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Hardness of approximation

To prove that some problem is hard to approximate we need some assumptions – this lecture will
use theorems that follow from assuming P 6= NP , later we will use some stronger, less universally
accepted conjectures.

1 PCP theorem

NP is the class of languages that admit a polynomially bounded verifier – for positive instances
there is a proof (witness), which is accepted by the verifier, for negative instances no witness
is accepted. For example in 3-SAT witnesses are (polynomially bounded strings interpreted as)
valuations and the verifier simply checks the value of each clause.

Definition 1. PCPc,s(r(n), q(n)) is the class of problems for which:

• there is a poly time verifier which, using r(n) random bits and reading q(n) bits from the
proof, decides whether to accept an instance,

• when the instance is positive, accepts some proof with probability ≥ c,

• when the instance is negative, accepts each of the proofs with probability ≤ s.

For example NP = PCP1,0(0, poly(n)) from the verifier-based definition.
The following is one version of the PCP theorem, proved in 1992, with a significantly simpler

proof (but still outside the scope of this lecture) discovered by Dinur in 2005 [1].

Theorem 2. NP = PCP1,1/2(O(log n),O(1)).

A later, different version says

Theorem 3. For each ε, δ > 0, NP = PCP1−ε, 1
2

+δ(O(log n), 3), where the verifier is allowed only

to return the xor (or negated xor) of the proof bits it reads.

The verifier for a given instance and a sequence of random bits chooses three bits to read and
one function (even or odd) and then reads the three bits and applies the chosen function.

2 MAX-E3-SAT

MAX-E3-SAT is the problem of maximizing the number of satisfied clauses in a CNF-SAT instances
with exactly three literals in each clause. A random assignment satisfies 7

8 clauses and the method
of conditional expectation gives an easy derandomized 7

8 -approximation. We follow with a typical
application of the PCP theorem.

Proposition 4. There is no 7
8 + ε approximation for MAX-E3-SAT (assuming P 6= NP ).



Proof. Let L be any language in NP– we will show how we could decide it in P using a 7
8 + ε-

approximation.
L, as a language in NP , has a PCP1−ε′,1/2+δ(O(log(n), 3) verifier, for any ε′. We construct

a variable for each bit of the proof. For each possible random string (that is polynomially many
possibilities) we see what proof bits the verifier would read – let that be i, j, k. Assuming the
verifier uses the function odd (the even case is analogous) we construct clauses xi ∨ xj ∨ xk, xi ∨
x̄j ∨ x̄k, x̄i ∨ xj ∨ x̄k, x̄i ∨ x̄j ∨ xk – if an odd number of the variables is true, all four clauses will
be true, otherwise exactly three will be true (because each clause is false in exactly one valuation
and we have chosen those that describe negations of even valuations). This ends the construction.

Thus when x ∈ L, the verifier accepts some proof with probability ≥ 1 − ε′, which implies
there is a valuation of the constructed E3-SAT instance with at least (1 − ε′)4

4 + ε′ 34 = 1 − ε′

4

satisfied clauses. When x /∈ L, any valuation can satisfy at most (1
2 + δ)4

4 + (1
2 − δ)

3
4 = 7

8 + δ
4

clauses. Choosing ε′, δ to be much smaller than ε, we can distinguish between these two cases with
an 7

8 + ε-approximation.

Notice we actually proved a slightly stronger statement: we cannot tell the difference between
instances with ≥ 1− ε satisfiable clauses and those with ≤ 7

8 + δ satisfiable clauses. This stronger
version is more useful for later reductions.

Another stronger version of the PCP theorem allows the make the same statement with 1
instead of 1− ε.

3 Independent Set

During the exercises we will prove the following lemma with a reduction from MAX-E3-SAT:

Lemma 5. There is an α > 1 such that Independent Set is not α-approximable (that is, Independent
Set is APX-hard – there are stronger results known).

We now use this lemma to prove no constant α-approximability, with a gap amplification lemma.

Lemma 6. If there is an α-approximation for IS, then there is a
√
α-approximation for IS.

Proof. From a given instance G = (V,E) we simply construct the graph G′ = (V ′, E′) with V ′ =
V × V and E′ = {(a, b)(c, d) : ac ∈ E ∨ bd ∈ E} (yes, that’s a lot of edges).

