Proportionality-Based Fairness in Social Choice

Dominik Peters

Piotr Skowron
Outline

Models:
1. Apportionment
2. Committee elections
3. Participatory budgeting

Why proportionality?
1. fairness towards groups of voters
2. equal voting power,
3. not ignoring minorities,
4. having all viewpoints present in a deliberative body.
Model: Apportionment

1. We have \(m \) political parties: \(P_1, P_2, \ldots, P_m \).
Model: Apportionment

1. We have m political parties: P_1, P_2, \ldots, P_m.

2. We have n voters. Each voter votes for exactly one party.

 Let n_i denote the number of votes cast on party P_i

 (of course, $\sum_{i=1}^{m} n_i = n$).
Model: Apportionment

1. We have m political parties: P_1, P_2, \ldots, P_m.

2. We have n voters. Each voter votes for exactly one party.

 Let n_i denote the number of votes cast on party P_i

 (of course, $\sum_{i=1}^{m} n_i = n$).

3. We have k parliamentary seats and we need to distribute them among the parties. (In most cases we want to do it proportionally!)
Apportionment: two examples

number of seats: $k = 10$.

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>#seats</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Apportionment: two examples

number of seats: $k = 10$.

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>#seats</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
Apportionment: two examples

number of seats: $k = 10$.

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>#seats</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 2:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>#seats</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Apportionment: two examples

number of seats: $k = 10$.

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>#seats</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 2:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>#seats</td>
<td>0.6</td>
<td>0.7</td>
<td>3.9</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Not integral
Apportionment: two examples

number of seats: $k = 10$.

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>#seats</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 2:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>#seats</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Apportionment: two examples

number of seats: \(k = 10 \).

Example 1:

<table>
<thead>
<tr>
<th>#votes</th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>#seats</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 2:

<table>
<thead>
<tr>
<th>#votes</th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>#seats</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Apportionment: two examples

number of seats: $k = 10$.

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>#seats</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 2:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>#seats</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
Apportionment: two examples

number of seats: \(k = 10 \).

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>#seats</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 2:

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>#seats</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Different apportionment methods will give different results!
Apportionment: two examples

number of seats: $k = 10$.

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
</tbody>
</table>
Apportionment: two examples

number of seats: $k = 10$.

<table>
<thead>
<tr>
<th>#votes</th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
</tbody>
</table>

lower quota: party P_i should at least $\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ seats.
Apportionment: two examples

number of seats: \(k = 10 \).

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>lower quota</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

lower quota: party \(P_i \) should at least \(\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \) seats.
Apportionment: two examples

number of seats: \(k = 10 \).

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>lower quota</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>upper quota</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

lower quota: party \(P_i \) should at least \(\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \) seats.

upper quota: party \(P_i \) should at most \(\left\lceil k \cdot \frac{n_i}{n} \right\rceil \) seats.
The largest remainder method
(aka the Hamilton method or the Hare-Niemeyer method)

1. First, assign to each party its lower quota.
2. Next, sort the parties by the remainders $k \cdot \frac{n_i}{n} - \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ and assign the remaining seats to the parties with the heist remainders.
The largest remainder method
(aka the Hamilton method or the Hare-Niemeyer method)

1. First, assign to each party its lower quota.

2. Next, sort the parties by the remainders \(k \cdot \frac{n_i}{n} - \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \) and assign the remaining seats to the parties with the heist remainders.

number of seats: \(k = 10 \).

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>lower quota</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>remainder</td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
</tr>
</tbody>
</table>
The largest remainder method
(aka the Hamilton method or the Hare-Niemeyer method)

1. First, assign to each party its lower quota.
2. Next, sort the parties by the remainders $k \cdot \frac{n_i}{n} - \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ and assign the remaining seats to the parties with the heist remainders.

number of seats: $k = 10$.

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>lower quota</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>remainder</td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>#seats</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
The largest remainder method
(aka the Hamilton method or the Hare-Niemeyer method)

1. First, assign to each party its lower quota.

2. Next, sort the parties by the remainders $k \cdot \frac{n_i}{n} - \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ and assign the remaining seats to the parties with the heist remainders.

Number of seats: $k = 10$.

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>lower quota</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>remainder</td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>#seats</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

The largest remainder method satisfies lower and upper quota.
House monotonicity and Alabama paradox

House monotonicity: if we increase the number of seats k then each party should get at least the same number of seats as before the increase.
House monotonicity and Alabama paradox

House monotonicity: if we increase the number of seats k then each party should get at least the same number of seats as before the increase.

Alabama paradox: the largest remainder method fails house monotonicity

<table>
<thead>
<tr>
<th>#votes</th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k \cdot \frac{n_i}{n}$ for $k = 10$</td>
<td>4.286</td>
<td>4.286</td>
<td>1.429</td>
</tr>
<tr>
<td>#seats $k = 10$</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
House monotonicity and Alabama paradox

House monotonicity: if we increase the number of seats k then each party should get at least the same number of seats as before the increase.

