Computational Social Choice

Stable Matchings

Piotr Skowron
University of Warsaw
The model

1. A set of n men $U = \{u_1, u_2, \ldots, u_n\}$.
2. A set of m women $W = \{w_1, w_2, \ldots, w_m\}$.

Each man u_i has a preference relation \succ_{u_i} over the set of women. Each woman w_i has a preference relation \succ_{w_i} over the set of men.
The model

1. A set of \(n \) men \(U = \{u_1, u_2, \ldots, u_n\} \).
2. A set of \(m \) women \(W = \{w_1, w_2, \ldots, w_m\} \).

Each man \(u_i \) has a preference relation \(>_{u_i} \) over the set of women.

Each woman \(w_i \) has a preference relation \(>_{w_i} \) over the set of men.
The model

1. A set of n men $U = \{u_1, u_2, \ldots, u_n\}$.

2. A set of m women $W = \{w_1, w_2, \ldots, w_m\}$.

Each man u_i has a preference relation $>_u$ over the set of women.

Each woman w_i has a preference relation $>_w$ over the set of men.

Goal: Find a matching between men and women, such that each man is matched with at most one woman, and each woman is matched with at most one man.
The model

1. A set of n men $U = \{u_1, u_2, \ldots, u_n\}$.
2. A set of m women $W = \{w_1, w_2, \ldots, w_m\}$.

Each man u_i has a preference relation $>_{u_i}$ over the set of women.
Each woman w_i has a preference relation $>_{w_i}$ over the set of men.
The model

1. A set of n men $U = \{u_1, u_2, \ldots, u_n\}$.

2. A set of m women $W = \{w_1, w_2, \ldots, w_m\}$.

Each man u_i has a preference relation \succ_{u_i} over the set of women.

Each woman w_i has a preference relation \succ_{w_i} over the set of men.
The model

1. A set of n men $U = \{u_1, u_2, \ldots, u_n\}$.
2. A set of m women $W = \{w_1, w_2, \ldots, w_m\}$.

Each man u_i has a preference relation $>_u_i$ over the set of women.
Each woman w_i has a preference relation $>_w_i$ over the set of men.
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u,w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:

1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable if there exists no pair that blocks \(M\).
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u, w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:

1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u,w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:

1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u,w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:

1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).

Blocking pairs: \(\{\text{man}, \text{woman}\}, \{\text{man}, \text{woman}\}, \{\text{man}, \text{woman}\}\)
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u,w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:

1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u,w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:
1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).

No blocking pairs. This matching is stable!
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u,w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:

1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).

Does a stable matching always exists?
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u,w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:
1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).

Does a stable matching always exists? If so, how one can find it?
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u, w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:

1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).

Gale-Shapley Algorithm:

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

The process is repeated until every man is either engaged or has been rejected by all women.
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u, w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:

1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).

Gale-Shapley Algorithm:

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.
2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.
Stable Matchings

Stable Matching (CE): We say that a pair of a man and a woman \((u, w)\) blocks a matching \(M\) if \(u\) and \(w\) are not matched and:

1. \(u\) is unmatched or prefers \(w\) to her partner \(M(u)\) in the matching, and
2. \(w\) is unmatched or prefers \(u\) to her partner \(M(w)\) in the matching.

We say that a matching \(M\) is stable, if there exists no pair that blocks \(M\).

Gale-Shapley Algorithm:

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.
2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.
3. The process is repeated until every man is either engaged or has been rejected by all women.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other men.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed men except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other men.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed men except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Rejections:
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Rejections:
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other men.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed men except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Rejections:
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Rejections:
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.
2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.
3. The process is repeated until every man is either engaged or has been rejected by all women.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Rejections:
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other men.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed men except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Rejections:
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other men.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed men except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Rejections:
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.
2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.
3. The process is repeated until every man is either engaged or has been rejected by all women.

Theorem: The Gale-Shapley algorithm always produces a stable matching.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other men.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed men except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Theorem: The Gale-Shapley algorithm always produces a stable matching.

Proof: Consider a matching M returned by the Gale-Shapley algorithm.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Theorem: The Gale-Shapley algorithm always produces a stable matching.

Proof: Consider a matching \(M \) returned by the Gale-Shapley algorithm. Towards a contradiction assume there exists a blocking pair \(\{ u, w \} \).
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Theorem: The Gale-Shapley algorithm always produces a stable matching.

