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The model
1. A set of  men  = { , , , }. 

2. A set of  women  = { , , , }. 

Each man  has a preference relation  over the set of women. 

Each woman  has a preference relation  over the set of men.
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The model
1. A set of  men  = { , , , }. 

2. A set of  women  = { , , , }. 

Each man  has a preference relation  over the set of women. 

Each woman  has a preference relation  over the set of men. 

Goal: Find a matching between men and women, such that each man is 
           matched with at most one woman, and each woman is matched 
           with at most one man.
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Stable Matchings
Stable Matching (CE): We say that a pair of a man and a woman ,  blocks a 
matching  if  and  are not matched and: 
1.  is unmatched or prefers  to her partner  in the matching, and 
2.  is unmatched or prefers  to her partner  in the matching. 
We say that a matching  is stable, if there exists no pair that blocks .

(u w)
M u w

u w M(u)
w u M(w)

M M



Stable Matchings
Stable Matching (CE): We say that a pair of a man and a woman ,  blocks a 
matching  if  and  are not matched and: 
1.  is unmatched or prefers  to her partner  in the matching, and 
2.  is unmatched or prefers  to her partner  in the matching. 
We say that a matching  is stable, if there exists no pair that blocks .

(u w)
M u w

u w M(u)
w u M(w)

M M



Stable Matchings
Stable Matching (CE): We say that a pair of a man and a woman ,  blocks a 
matching  if  and  are not matched and: 
1.  is unmatched or prefers  to her partner  in the matching, and 
2.  is unmatched or prefers  to her partner  in the matching. 
We say that a matching  is stable, if there exists no pair that blocks .

(u w)
M u w

u w M(u)
w u M(w)

M M

≻ ≻

≻ ≻

≻ ≻

≻ ≻

≻ ≻

≻ ≻ ≻ ≻

≻ ≻ ≻ ≻

≻ ≻ ≻ ≻:

:

:

:

:

:

:

:



Stable Matchings
Stable Matching (CE): We say that a pair of a man and a woman ,  blocks a 
matching  if  and  are not matched and: 
1.  is unmatched or prefers  to her partner  in the matching, and 
2.  is unmatched or prefers  to her partner  in the matching. 
We say that a matching  is stable, if there exists no pair that blocks .

(u w)
M u w

u w M(u)
w u M(w)

M M

≻ ≻

≻ ≻

≻ ≻

≻ ≻

≻ ≻

≻ ≻ ≻ ≻

≻ ≻ ≻ ≻

≻ ≻ ≻ ≻:

:

:

:

:

:

:

:

Blocking pairs: { , }{ , }{ , }, ,



Stable Matchings
Stable Matching (CE): We say that a pair of a man and a woman ,  blocks a 
matching  if  and  are not matched and: 
1.  is unmatched or prefers  to her partner  in the matching, and 
2.  is unmatched or prefers  to her partner  in the matching. 
We say that a matching  is stable, if there exists no pair that blocks .

(u w)
M u w

u w M(u)
w u M(w)

M M

≻ ≻

≻ ≻

≻ ≻

≻ ≻

≻ ≻

≻ ≻ ≻ ≻

≻ ≻ ≻ ≻

≻ ≻ ≻ ≻:

:

:

:

:

:

:

:



Stable Matchings
Stable Matching (CE): We say that a pair of a man and a woman ,  blocks a 
matching  if  and  are not matched and: 
1.  is unmatched or prefers  to her partner  in the matching, and 
2.  is unmatched or prefers  to her partner  in the matching. 
We say that a matching  is stable, if there exists no pair that blocks .

(u w)
M u w

u w M(u)
w u M(w)

M M

≻ ≻

≻ ≻

≻ ≻

≻ ≻

≻ ≻

≻ ≻ ≻ ≻

≻ ≻ ≻ ≻

≻ ≻ ≻ ≻:

:

:

:

:

:

:

:

No blocking pairs. This matching is stable!



Stable Matchings
Stable Matching (CE): We say that a pair of a man and a woman ,  blocks a 
matching  if  and  are not matched and: 
1.  is unmatched or prefers  to her partner  in the matching, and 
2.  is unmatched or prefers  to her partner  in the matching. 
We say that a matching  is stable, if there exists no pair that blocks .

(u w)
M u w

u w M(u)
w u M(w)

M M

Does a stable matching always exists?



Stable Matchings
Stable Matching (CE): We say that a pair of a man and a woman ,  blocks a 
matching  if  and  are not matched and: 
1.  is unmatched or prefers  to her partner  in the matching, and 
2.  is unmatched or prefers  to her partner  in the matching. 
We say that a matching  is stable, if there exists no pair that blocks .

(u w)
M u w

u w M(u)
w u M(w)

M M

Does a stable matching always exists? If so, how one can find it?



Stable Matchings
Stable Matching (CE): We say that a pair of a man and a woman ,  blocks a 
matching  if  and  are not matched and: 
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Gale-Shapley Algorithm:  

1. In the first round each man proposes to his favourite woman. A woman that 
gets one or multiple proposals picks the man she prefers most, makes a 
temporary engagement with this man, and rejects all other man.  