Alabama paradox: the largest remainder method fails house monotonicity

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>value $k \cdot \frac{n_i}{n}$ for $k = 10$</td>
<td>4.286</td>
<td>4.286</td>
<td>1.429</td>
</tr>
<tr>
<td>#seats $k = 10$</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>value $k \cdot \frac{n_i}{n}$ for $k = 11$</td>
<td>4.714</td>
<td>4.714</td>
<td>1.571</td>
</tr>
<tr>
<td>#seats $k = 11$</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
House monotonicity and Alabama paradox

House monotonicity: if we increase the number of seats k then each party should get at least the same number of seats as before the increase.

Alabama paradox: the largest remainder method fails house monotonicity

<table>
<thead>
<tr>
<th>#votes</th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>value $k \cdot \frac{n_i}{n}$ for $k = 10$</td>
<td>4.286</td>
<td>4.286</td>
<td>1.429</td>
</tr>
<tr>
<td>#seats $k = 10$</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>value $k \cdot \frac{n_i}{n}$ for $k = 11$</td>
<td>4.714</td>
<td>4.714</td>
<td>1.571</td>
</tr>
<tr>
<td>#seats $k = 11$</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises \(\frac{n_i}{s_i(r) + 1} \).

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
</tbody>
</table>

number of seats: $k = 10$
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>#votes/2</td>
<td>3</td>
<td>3.5</td>
<td>19.5</td>
<td>24</td>
</tr>
<tr>
<td>#votes/3</td>
<td>2</td>
<td>2.33</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>#votes/4</td>
<td>1.5</td>
<td>1.75</td>
<td>9.75</td>
<td>12</td>
</tr>
<tr>
<td>#votes/5</td>
<td>1.2</td>
<td>1.4</td>
<td>7.8</td>
<td>9.6</td>
</tr>
<tr>
<td>#votes/6</td>
<td>1</td>
<td>1.17</td>
<td>6.5</td>
<td>8.0</td>
</tr>
<tr>
<td>#votes/7</td>
<td>0.86</td>
<td>1</td>
<td>5.57</td>
<td>6.86</td>
</tr>
</tbody>
</table>
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

<table>
<thead>
<tr>
<th>#votes</th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>#votes/2</td>
<td>3</td>
<td>3.5</td>
<td>19.5</td>
<td>24</td>
</tr>
<tr>
<td>#votes/3</td>
<td>2</td>
<td>2.33</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>#votes/4</td>
<td>1.5</td>
<td>1.75</td>
<td>9.75</td>
<td>12</td>
</tr>
<tr>
<td>#votes/5</td>
<td>1.2</td>
<td>1.4</td>
<td>7.8</td>
<td>9.6</td>
</tr>
<tr>
<td>#votes/6</td>
<td>1</td>
<td>1.17</td>
<td>6.5</td>
<td>8.0</td>
</tr>
<tr>
<td>#votes/7</td>
<td>0.86</td>
<td>1</td>
<td>5.57</td>
<td>6.86</td>
</tr>
</tbody>
</table>

Number of seats: $k = 10$
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

<table>
<thead>
<tr>
<th></th>
<th>Party 1</th>
<th>Party 2</th>
<th>Party 3</th>
<th>Party 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#votes</td>
<td>6</td>
<td>7</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>#votes/2</td>
<td>3</td>
<td>3.5</td>
<td>19.5</td>
<td>24</td>
</tr>
<tr>
<td>#votes/3</td>
<td>2</td>
<td>2.33</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>#votes/4</td>
<td>1.5</td>
<td>1.75</td>
<td>9.75</td>
<td>12</td>
</tr>
<tr>
<td>#votes/5</td>
<td>1.2</td>
<td>1.4</td>
<td>7.8</td>
<td>9.6</td>
</tr>
<tr>
<td>#votes/6</td>
<td>1</td>
<td>1.17</td>
<td>6.5</td>
<td>8.0</td>
</tr>
<tr>
<td>#votes/7</td>
<td>0.86</td>
<td>1</td>
<td>5.57</td>
<td>6.86</td>
</tr>
<tr>
<td>#seats</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

number of seats: $k = 10$
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

Fact: D’Hondt method satisfies lower quota.
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

Fact: D’Hondt method satisfies lower quota.

Proof: towards a contradiction assume there is party P_i that gets less than $\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ seats.
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

Fact: D’Hondt method satisfies lower quota.

Proof: towards a contradiction assume there is party P_i that gets less than $\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ seats. by the pigeonhole principle there is a party P_j that gets more than $k \cdot \frac{n_j}{n}$ seats.
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let \(s_i(r) \) denote the number of seats assigned to party \(P_i \) until iteration \(r \). In iteration \(r \) we assign one seat to the party \(P_i \) which maximises \(\frac{n_i}{s_i(r) + 1} \).