Proof: Consider a matching M returned by the Gale-Shapley algorithm.
Towards a contradiction assume there exists a blocking pair $\{u, w\}$. u must have been rejected by w (either because u does not have a partner or because he has a partner who is less preferred).
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other men.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed men except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Theorem: The Gale-Shapley algorithm always produces a stable matching.

Proof: Consider a matching M returned by the Gale-Shapley algorithm. Towards a contradiction assume there exists a blocking pair $\{u, w\}$. u must have been rejected by w (either because u does not have a partner or because he has a partner who is less preferred).

Thus, w, when rejecting u was engaged to someone she prefers to u.
The Gale-Shapley Algorithm

1. In the first round each man proposes to his favourite woman. A woman that gets one or multiple proposals picks the man she prefers most, makes a temporary engagement with this man, and rejects all other man.

2. In each subsequent round each unengaged man makes a proposal to his most preferred woman among those who did not reject him. A woman who gets one or multiple proposals picks the one that she prefers most. If she prefers this man to her temporary engaged partner, she breaks this engagement, and makes a temporary engagement with the currently best man among those who proposed. She rejects all proposed man except the one she is engaged to.

3. The process is repeated until every man is either engaged or has been rejected by all women.

Theorem: The Gale-Shapley algorithm always produces a stable matching.

Proof: Consider a matching M returned by the Gale-Shapley algorithm. Towards a contradiction assume there exists a blocking pair $\{u, w\}$. u must have been rejected by w (either because u does not have a partner or because he has a partner who is less preferred).

Thus, w, when rejecting u was engaged to someone she prefers to u. w breaks an engagement only when getting a better partner.
Men-optimal and Women-optimal
Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Consider a matching M returned by the Gale-Shapley algorithm.
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Consider a matching M returned by the Gale-Shapley algorithm. Assume that in a matching M' there is a man u_1 such that:

$$w_2 = M'(u_1) >_{u_1} M(u_1) = w_1.$$
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Consider a matching M returned by the Gale-Shapley algorithm. Assume that in a matching M' there is a man u_1 such that:

$$w_2 = M'(u_1) \succ_{u_1} M(u_1) = w_1.$$

In the Gale-Shapley algorithm w_2 must have rejected u_1 in favour of u_2, who proposed to w_2:

$$u_2 \succ_{w_2} u_1.$$
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Consider a matching M returned by the Gale-Shapley algorithm. Assume that in a matching M' there is a man u_1 such that:

$$w_2 = M'(u_1) >_{u_1} M(u_1) = w_1.$$

In the Gale-Shapley algorithm w_2 must have rejected u_1 in favour of u_2, who proposed to w_2:

$$u_2 >_{w_2} u_1.$$

Since M' is stable, it must be the case that: $w_3 = M'(u_2) >_{u_2} w_2$.

Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Consider a matching M returned by the Gale-Shapley algorithm. Assume that in a matching M' there is a man u_1 such that:

$$w_2 = M'(u_1) >_{u_1} M(u_1) = w_1.$$

In the Gale-Shapley algorithm w_2 must have rejected u_1 in favour of u_2, who proposed to w_2:

$$u_2 >_{w_2} u_1.$$

Since M' is stable, it must be the case that: $w_3 = M'(u_2) >_{u_2} w_2$.

Since u_2 proposed to w_2, he must have been rejected by w_3 in favour of u_3 who proposed to w_3.
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Consider a matching M returned by the Gale-Shapley algorithm.

Assume that in a matching M' there is a man u_1 such that:

$$w_2 = M'(u_1) >_{u_1} M(u_1) = w_1.$$

In the Gale-Shapley algorithm w_2 must have rejected u_1 in favour of u_2, who proposed to w_2:

$$u_2 >_{w_2} u_1.$$

Since M' is stable, it must be the case that: $w_3 = M'(u_2) >_{u_2} w_2$.

Since u_2 proposed to w_2, he must have been rejected by w_3 in favour of u_3 who proposed to w_3.