We show that OPT (G′) = OPT (G)2, from which the lemma immediately follows. If S is an
independent set in G, then S × S is easily seen to be an independent in G′.

Conversely, if S′ is an independent set in G′, then define the projections
S1 = {u ∈ V : ∃v(u, v) ∈ S′}, S2 = {v ∈ V : ∃u(u, v) ∈ S′}. Now S′ is a subset of S1 × S2 and it’s
independence implies the independence of S1 and S2. |S′| ≤ |S1| · |S2|, so one of S1, S2 must be at
least

√
|S′| in size.

Nowadays we know we cannot even make the difference between instances with a maximum
independent set of size n1−ε and instances with at an IS of size at most nε (H̊astad [3] assuming
NP 6= ZPP , then Zuckerman [5] assuming only P 6= NP ).



4 Label Cover

Label Cover
Input: a bipartite graph G = (X ] Y,E), a set of labels [m] and
for each edge xy a constraint ψxy : [m]→ [m].
Question: Give an assignment of labels to vertices f : X ∪ Y → [m] maximizing the number
of satisfied edges (that is edges xy having ψxy(f(x)) = f(y)).

A simple reduction from MAX-E3-SAT shows the APX-hardness of Label Cover, and sim-
ilarly as for Independent Set one can use (more complicated) gap amplification to achieve the
following theorem (which uses a stronger assumption, because we need to create log log n-tuples
instead of pairs like in IS).

Theorem 7. Assuming NP 6⊆ DTIME(nO(log logn)), for all c > 0, we cannot distinguish between
fully satisfiable and ≤ 1

logc n -satisfiable instances of Label Cover, even in regular graphs.

5 Set Cover

Set Cover (unweighted)
Input: a universe U of n elements and a family of subsets F = {F1, . . . , Fm}, Fi ⊆ U satisfying⋃
i Fi = U .

Question: Give a minimum set of indices I ⊆ [m] satisfying
⋃
i∈I Fi = U .

5.1 Approximation algorithms

There is a lnn-approximation of Set Cover. The algorithm greedily selects the set that covers
the most uncovered elements. If we assign each set a cost of 1 and divide it equally among its
elements, the i-th covered element costs us ≤ OPT · 1

n+1−i – indeed, the optimal solution gives a

set that covers at least n
OPT elements (and then there is a set which covers n−i+1

OPT elements, and so
on). So the sum of costs in the greedy algorithm is bounded by Hn · OPT , where Hn is the n-th
harmonic number, asymptotically lnn+O(1).

Another way to obtain an O(log n)-approximation is by LP-rounding. Take the linear program

minimize
∑
s∈[m]

xs

∑
Fs∈F
v∈Fs

xs ≥ 1 ∀ v ∈ U

take each set Fs ∈ F with probability xs, and repeat 2 lnn times. The expected number of sets
taken is, by the linearity of expected value, 2 lnn ·

∑
xs ≤ 2 lnn ·OPT . Each element u of U is left

uncovered in one step with probability
∏
Fs3u(1−xs) ≤ 1

e (from
∑
xs ≥ 1 and Jensen’s inequality).

So each element is left uncovered in all steps with probability at most 1
e

2 lnn
= n−2 and by the

union bound, there is an uncovered element with probability at most 1
n .



5.2 Hardness of approximation

Theorem 8 (Feige [2]). Assuming NP 6⊆ DTIME(nO(log logn)), there is no (1−ε) lnn-approximation
for Set Cover for any ε > 0.

We’ll prove only a weaker statement (the above for some ε, namely 15
16):

Theorem 9 (Lund, Yannakakis [4]). Assuming NP 6⊆ DTIME(nO(log logn)), there is no lnn
16 -

approximation for Set Cover.

We reduce from Label Cover. The following gadget is crucial to the proof.

Definition 10. An (m, l)-system consists of a universe B and a collection of m subsets of that
universe {C1, . . . , Cm}, such that if a choice of l sets of the form Ci or Ci covers all the universe,
then this choice must contain both Ci and Ci for some i.

Theorem 11. For all m, l there is an (m, l)-system of size |B| = O(22lm2). Such a system can be
constructed in time polynomial in |B|.