Fact: D’Hondt method satisfies lower quota.

Proof: towards a contradiction assume there is party \(P_i \) that gets less than \(\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \) seats. By the pigeonhole principle there is a party \(P_j \) that gets more than \(k \cdot \frac{n_j}{n} \) seats. Consider the iteration \(r \) in which \(P_j \) gets its last seat.
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

Fact: D’Hondt method satisfies lower quota.

Proof: towards a contradiction assume there is party P_i that gets less than $\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ seats. By the pigeonhole principle there is a party P_j that gets more than $k \cdot \frac{n_j}{n}$ seats. Consider the iteration r in which P_j gets its last seat.

$$s_i(r) < \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \implies s_i(r) \leq \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor - 1 \leq k \cdot \frac{n_i}{n} - 1.$$
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

Fact: D’Hondt method satisfies lower quota.

Proof: towards a contradiction assume there is party P_i that gets less than $\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ seats. By the pigeonhole principle there is a party P_j that gets more than $k \cdot \frac{n_j}{n}$ seats. Consider the iteration r in which P_j gets its last seat.

$s_i(r) < \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \implies s_i(r) \leq \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor - 1 \leq k \cdot \frac{n_i}{n} - 1.$

$s_j(r) = s_j(r + 1) - 1 > k \cdot \frac{n_j}{n} - 1.$
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

Fact: D’Hondt method satisfies lower quota.

Proof: towards a contradiction assume there is party P_i that gets less than $\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ seats. by the pigeonhole principle there is a party P_j that gets more than $k \cdot \frac{n_j}{n}$ seats.

Consider the iteration r in which P_j gets its last seat.

$$s_i(r) < \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \quad \Rightarrow \quad s_i(r) \leq \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor - 1 \leq k \cdot \frac{n_i}{n} - 1.$$

$$s_j(r) = s_j(r + 1) - 1 > k \cdot \frac{n_j}{n} - 1.$$

$$\frac{n_i}{s_i(r) + 1} \geq \frac{n_i}{k \cdot \frac{n_i}{n} - 1 + 1} = \frac{n}{k}.$$
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let \(s_i(r) \) denote the number of seats assigned to party \(P_i \) until iteration \(r \). In iteration \(r \) we assign one seat to the party \(P_i \) which maximises \(\frac{n_i}{s_i(r) + 1} \).

Fact: D’Hondt method satisfies lower quota.

Proof: towards a contradiction assume there is party \(P_i \) that gets less than \(\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \) seats. by the pigeonhole principle there is a party \(P_j \) that gets more than \(k \cdot \frac{n_j}{n} \) seats.

Consider the iteration \(r \) in which \(P_j \) gets its last seat.

\[
s_i(r) < \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \implies s_i(r) \leq \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor - 1 \leq k \cdot \frac{n_i}{n} - 1.
\]

\[
s_j(r) = s_j(r + 1) - 1 > k \cdot \frac{n_j}{n} - 1.
\]

\[
\frac{n_i}{s_i(r) + 1} \geq \frac{n_i}{k \cdot \frac{n_i}{n} - 1 + 1} = \frac{n}{k}.
\]

\[
\frac{n_j}{s_j(r) + 1} < \frac{n_j}{k \cdot \frac{n_j}{n} - 1 + 1} = \frac{n}{k}.
\]
D’Hondt method
(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let $s_i(r)$ denote the number of seats assigned to party P_i until iteration r. In iteration r we assign one seat to the party P_i which maximises $\frac{n_i}{s_i(r) + 1}$.

Fact: D’Hondt method satisfies lower quota.

Proof: towards a contradiction assume there is party P_i that gets less than $\left\lfloor k \cdot \frac{n_i}{n} \right\rfloor$ seats. by the pigeonhole principle there is a party P_j that gets more than $k \cdot \frac{n_j}{n}$ seats.

Consider the iteration r in which P_j gets its last seat.

$s_i(r) < \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor \implies s_i(r) \leq \left\lfloor k \cdot \frac{n_i}{n} \right\rfloor - 1 \leq k \cdot \frac{n_i}{n} - 1.$

$s_j(r) = s_j(r + 1) - 1 > k \cdot \frac{n_j}{n} - 1.$

$\frac{n_i}{s_i(r) + 1} \geq \frac{n_i}{k \cdot \frac{n_i}{n} - 1 + 1} = \frac{n}{k}.$

$\frac{n_j}{s_j(r) + 1} < \frac{n_j}{k \cdot \frac{n_j}{n} - 1 + 1} = \frac{n}{k}.$

Thus P_i would be assigned the seat instead of P_j.
Model: Approval-Based Elections

A committee of size k
A preference profile: an example

We have $n = 8$ voters, $m = 9$ candidates.
A preference profile: an example

We have $n = 8$ voters, $m = 9$ candidates.
How to define proportionality for more complex preferences?

v_1:
v_2:
v_3:
v_4:
v_5:
v_6:
v_7:
v_8:
How to define proportionality for more complex preferences?

v_1:
v_2:
v_3:
v_4:
v_5:
v_6:
v_7:
v_8:
Let’s move back in time to the end of the 19th century?
Let’s move back in time to the end of the 19th century?