Repeating the reasoning, we find sequences u_1, u_2, \ldots, u_p and w_1, w_2, \ldots, w_p.
Men-optimal and Women-optimal
Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Repeating the reasoning, we find sequences u_1, u_2, \ldots, u_p and w_1, w_2, \ldots, w_p

\[
\begin{array}{cc}
 u_1 & w_1 \\
 u_2 & w_2 \\
 \vdots & \vdots \\
 u_p & w_p \\
\end{array}
\]
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Repeating the reasoning, we find sequences u_1, u_2, \ldots, u_p and w_1, w_2, \ldots, w_p.

u_1 proposed to w_1, w_2 rejected u_1
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Repeating the reasoning, we find sequences u_1, u_2, \ldots, u_p and w_1, w_2, \ldots, w_p.
Men-optimal and Women-optimal
Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Repeating the reasoning, we find sequences u_1, u_2, \ldots, u_p and w_1, w_2, \ldots, w_p.

u_1 proposed to w_1

u_2 rejected w_1

u_1 rejected u_2

u_2 proposed to w_2

u_2 rejected w_2

u_3 rejected u_2

u_3 proposed to w_3

u_3 rejected u_3

u_4 rejected u_3

u_4 proposed to w_4

u_4 rejected u_4

u_5 rejected u_4

u_5 proposed to w_5

u_5 rejected u_5

u_6 rejected u_5

u_6 proposed to w_6

u_6 rejected u_6

u_7 rejected u_6

u_7 proposed to w_7

u_7 rejected u_7

u_8 rejected u_7

u_8 proposed to w_8

u_8 rejected u_8
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Repeating the reasoning, we find sequences u_1, u_2, \ldots, u_p and w_1, w_2, \ldots, w_p.

- u_1 proposed to w_1
- u_2 proposed to w_2
- \vdots
- u_p proposed to w_p
- w_2 rejected u_1
- w_3 rejected u_2
- \vdots
- w_1 rejected u_p

u_1 proposed to w_1 after he was rejected by w_2

w_2 rejected u_1 after u_2 proposed to her.
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Repeating the reasoning, we find sequences u_1, u_2, \ldots, u_p and w_1, w_2, \ldots, w_p

- u_1 proposed to w_1
- w_2 rejected u_1
- u_2 proposed to w_2
- w_3 rejected u_2
- \cdots
- u_p proposed to w_p
- w_1 rejected u_p
- u_1 proposed to w_1 after he was rejected by w_2
- w_2 rejected u_1 after u_2 proposed to her. Thus,
- u_1 proposed to w_1 after u_2 proposed to w_2
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Repeating the reasoning, we find sequences u_1, u_2, \ldots, u_p and w_1, w_2, \ldots, w_p.

- u_1 proposed to w_1 after he was rejected by w_2.
- w_2 rejected u_1 after u_2 proposed to her. Thus,
- u_1 proposed to w_1 after u_2 proposed to w_2.

Similarly, u_2 proposed to w_2 after u_3 proposed to w_3.

<table>
<thead>
<tr>
<th>u_1</th>
<th>u_2</th>
<th>u_p</th>
<th>w_1</th>
<th>w_2</th>
<th>w_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>proposed to</td>
<td>proposed to</td>
<td>proposed to</td>
<td>rejected by</td>
<td>rejected by</td>
<td>rejected by</td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>w_p</td>
<td>w_2</td>
<td>w_3</td>
<td>w_1</td>
</tr>
</tbody>
</table>
Men-optimal and Women-optimal
Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

Proof: Repeating the reasoning, we find sequences u_1, u_2, \ldots, u_p and w_1, w_2, \ldots, w_p

\[u_1 \text{ proposed to } w_1 \quad w_2 \text{ rejected } u_1 \]

\[u_2 \text{ proposed to } w_2 \quad w_3 \text{ rejected } u_2 \]

\[\vdots \quad \vdots \]

\[u_p \text{ proposed to } w_p \quad w_1 \text{ rejected } u_p \]

\[u_1 \text{ proposed to } w_1 \text{ after he was rejected by } w_2 \]

\[w_2 \text{ rejected } u_1 \text{ after } u_2 \text{ proposed to her. Thus,} \]

\[u_1 \text{ proposed to } w_1 \text{ after } u_2 \text{ proposed to } w_2 \]

similarly, u_2 proposed to w_2 after u_3 proposed to w_3

And so on, until we get a contradiction.
Men-optimal and Women-optimal
Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

How to get a woman optimal stable matching?
Men-optimal and Women-optimal Stable Matchings

Theorem: In any stable matching no man can get a better partner than the one that he gets in the matching returned by the Gale-Shapley algorithm.

How to get a woman optimal stable matching?

Women shall propose instead of men!
Applications of Stable Matchings

1. Matching students to schools.

2. Matching residents to hospitals.

3. Assigning users to servers in a large distributed Internet service.