(c1 → c2) > min(str(c2 → c3), str(c3 → c1))
str(c2 → c3) > min(str(c3 → c1), str(c1 → c2))

c1
c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

 
 

str(c1 → c3) ≥ min(str(c1 → c2), str(c2 → c3))
str(c1 → c2) > min(str(c2 → c3), str(c3 → c1))
str(c2 → c3) > min(str(c3 → c1), str(c1 → c2))

Case 1: str(c1 → c2) ≤ str(c2 → c3)
c1

c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

 
 

str(c1 → c3) ≥ str(c1 → c2)
str(c1 → c2) > min(str(c2 → c3), str(c3 → c1))
str(c2 → c3) > min(str(c3 → c1), str(c1 → c2))

Case 1: str(c1 → c2) ≤ str(c2 → c3)
c1

c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

 
 

str(c1 → c3) ≥ str(c1 → c2)
str(c1 → c2) > str(c3 → c1)
str(c2 → c3) > min(str(c3 → c1), str(c1 → c2))

Case 1: str(c1 → c2) ≤ str(c2 → c3)
c1

c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

 
 

str(c1 → c3) ≥ str(c1 → c2)
str(c1 → c2) > str(c3 → c1)
str(c2 → c3) > min(str(c3 → c1), str(c1 → c2))

Case 1: str(c1 → c2) ≤ str(c2 → c3)
c1

c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

 
 

str(c1 → c3) ≥ min(str(c1 → c2), str(c2 → c3))
str(c1 → c2) > min(str(c2 → c3), str(c3 → c1))
str(c2 → c3) > min(str(c3 → c1), str(c1 → c2))

Case 2: str(c1 → c2) ≥ str(c2 → c3)
c1

c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

 
 

str(c1 → c3) ≥ str(c2 → c3)
str(c1 → c2) > min(str(c2 → c3), str(c3 → c1))
str(c2 → c3) > min(str(c3 → c1), str(c1 → c2))

Case 2: str(c1 → c2) ≥ str(c2 → c3)
c1

c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

 
 

str(c1 → c3) ≥ str(c2 → c3)
str(c1 → c2) > min(str(c2 → c3), str(c3 → c1))
str(c2 → c3) > str(c3 → c1)

Case 2: str(c1 → c2) ≥ str(c2 → c3)
c1

c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c

 
 

str(c1 → c3) ≥ str(c2 → c3)
str(c1 → c2) > min(str(c2 → c3), str(c3 → c1))
str(c2 → c3) > str(c3 → c1)

Case 2: str(c1 → c2) ≥ str(c2 → c3)
c1

c2

c3



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive!

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c



Condorcet rules
Schulze method 

: the number of voters who prefer  over , i.e.,  

 

A path of strength  from  to  is a sequence , , ,  such that: 

1.  and , and, 

2. for each  we have . 

A candidate  is better than  if the best path from  to  is stronger than 
the best path from  to . 

This relation is transitive! 

A candidate that is weakly better than every other candidate is a winner.

d(c, c′ ) c c′ 

d(c, v′ ) = {vi ∈ V : c ≻i c′ }

p c c′ ci1 ci2 … cir
c = ci1 c′ = cir

k ∈ {1,…, r − 1} d(ck, ck+1) > p

c c′ c c′ 

c′ c



Condorcet rules
Schulze method: Example

5 5 8 3 7 2 7 8

A A B C C C D E
C D E A A B C B
B E D B E A E A
E C A E B D B D
D B C D D E A C

45 voters



Condorcet rules
Schulze method: Example

5 5 8 3 7 2 7 8

A A B C C C D E
C D E A A B C B
B E D B E A E A
E C A E B D B D
D B C D D E A C

45 voters

A B

CE

D



Condorcet rules
Schulze method: Example

5 5 8 3 7 2 7 8
A A B C C C D E
C D E A A B C B
B E D B E A E A
E C A E B D B D
D B C D D E A C

45 voters

A B

E

D

25

C



Condorcet rules
Schulze method: Example

A B

CE

D

26

25

5 5 8 3 7 2 7 8
A A B C C C D E
C D E A A B C B
B E D B E A E A
E C A E B D B D
D B C D D E A C

45 voters



Condorcet rules
Schulze method: Example

A B

CE

D

26

31 28

29

25

23

30 33

24

27

5 5 8 3 7 2 7 8
A A B C C C D E
C D E A A B C B
B E D B E A E A
E C A E B D B D
D B C D D E A C
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Condorcet rules
Schulze method: Example

A B

CE

D

No Condorcet winner!
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Schulze method: Example
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Schulze method: Example

A B
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D
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A B C D E

A - 28 28 30 24
B -
C -
D -
E -

28

26

24
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A B C D E

A - 28 28 30 24
B 25 - 28 33 24
C 25 29 - 29 24
D 25 28 28 - 24

E 25 28 28 31 -

A B

CE

D

26

31 28

29

25

23

30 33

24

27



Condorcet rules
Schulze method: Example

A B C D E

A - 28 28 30 24
B 25 - 28 33 24
C 25 29 - 29 24
D 25 28 28 - 24
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Condorcet rules
Schulze method: Example