Thorvald N. Thiele

Edvard Phragmén
Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}$$
Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$
\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}
$$
Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}$$

E.g., consider a committee

Points per voter:

v_1:
Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}$$

E.g., consider a committee

Points per voter:

v_1: $1 + \frac{1}{2}$
Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}$$

E.g., consider a committee

Points per voter:

$v_1: 1 + \frac{1}{2}$

$v_2: 1 + \frac{1}{2}$
Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$
\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}
$$

E.g., consider a committee

Points per voter:

v_1: $1 + \frac{1}{2}$

v_2: $1 + \frac{1}{2}$

v_3: $1 + \frac{1}{2} + \frac{1}{3}$

v_4: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$

v_5: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$

v_6: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$

v_7: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$

v_8: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$
Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}$$

E.g., consider a committee:

Points per voter:

v_1: $1 + \frac{1}{2}$
v_2: $1 + \frac{1}{2}$
v_3: $1 + \frac{1}{2} + \frac{1}{3}$
v_4: $1 + \frac{1}{2}$
Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$$

E.g., consider a committee

Points per voter:

v_1: $1 + \frac{1}{2}$
v_2: $1 + \frac{1}{2}$
v_3: $1 + \frac{1}{2} + \frac{1}{3}$
v_4: $1 + \frac{1}{2}$
v_5: $1 + \frac{1}{2}$
v_6: $1 + \frac{1}{2}$
v_7: $1 + \frac{1}{2}$
v_8: $1 + \frac{1}{2}$
Proportional Approval Voting (Thiele)

Assume voter \(v \) approves \(t \) members of a committee \(W \). Then \(v \) gives to \(W \) the following number of points:

\[
\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}
\]

E.g., consider a committee

Points per voter:

\(v_1: 1 + \frac{1}{2} \)

\(v_2: 1 + \frac{1}{2} \)

\(v_3: 1 + \frac{1}{2} + \frac{1}{3} \)

\(v_4: 1 + \frac{1}{2} \)

\(v_5: 1 + \frac{1}{2} \)

\(v_6: 0 \)

\(v_7: \)

\(v_8: \)
Proportional Approval Voting (Thiele)

Assume voter \(v \) approves \(t \) members of a committee \(W \). Then \(v \) gives to \(W \) the following number of points:

\[
\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}
\]

E.g., consider a committee

Points per voter:

- \(v_1: 1 + \frac{1}{2} \)
- \(v_2: 1 + \frac{1}{2} \)
- \(v_3: 1 + \frac{1}{2} + \frac{1}{3} \)
- \(v_4: 1 + \frac{1}{2} \)
- \(v_5: 1 + \frac{1}{2} \)
- \(v_6: 0 \)
- \(v_7: 0 \)
- \(v_8: \)
Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}$$

E.g., consider a committee

Points per voter:

- v_1: $1 + \frac{1}{2}$
- v_3: $1 + \frac{1}{2} + \frac{1}{3}$
- v_5: $1 + \frac{1}{2}$
- v_7: 0
- v_2: $1 + \frac{1}{2}$
- v_4: $1 + \frac{1}{2}$
- v_6: 0
- v_8: 1
Proportional Approval Voting (Thiele)

Assume voter \(v \) approves \(t \) members of a committee \(W \). Then \(v \) gives to \(W \) the following number of points:

\[
\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}
\]

E.g., consider a committee

Points per voter:

- \(v_1: 1 + \frac{1}{2} \)
- \(v_2: 1 + \frac{1}{2} \)
- \(v_3: 1 + \frac{1}{2} + \frac{1}{3} \)
- \(v_4: 1 + \frac{1}{2} \)
- \(v_5: 1 + \frac{1}{2} \)
- \(v_6: 0 \)
- \(v_7: 0 \)
- \(v_8: 1 \)

Sum of points = \(8 + \frac{5}{6} \)
Proportional Approval Voting (Thiele)

Assume voter \(v \) approves \(t \) members of a committee \(W \). Then \(v \) gives to \(W \) the following number of points:

\[
\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{t}
\]

E.g., consider a committee

Committee with the highest score wins the election.