2. In each subsequent round each unengaged man makes a proposal to his most 
preferred woman among those who did not reject him. A woman who gets one 
or multiple proposals picks the one that she prefers most. If she prefers this 
man to her temporary engaged partner, she breaks this engagement, and 
makes a temporary engagement with the currently best man among those who 
proposed. She rejects all proposed man except the one she is engaged to.  

3.The process is repeated until every man is either engaged or has been rejected 
by all women. 
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Men-optimal and Women-optimal  
Stable Matchings 

Theorem: In any stable matching no man can get a better partner than the one 
                that he gets in the matching returned by the Gale-Shapley algorithm. 

How to get a woman optimal stable matching? 

Women shall propose instead of men!



Applications of  Stable Matchings 

1. Matching students to schools. 

2. Matching residents to hospitals. 

3. Assigning users to servers in a large distributed Internet service.
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First phase: proposals like in a Gale-Shapley algorithm. However, every 
agent holds keeps her own proposal and the proposal she receives.

After this phase one person can be rejected by everyone. 

(But then every other person holds a proposal. Why?) 

Because every person rejected her, and can only improve in the course 
Of the algorithm.
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4 2 6 5 1 3

5 4 2 3 6 1

6 5 1 4 2 3

Lemma: In a stable matching no person can be matched to anyone who 
             she rejected. 



Stable Roommate: non-bipartite graphs

1 4 6 2 5 3

2 6 3 5 1 4

3 4 5 1 6 2

4 2 6 5 1 3
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Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

For the sake of contradiction let  be the first pair rejected that belongs 
to some stable matching ;  rejected .

(x, y)
M y x
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1 4 6 2 5 3

2 6 3 5 1 4

3 4 5 1 6 2

4 2 6 5 1 3

5 4 2 3 6 1

6 5 1 4 2 3

Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

For the sake of contradiction let  be the first pair rejected that belongs 
to some stable matching ;  must have received a better proposal, from .

(x, y)
M y z
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1 4 6 2 5 3

2 6 3 5 1 4

3 4 5 1 6 2

4 2 6 5 1 3

5 4 2 3 6 1

6 5 1 4 2 3

Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

For the sake of contradiction let  be the first pair rejected that belongs 
to some stable matching ;  must have received a better proposal, from . 
In ,  must prefer her partner  to .

(x, y)
M y z

M z w y
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3 4 5 1 6 2

4 2 6 5 1 3
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Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

For the sake of contradiction let  be the first pair rejected that belongs 
to some stable matching ;  must have received a better proposal, from . 
In ,  must prefer her partner  to . Before  proposed to  she proposed 
to .

(x, y)
M y z

M z w y z y
w
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1 4 6 2 5 3

2 6 3 5 1 4

3 4 5 1 6 2

4 2 6 5 1 3

5 4 2 3 6 1

6 5 1 4 2 3

Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

For the sake of contradiction let  be the first pair rejected that belongs 
to some stable matching ;  must have received a better proposal, from . 
In ,  must prefer her partner  to . Before  proposed to  she proposed 
to . Rejection of  by  preceded rejection of  by .

(x, y)
M y z

M z w y z y
w z w x y
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Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

Lemma: If at any stage  proposed to  then:  
1.  cannot have a better partner than , and 
2.  cannot have a worse partner than .

x y
x y
y x
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Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

Lemma: If at any stage  proposed to  then:  
1.  cannot have a better partner than , and 
2.  cannot have a worse partner than . 

Indeed,  was rejected by anyone who she prefers to . 

x y
x y
y x

x y
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Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

Lemma: If at any stage  proposed to  then:  
1.  cannot have a better partner than , and 
2.  cannot have a worse partner than . 

Indeed,  was rejected by anyone who she prefers to .  
If  would have a worse partner than , say , then  would be blocking.

x y
x y
y x

x y
y x z (x, y)
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Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

Lemma: If at any stage  proposed to  then:  
1.  cannot have a better partner than , and 
2.  cannot have a worse partner than .
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Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

Lemma: If at any stage  proposed to  then:  
1.  cannot have a better partner than , and 
2.  cannot have a worse partner than .

x y
x y
y x

We can truncate preference lists!
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Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

Lemma: If at any stage  proposed to  then:  
1.  cannot have a better partner than , and 
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Lemma: In a stable matching no person can be matched to anyone who 
             she rejected.  

Lemma: If at any stage  proposed to  then:  
1.  cannot have a better partner than , and 
2.  cannot have a worse partner than .
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All-or-nothing cycle: a sequence  such that: 

• the second person in ’s list is the first person in ’s list, 

• the second person in ’s list is the first person in ’s list.

(a1, a2, …, ar)
ai ai+1

ar a1
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All-or-nothing cycle: a sequence  such that: 

• the second person in ’s list is the first person in ’s list, 

• the second person in ’s list is the first person in ’s list.

(a1, a2, …, ar)
ai ai+1

ar a1

How to find it? 