A B C D E

A - 28 28 30 24
B 25 - 28 33 24
C 25 29 - 29 24
D 25 28 28 - 24

E 25 28 28 31 -

A B

CE

D

26

31 28

29

25

23

30 33

24

27

Schulze ranking: 

E ≻ A ≻ C ≻ B ≻ D
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A[i, j, k] i j {1,2,…k}

A[i, j, k + 1] = max ( min (A[i, k + 1,k], A[k + 1,i, k]), A[i, j, k])
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An dynamic-programming algorithm running in .

A[i, j, k] i j {1,2,…k}
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O(nm + m3)



Condorcet rules
Schulze method: Computation

 : the best path from  to  using only the vertices from  

  

An dynamic-programming algorithm running in . 

(in fact can be even improved to  

Krzysztof Sornat, Virginia Vassilevska Williams, Yinzhan Xu: Fine-Grained 

Complexity and Algorithms for the Schulze Voting Method. EC 2021: 841-859 

A[i, j, k] i j {1,2,…k}

A[i, j, k + 1] = max ( min (A[i, k + 1,k], A[k + 1,i, k]), A[i, j, k])
O(nm + m3)

O (nm + m2.69)

https://arxiv.org/pdf/2103.03959.pdf
https://arxiv.org/pdf/2103.03959.pdf
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Condorcet rules: other approaches
Top cycle: a generalisation of the Condorcet winner

A dominant set is a nonempty subset  such that every candidate 

from  wins a head-to-head comparison with every candidate from . 

Dominant sets can be ordered by inclusion. 

Proof:

A ⊆ C
A C∖A

A
B

Top cycle: the smallest dominating set.
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Condorcet rules: other approaches
Theorem: Schulze method always selects a member of the top cycle.

A

B

top cycle

Schulze winner

C

. 

The strongest path from  to  must cross the boarder of the top cycle. 

Thus, .

str(A → B) > n /2

B A

str(B → A) < n /2



Condorcet rules
Schulze method: list of users from Wikipedia in 2024 (only selected) 

Cities:                Silla, Turin, San Donà di Piave, London Borough of Southwark 

Political parties: Five Star Movement, Pirate Party (in many countries), Volt Party 

Organisations:    Annodex Association, Berufsverband der Kinder- und Jugendärzte 
                          (BVKJ), BoardGameGeek, Cloud Foundry Foundation, County  
                          Highpointers, Dapr, Debian, EuroBillTracker, European Democratic  
                          Education Community (EUDEC), FFmpeg, Free Geek, Free Hardware  
                          Foundation of Italy, Gentoo Foundation, GNU Privacy Guard (GnuPG), 
                          Haskell, Homebrew, Internet Corporation for Assigned Names and  
                          Numbers (ICANN) (until 2023), Kanawha Valley Scrabble Club, KDE 
                          e.V., Knight Foundation, Kubernetes, Kumoricon, League of  
                          Professional System Administrators (LOPSA), LiquidFeedback,  
                          Madisonium, Metalab, MTV, Neo, Noisebridge, OpenEmbedded, Open  
                          Neural Network Exchange, OpenStack, OpenSwitch, RLLMUK, Squeak, 
                          Students for Free Culture, Sugar Labs, Sverok, TopCoder, Ubuntu,  
                          Vidya Gaem Awards, Wikimedia (2008), Wikipedia in French, Hebrew,  
                          Hungarian, Russian, and Persian. 



Single Transferrable Vote

v1 v2 v3 v4  v5 v6 v7 v8 v9 v10

A A A S C S V C B B
C B B C B C C S S C

B V S B V B B V A V

V C V V A V A A V S

S S C A S A S B C A

In each round we eliminate the candidate with the lowest number of top-
votes.
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Single Transferrable Vote

v1 v2 v3 v4  v5 v6 v7 v8 v9 v10

C C C C C C C C C C

In each round we eliminate the candidate with the lowest number of top-
votes. The votes are “transferred” accordingly. 

C is a winner.



Rules, summary

Positional scoring rules: 

• Plurality,       , 
• Borda,           , 
• Veto,             . 

Condorcet rules: 
• Copeland         (perhaps simplest) 
• Schulze rule    (many good properties) 

Rules based on iterative elimination: 
• Single Transferable Vote (STV) 
• Baldwin (a candidate with the lowest Borda score is eliminated)

α = (1, 0, 0, …, 0)
α = (m − 1, m − 2, m − 3, …, 0)
α = (1, 1, 1, …,1, 0)



So which rule is the best?

Axiomatic approach: formulate desired properties and check 
                                 if they are satisfied.
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So which rule is the best?