Point

\(v_1 \):
\(v_3 \): 1 + \frac{1}{2} + \frac{1}{3}
\(v_4 \): 1 + \frac{1}{2}
\(v_5 \): 1 + \frac{1}{2}
\(v_6 \): 0
\(v_7 \): 0
\(v_8 \): 1

Sum of points = 8 + \(\frac{5}{6} \)
Proportional Approval Voting is welfarist

The welfare vector of a committee W is defined as:

$$(|A_1 \cap W|, |A_2 \cap W|, \ldots, |A_n \cap W|)$$

where:

- A_i is the set of candidates approved by voter i
- $(|A_i \cap W|)$ is the number of representatives of i
Proportional Approval Voting is welfarist

The welfare vector of a committee W is defined as:

$$\left(|A_1 \cap W|, |A_2 \cap W|, \ldots, |A_n \cap W| \right)$$

where:

- A_i is the set of candidates approved by voter i

$$\left(|A_i \cap W| \text{ is the number of representatives of } i \right)$$

A rule is welfarist if the decision which committee to elect can be made solely based on welfare vectors of the committees.
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 1. Add c to the committee.
 2. Make voters from S pay for c (resetting their budget to 0).
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
- In the first moment when there is a group of voters S who all have \textit{n} dollars in total and who all approve a not-yet selected candidate c, do:
 1. Add c to the committee.
 2. Make voters from S pay for c (resetting their budget to 0).
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 1. Add c to the committee.
 2. Make voters from S pay for c (resetting their budget to 0).

$$k = 12$$
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 1. Add c to the committee.
 2. Make voters from S pay for c (resetting their budget to 0).

\[k = 12 \]

\[
\begin{array}{cccc}
 c_4 & c_5 & c_6 \\
 c_3 & c_{13} & c_{14} & c_{15} \\
 c_2 & c_{10} & c_{11} & c_{12} \\
 c_1 & c_7 & c_8 & c_9 \\
\end{array}
\]

\[t_0 = 0 \]

\[
\begin{array}{cccccccc}
 v_1 & v_2 & v_3 & v_4 & v_5 & v_6 \\
\end{array}
\]
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 1. Add c to the committee.
 2. Make voters from S pay for c (resetting their budget to 0).

$k = 12$
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 1. Add c to the committee.
 2. Make voters from S pay for c (resetting their budget to 0).

$$k = 12$$

<table>
<thead>
<tr>
<th>c_4</th>
<th>c_5</th>
<th>c_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_3</td>
<td>c_{13}</td>
<td>c_{14}</td>
</tr>
<tr>
<td>c_2</td>
<td>c_{10}</td>
<td>c_{11}</td>
</tr>
<tr>
<td>c_1</td>
<td>c_7</td>
<td>c_8</td>
</tr>
</tbody>
</table>

$t_2 = 4$
$t_1 = 2$
$t_0 = 0$
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 1. Add c to the committee.
 2. Make voters from S pay for c (resetting their budget to 0).

$k = 12$
Phragmén’s Rule

• Voters earn money with the constant speed ($1 per time unit).

• In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 1. Add c to the committee.
 2. Make voters from S pay for c (resetting their budget to 0).
Phragmén’s Rule

- Voters earn money with the constant speed ($1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 1. Add c to the committee.
 2. Make voters from S pay for c (resetting their budget to 0).
PAV versus Phragmén’s Rule
PAV versus Phragmén’s Rule

\[k = 12 \]

Phragmén’s Rule

PAV
PAV versus Phragmén’s Rule

\[k = 12 \]

Phragmén’s Rule

- Proportionality with respect to power

PAV

- Proportionality with respect to welfare
PAV versus Phragmén’s Rule

\[k = 12 \]

Phragmén’s Rule

Proportionality with respect to power

Priceability

PAV

Proportionality with respect to welfare

Extended justified representation
How to reason about proportionality?

First approach: Axioms for Cohesive Groups
How to define proportionality for more complex preferences?

\[\nu_1: \]
\[\nu_2: \]
\[\nu_3: \]
\[\nu_4: \]
\[\nu_5: \]
\[\nu_6: \]
\[\nu_7: \]
\[\nu_8: \]
How to define proportionality for more complex preferences?
How to define proportionality for more complex preferences?

For \(k = 4 \) these voters should approve (on average) 2 candidates in the selected committee.
How to define proportionality for more complex preferences?

\[v_1: \]

\[v_2: \]

\[v_3: \]

\[v_4: \]

\[v_5: \]

\[v_6: \]

\[v_7: \]

\[v_8: \]
How to define proportionality for more complex preferences?

For $k = 4$ these voters should approve (on average) 1 candidate in the selected committee.
How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n / k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.
How to define proportionality for more complex preferences?

Definition: Each group with at least \(\ell n/k \) voters who approve at least \(\ell \) same candidates should have on average at least \(\ell \) representatives in the elected committee.

For \(k = 4 \) these voters should approve (on average) 2 candidates in the selected committee.
How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Does there exist a system which satisfies this property?
How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Does there exist a system which satisfies this property?

$v_1: \{a, d\}$
$v_2: \{a\}$
$v_3: \{a\}$
$v_4: \{a, b\}$
$v_5: \{b\}$
$v_6: \{b\}$
$v_7: \{b, c\}$
$v_8: \{c\}$
$v_9: \{c\}$
$v_{10}: \{c, d\}$
$v_{11}: \{d\}$
$v_{12}: \{d\}$

$n = 12$
$k = 3$
How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least $\ell - 1$ representatives in the elected committee.