: the second person in someone’s (namely ’s) list.qi ai
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All-or-nothing cycle: a sequence  such that: 

• the second person in ’s list is the first person in ’s list, 

• the second person in ’s list is the first person in ’s list.

(a1, a2, …, ar)
ai ai+1

ar a1

How to find it? 

: the second person in someone’s (namely ’s) list. 

: the last person in ’s list.

qi ai
ai+1 qi
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All-or-nothing cycle: a sequence  such that: 

• the second person in ’s list is the first person in ’s list, 

• the second person in ’s list is the first person in ’s list.

(a1, a2, …, ar)
ai ai+1

ar a1

How to find it? 

: the second person in someone’s (namely ’s) list. 

: the last person in ’s list. (so  is first in ’s list)

qi ai
ai+1 qi qi ai+1
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All-or-nothing cycle: a sequence  such that: 

• the second person in ’s list is the first person in ’s list, 

• the second person in ’s list is the first person in ’s list.

(a1, a2, …, ar)
ai ai+1

ar a1

How to find it? 

: the second person in someone’s (namely ’s) list. 

: the last person in ’s list. (so  is first in ’s list)

qi ai
ai+1 qi qi ai+1
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All-or-nothing cycle: a sequence  such that: 

• the second person in ’s list is the first person in ’s list, 

• the second person in ’s list is the first person in ’s list.

(a1, a2, …, ar)
ai ai+1

ar a1

How to find it? 

: the second person in someone’s (namely ’s) list. 

: the last person in ’s list. (so  is first in ’s list)

qi ai
ai+1 qi qi ai+1
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All-or-nothing cycle: a sequence  such that: 

• the second person in ’s list is the first person in ’s list, 

• the second person in ’s list is the first person in ’s list. 

Let  denote the first person in ’s list.

(a1, a2, …, ar)
ai ai+1

ar a1

bi ai
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle. 

ai
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle.  

If  is matched to  that she considers best, then  is worst for .
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle.  

If  is matched to  that she considers best, then  is worst for . 
If  is not matched to  that she considers best, then she would get 
a candidate that is worse than  (her second choice, matched to ).

ai

ai bi ai bi
ai+1 bi+1

bi ai
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle.  

If  is matched to  that she considers best, then  is worst for . 
If  is not matched to  that she considers best, then she would get 
a candidate that is worse than  (her second choice, matched to ). 
Thus,  and  would be a blocking pair.

ai

ai bi ai bi
ai+1 bi+1

bi ai
ai+1 bi
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Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 
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Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

Let  and .  
A new blocking pair  such that  preferred her partner to , but received 
a better candidate. Either  or  (other candidates have the same 
partners). The case   is not possible, since  gets a better candidate. 

A = {a1, a2, …ar} B = {b1, b2, …br}
(x, y) x y

x = ai x = bi
x = bi bi
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Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

Let  and .  
A new blocking pair  such that  preferred her partner to , but received 
a worse candidate; . 
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Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

Let  and .  
A new blocking pair  such that  preferred her partner to , but received 
a worse candidate; . Since  gets her second choice we know  was  
removed from the list of  or . 

A = {a1, a2, …ar} B = {b1, b2, …br}
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x = ai x y

x y = bi
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Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

Let  and .  
A new blocking pair  such that  preferred her partner to , but received 
a worse candidate; . Since  gets her second choice we know  was  
removed from the list of  or . The latter is not possible since  prefers 
her new partner.  

A = {a1, a2, …ar} B = {b1, b2, …br}
(x, y) x y
x = ai x y

x y = bi bi
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Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

Let  and .  
A new blocking pair  such that  preferred her partner to , but received 
a worse candidate; . Since  gets her second choice we know  was  
removed from the list of .

A = {a1, a2, …ar} B = {b1, b2, …br}
(x, y) x y
x = ai x y
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Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

Let  and .  
A new blocking pair  such that  preferred her partner to , but received 
a worse candidate; . Since  gets her second choice we know  was  
removed from the list of . If  proposed to  and got rejected then  preferred 
 to her matched candidate. 

A = {a1, a2, …ar} B = {b1, b2, …br}
(x, y) x y
x = ai x y

x x y x
y
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Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

Let  and .  
A new blocking pair  such that  preferred her partner to , but received 
a worse candidate; . Since  gets her second choice we know  was  
removed from the list of . If  proposed to  and got rejected then  preferred 
 to her matched candidate. So  removed herself from the list of  (got better).  

A = {a1, a2, …ar} B = {b1, b2, …br}
(x, y) x y
x = ai x y

x x y x
y y x
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle.  

Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

ai

The cycle can be eliminated!
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle.  

Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 
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The cycle can be eliminated!
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle.  

Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 
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The cycle can be eliminated!
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle.  

Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

ai

If some list is empty no stable matching exists.
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle.  

Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
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We continue the propose-reject algorithm.
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Lemma: If some  gets her first choice in a stable-matching, then so all 
             others on the cycle.  

Lemma: If in the stable matching each person in the cycle gets her first 
             choice, then after shifting the cycle, the matching would still be 
             stable. 

ai

If each list contains a single element we have a stable matching.
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