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The goal of this note is to show that, for a fixed k, the value of a closed vectorial Boolean fixed-point
term
01X1.92X2 e 9nxn.7'

can be computed in polynomial time. Here we assume that 7 = (71,...,7%), where each 7; is built from
variables, disjunction and conjunction, but otherwise need not be in any normal form.

Vector expressions

We fix a countable set of conveniently indexed variables
V = {zpm:1<n<w,1<m<k}.
The set of terms over a set of variables Y C V, is defined by the following clauses:
s YCT(Y),

e for each finite @ CT(Y), AQ and \/ Q are terms in T'(Y),
we abbreviate \/0 = T, and A0 = L.

We are interested in evaluating expressions of the form

T1,1 T21 Tn,1 1
L1,k T2,k Tn,k Tk

where 0; € {u, v}, and each 7; is a term in T'(V},), where, generally
Vi = {zij:1<i<4,1<5 <k},
(thus Vo = 0). In the sequel we usually abbreviate
' = 01x1.0:%2...0,%xn.T

We interpret such expressions over the Boolean algebra {0,1}. Each term ¢ € T(V,,) is interpreted as a
mapping on the set of valuations, [t] : {0,1}¥" — {0, 1}, in the usual manner. Hence 7 induces a mapping

[7] - {0,1}"» 3v = ([n]v,...,[m]v) € {0,1}F
To proceed, it is convenient to use an abbreviation

F,’ = 91~+1xi+1. [ ann.T
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Thus I';, = 7. Now suppose we have already defined
[Ti] : {0, 1} — {0, 1}*.
For any w € {0,1}"i-1, consider the mapping {0, 1}* — {0, 1}* given by
Aa € {0,1}*.[0]wla],
where w(a] is a valuation in {0,1}" given by

wla)(z;;) = aj forj=1,...,k
w[a](:ci:,j) = ’I,U(:Ez'l’j) for 4/ < 1.

By construction, this mapping is monotone, so it has the least fixed point pa.[l;]Jw([a], and the greatest fixed
point va.[l';Jwla]. If 6; = u, we let

[Cici] s {0,1}Vi-1 30 — pa|lyv[al.

If 6; = v, the definition is analogous with v replacing u.

For ¢ = 0, we finally obtain
[Tol =1Ir] € {0,1}".

!

Note It follows from the general properties of fixed points (see, e.g., [2]) that ...0z.0z'..... o(-..xz...x'..)
can be reduced to ...0z..... @(-..z...z...), hence it is enough to consider expressions where the fixed point
operators alternate.

Remark Let M be a set of k elements, say M = {1,...,k}. Then it is not difficult to see that any
monotone mapping F' : (pM)™ — pM can be represented by a a vectorial term 7 in T'(V,,) in such a way
that, for any A;,...,4, C M, and i € M,

i€ F(A) < [ri]va =1,

where va is a valuation defined by

’L)A(.’l:i,j) = 1 iff jeA;.
Games
We assume the reader is familiar with parity games. For I" as above, we fix a function W :{1,...,n} > w,
such that

o m(z) is even iff 6; = v;
e if { < ¢’ (i.e., 0; precedes 6; then w(z) > w(i').

We may assume that rank is chosen with minimal range.
We define the game G(I") as follows.

e The set of positions consists of all subterms of 71, ..., 7.

¢ Positions of Eve are terms of the form \/ @, and (for concreteness) variables.

The remaining (i.e., conjunctions A Q) are positions of Adam.
e The moves p — p' are of the following kinds:

- (VQ) =t and (A Q) — t, whenever t € @,



- Zjj — Tj.

e The ranking function is given by

rank(z; ;) = rgv-z—k\(i)
rank(t) = 0 for composed terms

As usual, we assume that Eve wins an infinite play if the highest rank occurring infinitely often is even.
Note that positions T and L are terminating, and the respective player looses, as he (or she) cannot make
a move.

The connection between this game and the semantics of T" is given by the following. Let [I'] = g =
(91,-..,9%), and let vg denote the valuation given by

’Ug(CE,"j) = Gj, fOI‘j = ]., .. .,k.
Proposition 1 A position t is winning for Eve in G(T') if and only if [t]vg = 1.