But PAV satisfies a slightly weaker property!
How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least $\ell - 1$ representatives in the elected committee.

But PAV satisfies a slightly weaker property!

Phragmén’s Rule would satisfy it only if we replaced $\ell - 1$ with $(\ell - 1)/2$.
A few formal definitions

A_i: the set of candidates approved by voter i

An ℓ-cohesive group: a group of voters $S \subseteq N$ is cohesive if

1. $|S| \geq \ell \cdot n/k$, and
2. $\left| \bigcap_{i \in S} A_i \right| \geq \ell$.
A few formal definitions

A_i: the set of candidates approved by voter i

An ℓ-cohesive group: a group of voters $S \subseteq N$ is cohesive if

1. $|S| \geq \ell \cdot n/k$, and
2. $\left| \bigcap_{i \in S} A_i \right| \geq \ell$.

Proportionality degree: an outcome W has the proportionality degree of $f(\cdot)$ if for each ℓ-cohesive group of voters S it holds that:

$$\frac{1}{\ell} \cdot \sum_{i \in S} |A_i \cap W| \geq f(\ell)$$
A few formal definitions

A_i: the set of candidates approved by voter i

An ℓ-cohesive group: a group of voters $S \subseteq N$ is cohesive if

1. $|S| \geq \ell \cdot n/k$, and
2. $\left| \bigcap_{i \in S} A_i \right| \geq \ell$.

Proportionality degree: an outcome W has the proportionality degree of $f(\cdot)$ if for each ℓ-cohesive group of voters S it holds that:

$$\frac{1}{\ell} \cdot \sum_{i \in S} |A_i \cap W| \geq f(\ell)$$

Extended Justified Representation (EJR): an outcome W satisfies extended justified representation if for each ℓ-cohesive group of voters S it holds that:

there exists $i \in S$ such that $|A_i \cap W| \geq \ell$
A few formal definitions

A_i: the set of candidates approved by voter i

An ℓ-cohesive group: a group of voters $S \subseteq N$ is cohesive if

1. $|S| \geq \ell \cdot n/k$, and
2. $\bigcap_{i \in S} |A_i| \geq \ell$.

Proportional Justified Representation (PJR): an outcome W satisfies proportional justified representation if for each ℓ-cohesive group of voters S it holds that:

$$\bigcup_{i \in S} |A_i \cap W| \geq \ell$$
A few formal definitions

\[A_i: \text{ the set of candidates approved by voter } i \]

An \(\ell \)-cohesive group: a group of voters \(S \subseteq N \) is cohesive if

1. \(|S| \geq \ell \cdot n/k \), and
2. \(\big| \bigcap_{i \in S} A_i \big| \geq \ell \).

Proportional Justified Representation (PJR): an outcome \(W \) satisfies proportional justified representation if for each \(\ell \)-cohesive group of voters \(S \) it holds that:

\[\bigcup_{i \in S} |A_i \cap W| \geq \ell \]

Justified Representation (JR): an outcome \(W \) satisfies justified representation if for each 1-cohesive group of voters \(S \) it holds that:

there is a voter \(i \in S \) such that \(|A_i \cap W| \geq \ell \)
Relation between axioms

proportionality
degree of $\frac{\ell - 1}{2}$

EJR

PJR

JR

lower quota
Relation between axioms

Phragmén’s Rule

proportionality
degree of \(\frac{\ell - 1}{2} \)

EJR

PJR

JR

lower quota
Relation between axioms

- Proportionality
- Degree of \(\frac{\ell - 1}{2} \)
- EJR
- PJR
- JR
- Phragmén’s Rule
- PAV
- Lower quota
Another Notion of Proportionality

Fair distribution of power

(failed by PAV)
Priceability
Priceability

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where $p > 0$ is a price, and for each voter $i \in [n]$, there is a payment function $p_i : C \to [0,1]$ such that:

1. A voter can only pay for candidates she approves of.
2. A voter can spend at most one dollar.
Priceability

A price system is a pair \(ps = (p, \{ p_i \}_{i \in [n]}) \), where \(p > 0 \) is a price, and for each voter \(i \in [n] \), there is a payment function \(p_i : C \to [0,1] \) such that:

1. A voter can only pay for candidates she approves of),
2. A voter can spend at most one dollar.

We say that a price system \(ps = (p, \{ p_i \}_{i \in [n]}) \) supports a committee \(W \) if the following hold:

1. For each elected candidate, the sum of the payments to this candidate equals the price \(p \).
Priceability

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where $p > 0$ is a price, and for each voter $i \in [n]$, there is a payment function $p_i : C \to [0,1]$ such that:

1. A voter can only pay for candidates she approves of,

2. A voter can spend at most one dollar.

We say that a price system $ps = (p, \{p_i\}_{i \in [n]})$ supports a committee W if the following hold:

