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A subset of candidates with the total  
cost not exceeding the budget value .  

participatory budgeting
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S. Rey, J. Maly: The (Computational) Social Choice Take on 
Indivisible Participatory Budgeting, 2023.



The model

1. A set of candidates or projects  = { , , , }. 

2. A set of voters  = { , , , }. 
 : the set of projects approved by voter . 

3. The goal is to select a subset of candidates.

C c1 c2 … cm

N 1 2 … n
Ai i

1 2 3 4 5 6 7 8 9 10

c1

c2

c3 c4

c5

c6

The candidates are grouped into pairs 
and foreach pair we need to select one. 

public decisions
V. Conitzer, R. Freeman, and N. Shah. Fair public decision 
making. EC-2017.

R. Freeman, A. Kahng, and D. M. Pennock. Proportionality 
in approval-based elections with a variable number of 
winners. IJCAI-2020.



The model

1. A set of candidates or projects  = { , , , }. 

2. A set of voters  = { , , , }. 
 : the set of projects approved by voter . 

3. The goal is to select a subset of candidates.

C c1 c2 … cm

N 1 2 … n
Ai i

1 2 3 4 5 6 7 8 9 10

c1

c2

c3 c4

c5

c6

A subset of a given size  with 
diversity constraints. 
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L. E. Celis, L. Huang, and N. K. Vishnoi. Multiwinner voting 
with fairness constraints. IJCAI-2018.
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P. Skowron. Multiwinner elections with diversity constraints. 
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The challange is how to properly define  
-cohesiveness in the general model. ℓ
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Related work:

I.-A. Mavrov, K. Munagala, and Y. Shen. Fair multiwinner elections with allocation 
constraints. EC-2023

This paper introduces Restrained EJR. However,

1.In this example it provides no guarantees to the group .
2.Is implied by our definition of EJR.

3.In general might contradict Pareto-Optimality

S
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H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. Justified representation in approval-based committee 
voting. Social Choice and Welfare, 2017.
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This definition of Base EJR (and so EJR) implies: 

1. EJR in the model of committee elections. 

2. Strong EJR in the model of sequential decision making. 

3. Proportionality for cohesive groups in the model of public decisions.

H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. Justified representation in approval-based committee 
voting. Social Choice and Welfare, 2017.

N. Chandak, S. Goel, and D. Peters. Proportional aggregation of preferences for sequential decision making. 2023.

P. Skowron and A. Górecki. Proportional public decisions. AAAI-2022.
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Why our definition is appealing?

1. It implies the stronges known JR-notions in the more specific models.



Why our definition is appealing?

2. Theorem: an outcome satisfying Base FJR always exists! 



Proportional Approval Voting (PAV): select an outcome  that maximizes : W

∑
i∈N

H( |Ai ∩ W | ) where H(z) =
z

∑
j=1

1
j
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Why our definition is appealing?

6. Theorem: Stable priceability implies EJR if  is a matroid. ℱ

D. Peters, G. Pierczyński, N. Shah, and P. Skowron. Market-based explanations of collective decisions. I AAAI-2021.



Why our definition is appealing?

1. It implies the stronges known JR-notions in the more specific models. 

2. Theorem: an outcome satisfying Base FJR always exists! 

3. Theorem: PAV satisfies (Base) EJR if and only if  is a matroid. 

4. Theorem: Phragmen’s Rule has the proportionality degree of  

if  is a matroid. 

5. Theorem: Phragmen’s Rule satisfies (Base) PJR if and only if  is a 
matroid. 

6. Theorem: Stable priceability implies EJR if  is a matroid. 
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Beyond matroids

The model is pretty well understood for matroid constrains. 



  A group of voters  is -cohesive if for each feasible set 
  at least one of the following conditions hold: 
1.  Either there exists  with  s.t. , 

2.  Or 

 

S ⊆ N ℓ
T ∈ ℱ

X ⊆ ⋂
i∈S

Ai |X | ≥ ℓ X ∪ T ∈ ℱ

|S |
n

>
ℓ

|T | + ℓ
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  A group of voters  is -cohesive if for each feasible set 
  at least one of the following conditions hold: 
1.  Either there exists  with  and  s.t. , 

2.  Or 

 

S ⊆ N (α, β)
T ∈ ℱ

X ⊆ ⋂
i∈S

Ai weight(X ) ≤ α |X | ≥ β X ∪ T ∈ ℱ

|S |
n

>
α

weight(T ) + α
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Beyond matroids

The model is pretty well understood for matroid constrains. 

When the candidates have weights

Our results: 

1. Phragmen’s Rule provides a good approximation of PJR, 

yet it may fail PJR. 

2. Stable-priceability implies a good approximation of EJR. 

No matroid assumption!

Interesting open 

questions for weighted 

candidates model
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Summary

✓ New taxonomy of definitions of proportionality for the 

general model with constraints. 

✓ Quite well understood for matroids. 

(PAV, Phragmen’s Rule and stable priceability work well!) 

✓ For participatory budgeting still many interesting questions.