The above fact is at the basis of the connection between the p-calculus model checking and parity games.
However it may have not appeared in the literature precisely in this form. In [2], it is explicitly stated and
proved for positions of the form z; ;, assuming that terms 7; are in disjunctive normal form (Proposition
4.4.2, page 95). Using the technique of expanding the vector!, it is routine to extend it to the desired claim.

Algorithm

Let us first recall that there is an algorithm which solves parity games of one player in polynomial time (in
fact even in time O(n - logn), [3]). It implies that within this complexity bound we can compute [I'] if each
7; is formed using only conjunction (or using only disjunction).

This can be further extended to the case when each 7; is in disjunctive normal form (DNF), ie., a
disjunction of conjunctions. The algorithm checks all positional strategies for Eve by the exhaustive search,
that is, for each 7 = 1,..., k, selects one disjunct of 7;, and then computes the value of the resulted vectorial
term (which now contains only conjunctions). The correctness follows form the positional determinacy of
parity games or, equivalently, from the selection property of the vectorial p-calculus [1] (see also [2]). Note
that there is O(n*) possibilities of such choice (where n stands for the global size of T'). So the total time of
computing [I'] is

O(n*) - O(n -logn) = O(n**! . logn)
Note that this complexity does not depend on the number of alternations between fixed-point operators,
which is the case of most fixed-point algorithms.

Now let T’ be arbitrary, as at the beginning of this note, but we assume k being fixed. Of course,
transforming I' to DNF would be too expensive. We overcome this, however, by subsequent elimination of
redundant variables.

It is useful to have the following ordering on natural numbers:
kCl & () k< (=12

This is the “goodness” ordering for Eve. The crucial observation is that if Adam moves from a conjunction
where both z; ; and =, ; appear and he wishes that the next position be 7; then he will prefer z; ; to =y j,
whenever i [ 7'.

ntuitively, in terms of systems of equations, it can be explained as replacing equation z = s(...t...) by two new equations

z = s(...z...)
t

where z is a fresh variable.



Definition A short conjunction is a term of the form A @, where @ C V,,, and, for each j = 1,...,k, there
is at most one variable z; ; € Q.

Let ¢ = A\ P be an arbitrary conjunction with P C V,,. We let A(c) be the short conjunction A @, where
Q@ C P, and, whenever z; ; € P, there is x;; € @, with ¢ C ¢'. (That is, for each j, we leave only one
representative z; j, with C-minimal 4.)

Note that a short conjunction has at most k variables, and hence there are O(n*) possible short conjunc-
tions.

Now suppose an expression
r = 01X1.02X2 e ann.T

is given. Our algorithm gradually transforms each 7; into a term 7} in disjunctive normal form, where
moreover each conjunction is short. The terms 7; and 7] need not be equivalent, but nevertheless, the
resulting vectorial term

' = 61x1.02%2...0,%n.(7],...,71)
will be equivalent to T.

Lemma 1 Suppose A\ P occurs as a subterm in some 7;, and let T[A(/ P)] denote the vectorial term obtained
from T by replacing this particular occurrence of \ P in 7; by A(\ P). Then the semantics does not change,
i.€.,

'l = [A(A P

The claim follows easily from Proposition 1, if we analyse possible moves of Adam from the positions A\ P
and A(A P) in respective games.

The algorithm proceeds in bottom-up fashion. At the first step, we transform all innermost conjunctions
in terms 7; into short ones, using Lemma 1. Consequently, whenever ¢ in DNF is a subterm of 7;, all
conjunctions in ¢ are short.

If ¢ = 7;, we are done.

Otherwise, 7; contains a subterm A @, where each ¢ € @Q is in DNF. We then transform it into an
equivalent term in DNF, but at each step we shorten the conjunctions according to Lemma 1. This can be
done in time |Q| - (k°() - n2*). The case of subterms of the form \/ @, where each ¢ € Q is in DNF, is easy;
it is enough to eliminate redundant conjunctions. The total number of the steps of both kind (i.e., for A @
or \/ Q) is proportional to |T'|, so that the whole process of transforming I to I can be accomplished in
polynomial time.
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