1. For each elected candidate, the sum of the payments to this candidate equals the price p.

2. No candidate outside of the committee gets any payment.
Priceability

A price system is a pair $\text{ps} = (p, \{p_i\}_{i \in [n]})$, where $p > 0$ is a price, and for each voter $i \in [n]$, there is a payment function $p_i : C \to [0,1]$ such that:

1. A voter can only pay for candidates she approves of,

2. A voter can spend at most one dollar.

We say that a price system $\text{ps} = (p, \{p_i\}_{i \in [n]})$ supports a committee W if the following hold:

1. For each elected candidate, the sum of the payments to this candidate equals the price p.

2. No candidate outside of the committee gets any payment.

3. There exists no unelected candidate whose supporters, in total, have a remaining unspent budget of more than p.
Priceability: Example

\[k = 12 \]

The price is \(p = 0.5 \).

1. \(v_1 \) pays \(\frac{1}{6} \) for \(c_1, c_2 \) and \(c_3 \) and \(\frac{1}{2} \) for \(c_4 \).
2. \(v_2 \) pays \(\frac{1}{6} \) for \(c_1, c_2 \) and \(c_3 \) and \(\frac{1}{2} \) for \(c_5 \).
3. \(v_3 \) pays \(\frac{1}{6} \) for \(c_1, c_2 \) and \(c_3 \) and \(\frac{1}{2} \) for \(c_6 \).
4. \(v_4 \) pays \(\frac{1}{2} \) for \(c_7 \) and \(c_{10} \).
5. \(v_5 \) pays \(\frac{1}{2} \) for \(c_8 \) and \(c_{11} \).
6. \(v_6 \) pays \(\frac{1}{2} \) for \(c_9 \) and \(c_{12} \).
Relation between axioms

proportionality
degree of $\frac{\ell - 1}{2}$

EJR

PJR

JR

lower quota
Relation between axioms

Priceability

Lower quota

Proportionality

Degree of \(\frac{\ell - 1}{2} \)

EJR

PJR

JR
Relation between axioms

 relation between axioms

 Phragmén’s Rule

 proportionality

degree of \(\frac{\ell - 1}{2} \)

 lower quota

 priceability

 EJR

 PJR

 JR

 PAV
Relation between axioms

(Pareto optimality)

PAV

proportionality

degree of $\frac{\ell - 1}{2}$

(EJR

PJR

JRx

Phragmén’s Rule

priceability

lower quota

(House monotonicity)
No welfarist rule can be priceable
Core
Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|T|}{k} \leq \frac{|S|}{n}$, and

2. Each voter in S prefers T to W.

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|T|}{k} \leq \frac{|S|}{n}$, and

2. Each voter in S prefers T to W.

$k = 12$

<table>
<thead>
<tr>
<th>c_4</th>
<th>c_5</th>
<th>c_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_2</td>
<td>c_{13}</td>
<td>c_{14}</td>
</tr>
<tr>
<td>c_1</td>
<td>c_{10}</td>
<td>c_{11}</td>
</tr>
</tbody>
</table>

v_1 v_2 v_3 v_4 v_5 v_6
Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|T|}{k} \leq \frac{|S|}{n}$, and
2. Each voter in S prefers T to W.

$k = 12$

<table>
<thead>
<tr>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
<th>c_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c_7</td>
<td>c_8</td>
<td>c_9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c_{10}</td>
<td>c_{11}</td>
<td>c_{12}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c_{13}</td>
<td>c_{14}</td>
<td>c_{15}</td>
<td></td>
</tr>
</tbody>
</table>
Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. \[\frac{|T|}{k} \leq \frac{|S|}{n} \], and

2. Each voter in S prefers T to W.

$k = 12$

\[
\begin{array}{cccc}
\text{c_4} & \text{c_5} & \text{c_6} \\
\text{c_3} & \text{c_{13}} & \text{c_{14}} & \text{c_{15}} \\
\text{c_2} & \text{c_{10}} & \text{c_{11}} & \text{c_{12}} \\
\text{c_1} & \text{c_7} & \text{c_8} & \text{c_9} \\
\hline
\text{v_1} & \text{v_2} & \text{v_3} & \text{v_4} & \text{v_5} & \text{v_6}
\end{array}
\]

$k = 12$

\[
\begin{array}{cccc}
\text{c_4} & \text{c_5} & \text{c_6} \\
\text{c_3} & \text{c_{13}} & \text{c_{14}} & \text{c_{15}} \\
\text{c_2} & \text{c_{10}} & \text{c_{11}} & \text{c_{12}} \\
\text{c_1} & \text{c_7} & \text{c_8} & \text{c_9} \\
\hline
\text{v_1} & \text{v_2} & \text{v_3} & \text{v_4} & \text{v_5} & \text{v_6}
\end{array}
\]
Core: Definition

We say that a committee \(W \) is in the core if there exists no group of voters \(S \) and a subset of candidates \(T \) such that:

1. \(\frac{|T|}{k} \leq \frac{|S|}{n} \), and

2. Each voter in \(S \) prefers \(T \) to \(W \).

\[k = 12 \]

Not in the core!
Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|T|}{k} \leq \frac{|S|}{n}$, and

2. Each voter in S prefers T to W.

Core contradicts the Pigou-Dalton principle!