Axiomatic approach: formulate desired properties and check 
                                 if they are satisfied.

v1 v2 v3 v4  v5 v6 v7 v8 v9 v10

A A A A C C C B B B
C C B B B B B C C C

B B C C A A A A A A

Consider the Plurality rule. Which candidate would won? What happens 
If a similar candidate to B runs in an election?

Clone: a set of candidates that each voter ranks consecutively (e.g., B and C). 

A rule is cloneproof if removing any copy in a clone does not increase nor 
decrease the chances of the clone in the election.
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Positional scoring rules are in general not cloneproof. 

Consider a cyclic preference profile with  candidates.m − 1

Each candidate is ranked once on each position, so all candidates 
are winning.
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So which rule is the best?

Vector of occurrences on positions for: 

• clones:                 

• candidate :   

• candidate :   

• etc. 

Candidate  will win if .      (cloning will hurt) 

Candidate  will loose if .    (cloning will help) 

For cloneproofness we need . 

Analogously: we need          , etc. 

Thus, .

(1, 2, 2, …, 2, 1)
cm−1 (2, 2, 2, …, 2, 2, 0, 2)

cm−2 (2, 2, 2, …, 2, 0, 2, 2)

cm−1 α1 + αm > 2αm−1

cm−1 α1 + αm < 2αm−1

α1 + αm = 2αm−1

α1 + αm = 2αm−2

α2 = α3 = … = am−1

Intuition: If a scoring vector is convex (like Plurality), then introducing a  
               similar clone typically hurts a candidate. If the vector is very  
               concave (veto), then the candidate could benefit from  
               introducing a clone.
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Thus,  and . 

The scoring rules that satisfy this are: .

α2 = α3 = … = am−1 α1 + αm = α2

(α + c, α, α, …, α, α − c)
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Thus,  and . 

The scoring rules that satisfy this are: . 

But for this rule, the candidate can benefit by introducing a “slightly 

worse” clone.
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STV and Schulze method are cloneproof. How about other axioms? 

Theorem: Schulze method is monotonic.

Winner

The swap only changes the edges going in and out of the winner. 

Each path from the winner that does not repeat vertices can only improve.  

A path to the winner can only loose. 

the majoritarian graph
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So which rule is the best?

A voting rule  satisfies consistency if for each two disjoint preference 
profiles,  and , such that  , it holds that: 

.

ℛ
P1 P2 ℛ(P1) ∩ ℛ(P2) ≠ ∅

ℛ(P1 ∪ P2) = ℛ(P1) ∩ ℛ(P2)

Theorem: Positional scoring rules are the only voting systems that satisfy  
                consistency, anonymity and neutrality.

Beautiful, but very complex proof.
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Instead of ranking, let each voter approve an arbitrary subset of candidates!

For each candidate we count the number of approvals, and pick the one 
that was approved by most voters.

Advantages of approval voting: 

1. A very simple ballot format! It is hard to rank more than several candidates 

(The Magical Number Seven, Plus or Minus Two). 

2. The experiments show that typically the extremist candidates loose, while 

the centrist candidates benefit. 

3. A voter can never loose by approving her top choice. 

4. Reduces negative campaigning (which might positively affect participation).  

Jean-François Laslier, Karine  Vander Straeten. Approval Voting: An 
Experiment during the French 2002 Presidential Election. 2003.
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Summary: which rule to choose?
There is no single answer and each rule suffers from paradoxes. 

However, the approval voting is typically a very good choice, because of 
simplicity of ballots, reducing the effect of splitting votes, and positive 
nature of votes. Go for approval voting as a default option! 

If ranking candidates is feasible (only if there are several candidates), this 
can provide more information. 

In practice cloneprofness is a very important property, and scoring rules 
are prone to cloning. Therefore: 

1. The Schulze method has very good properties, and I would recommend 
it, if our goal is to find consensus candidates. 

2. If we want to put more weight to the higher positions in rankings, then 
Single Transferrable Vote is a good choice.

In most cases you can choose one of these three options: 

• Approval Voting 

• The Schulze method 

• Single Transferrable Vote
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participants used approval voting to vote on “What is the best voting rule 
that the city council of your town should use to elect the mayor?" 

The results were: 
• 68% approved Approval Voting, 
• 45% approved STV, 
• 40% approved Copeland, 
• 36% approved Kemeny. 

No one approved Plurality!



Resources

An application you can use to organise voting: https://whale5.noiraudes.net/

A simpler application for playing with voting rules: https://voting.ml/

The Wikipedia article about the Schulze method.

Further reading (for advanced):

Kenneth J. Arrow, Amartya K. Sen and Kotaro Suzumura. Handbook of 
Social Choice and Welfare. 2002.

https://whale5.noiraudes.net/
https://voting.ml/
https://en.wikipedia.org/wiki/Schulze_method
https://www.sciencedirect.com/handbook/handbook-of-social-choice-and-welfare/
https://www.sciencedirect.com/handbook/handbook-of-social-choice-and-welfare/