There is an easy randomized construction (which requires us to change our assumption from
DTIME to ZTIME (expected time, instead of deterministic, but results with probability 1)) –
simply take a universe of size |B| = 2l ln(2ml) and random sets Ci (each element with probability
1
2), the probability of a failure (all elements covered by only l sets) is (1 − 1

2l
)|B|. It could be

derandomized with universal functions.
We are now ready to reduce an instance (G = (X,Y,E), [m],Ψ) of Label Cover. Let

(B,C1, . . . , Cm) be an (m, l)-system and let the universe be U = E × B. We add to the fam-
ily F :

• for all x ∈ X and i ∈ [m], the set Sx,i =
∑

xy∈E xy × CΨxy(i),

• for all y ∈ Y and i ∈ [m], the set Sy,i =
∑

xy∈E xy × Ci.

Lemma 12. If the instance of Label Cover was fully satisfiable, then the instance of Set
Cover has a solution of size ≤ |X|+ |Y |.

Proof. Let f : X ∪ Y → [m] be an assignment satisfying all edge constraints of Label Cover. To
cover the elements of U = E × B we choose the sets {Sv,f(v) : v ∈ X ∪ Y }. This gives us for each

edge xy the set Sx,f(x) containing {xy} × CΨxy(f(x)) and the set Sy,f(y) containing {xy} × Cf(y).
Because Ψxy(f(x)) = f(y), this gives a set and it’s complement on each edge.

Lemma 13. If there is a set cover S of size ≤ l
8(|X| + |Y |), then there is a label assignment

satisfying a fraction of ≥ 2
l2

of all edges.

Proof. Given such a cover S, we define for each vertex v the set of potential labels

Lv = {i : i ∈ [m], Sv,i ∈ S}.

Each set contributes one label to one vertex, thus
∑

v∈X∪Y |Lv| = |S|. We say a vertex i bad when

|Lv| > l
2 . At most 1

4 of all vertices can be bad (because |S| ≤ 1
4 ·

l
2(|X|+ |Y |)). Throw away edges

incident to bad vertices – vertices with |Lv| > l
2 . This is the place where we use the assumption

that the graph is regular – observe that we throw away at most 1
2 of all edges because at most



n/4 vertices are bad, which touch at most dn/4 endpoints of edges, hence at most dn/4 = |E|/2
edges are thrown away. We thus leave at least |E|2 edges, all of them have both endpoints satisfying

|Lv| ≤ l
2 .

Randomly select each f(v) from the set Lv (no label, if it’s empty). We want to show that f
satisfies any edge xy with probability at least 4

l2
. The subset {xy} ×B of the universe could have

been covered only by sets Sx,∗ and Sy,∗. But since |Lx|, |Ly| ≤ l
2 , we took at most l such sets. By

the definition of an (m, l)-system, we must have taken a set Ci and it’s complement Ci into S, for
some i. This means there are labels ix ∈ Lx, iy ∈ Ly satisfying Ψxy(ix) = iy – our random f will
select both these labels with probability at least 4

l2
. The expected fraction of satisfied edges is then

at least 2
l2

, so there is an f that satisfies at least that much.

It now remains to connect those lemmas with the inapproximability of Label Cover (Theorem
7 with c = 3). We reduce GapLabelCover1,1/ log3 n (the problem of distinguishing between a fully

satisfiable instance and a ≤ 1
log3 n

-satisfiable instance) with regular graphs to Set Cover using the

above reduction with l = β log n (for some β > 0, chosen later). The universe constructed has size
N = |U | = |E| · |B| = nO(1)22l, which is polynomial in n.

Suppose we have an α lnN -approximation for Set Cover, for α ≤ 1
16 . For appropriate β,

α lnN = α · (2l ln 2 +O(lnn)) ≤ α2l ≤ l
8 , so if we get a fully satisfiable instance of Label Cover,

the construction gives a Set Cover instance with a solution ≤ |X| + |Y | and the approximation
would give a result of at most l

8(|X|+ |Y |).
On the other hand, if we get a ≤ 1/ log3 n-satisfiable instance of Label Cover, it means no

label assignment can satisfy ≥ 2
l2

= 2
β2 ln2 n

> 1/ log3 n (for large enough n) edges, so by the previous

lemma no set cover of size ≤ l
8(|X| + |Y |) exists – thus we can distinguish between the two cases

and solve GapLabelCover1,1/ log3 n, a contradiction.
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