$k = 12$

Not in the core!
Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|T|}{k} \leq \frac{|S|}{n}$, and

2. Each voter in S prefers T to W.

$\frac{|T|}{k} \leq \frac{|S|}{n}$, and

Core contradicts the Pigou-Dalton principle!

Not in the core!

Theorem: PAV gives the best possible Approximation of the core subject to Satisfying the Pigou-Dalton principle!
Relation between axioms

- The core
- EJR
- JR

Proportionality: $\ell - 1$\newline
Degree of: $\frac{\ell - 1}{2}$\newline
Priceability

Lower quota
Relation between axioms

stable priceability

the core

FJR

core subject to price ability with equal payments

EJR

perfect representation

proportionality degree of $\ell - 1 \over 2$

priceability

lower quota

PJR

JR
A lot of open questions around core!

1. Does there always exist a committee in the core? *(no welfarist rule is in the core)*
A lot of open questions around core!

1. Does there always exist a committee in the core? (no welfarist rule is in the core)

2. How close we can get to the core?
 A. Core relaxation by randomisation. [Cheng et al., ACM-EC-2019]
 B. Core relaxation by approximation. [Jiang et al., STOC-2020], [Fain et al., ACM-EC-2018], [Munagala et al., SODA-2022], [Peters and Skowron, ACM-EC-2020]
How to reason about proportionality?

Another approach: Axiomatic Extensions of Apportionment Methods
Some basic axiomatic properties: Symmetry
Some basic axiomatic properties: Symmetry

\(\nu_1: \)

\(\nu_2: \)

\(\nu_3: \)

\(\nu_4: \)

\(\nu_5: \)

\(\nu_6: \)

\(\nu_7: \)

\(\nu_8: \)
Some basic axiomatic properties: Symmetry

v_1:
v_2:
v_3:
v_4:
v_5:
v_6:
v_7:
v_8:

v_1:
v_2:
v_3:
v_4:
v_5:
v_6:
v_7:
v_8$:

\rightarrow
Some basic axiomatic properties: Symmetry

\[v_1: \quad v_2: \quad v_3: \quad v_4: \quad v_5: \quad v_6: \quad v_7: \quad v_8: \]
Some basic axiomatic properties: Consistency
Some basic axiomatic properties: Consistency

\[v_1: \]
\[v_2: \]
\[v_3: \]
\[v_4: \]
\[v_5: \]
\[v_6: \]
\[v_7: \]
\[v_8: \]
Some basic axiomatic properties: Consistency

\[\begin{align*}
\nu_1: & \\
\nu_2: & \\
\nu_3: & \\
\nu_4: & \\
\nu_5: & \\
\nu_6: & \\
\nu_7: & \\
\nu_8: & \\
\end{align*} \]

\[\begin{align*}
\nu_1: & \\
\nu_2: & \\
\nu_3: & \\
\nu_4: & \\
\nu_5: & \\
\nu_6: & \\
\nu_7: & \\
\nu_8: & \\
\end{align*} \]
Some basic axiomatic properties: Continuity
Some basic axiomatic properties: Continuity

<table>
<thead>
<tr>
<th>E_1</th>
<th>v_1:</th>
<th>v_2:</th>
<th>v_3:</th>
<th>v_4:</th>
<th>v_5:</th>
<th>v_6:</th>
<th>v_7:</th>
<th>v_8:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\Rightarrow

<table>
<thead>
<tr>
<th>E_2</th>
<th>v_9:</th>
<th>v_{10}:</th>
<th>v_{11}:</th>
<th>v_{12}:</th>
<th>v_{13}:</th>
<th>v_{14}:</th>
<th>v_{15}:</th>
<th>v_{16}:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some basic axiomatic properties: Continuity

E_1: v_1: v_2: v_3: v_4: v_5: v_6: v_7: v_8: v_9: v_{10}

E_2: v_1: v_2: v_3: v_4: v_5: v_6: v_7: v_8: v_9: v_{10}

Then, there exists (possibly very large) value z such that:

$z \cdot E_1 + E_2$
Theorem: Proportional Approval Voting is the only ABC ranking rule that satisfies symmetry, consistency, continuity and D’Hondt proportionality.

Axiomatic Characterisations

Theorem: Proportional Approval Voting satisfies symmetry, consistency, continuity and D’Hondt proportionality.

Axiomatic Characterisations

Theorem: Proportional Approval Voting is the only ABC ranking rule that satisfies symmetry, consistency, continuity and D’Hondt proportionality.

More information about ABC voting