
Lecture 1 (06.03.2013) Author: Jaros law B lasiok

Algebraic method for Shortest Paths problems

1 Introduction

In the following lecture we will see algebraic algorithms for various shortest-paths problems. As
the base of many of them there is a matrix multiplication algorithm.

From now on we will denote ω to be the smallest constant s.t. two matrices of size n × n can
be multiplied in time O(nω), as long as elements of those matrices form a ring. This means O(nω)
operations on the underlying ring structure — if this operation could not be assumed to be constant
time, whole algorithm complexity becomes O(nωR) — where R is single operation.

Note that demanding from operations on elements to fulfill ring axioms is sometimes trouble-
some. Nevertheless, sometimes we will work out a way to reduce those degenerate matrix multi-
plying problem to a matrix multiplying over a ring — so we can use matrix multiplying algorithm
running in time O(nω).

At the point of this lectures ω is proven to be less then 2.3727 (i.e. there exist an algorithm
which can multiply two matrices in time O(n2.3727).

During this lecture we will focus on the following problems:

All Pairs Shortest Paths (APSP)
Input: Graph G (directed/undirected, weighted/unweighted)
Question: For every pair of vertices find the length of the cheapest/shortest path between
them. Sometimes: find the first edge of this path

Remark 1. If an algorithm returns for each pair of vertices (v1, v2) the first edge on the shortest
path from v1 to v2, this path itself could be easily reconstructed.

Classic way of various APSP problems is Floyd-Warshall algorithm. I will shortly describe it
here, for the sake of completeness:

• Initialize a matrix: Dij of size n× n: Dij := w(vi, vj) if there is edge from vi to vj , Dij :=∞
in the opposite case.

• For every vertex vk, and for every pair vi, vj do relaxation: if Dij > Dik + Dkj , assign
Dij := Dik + Dkj .

2 Boolean Matrix Multiplication

Before we will discuss further APSP problems and our approach, lets take a look on the following
problem, which will be a useful tool for our algorithms.

Boolean Matrix Multiplication
Input: A,B — boolean matrices of size n× n.
Question: C — boolean matrix of size n× n, s. t. cij = (A ·B)ij =

∨
k aik ∧ bkj



Unfortunately ({⊥,>},∨,∧) is not ring — we cannot use O(nω) matrix multiplication directly.
Nevertheless this problem can be reduced to matrix multiplication over a ring: take Ã, s.t.

ãij =

{
0 for aij = ⊥
1 for aij = >

B̃ is generated from B in same fashion, now take C̃ = Ã · B̃ (where Ã and B̃ are matrices over
(Z, ·,+)). Here you can get C back from C̃ taking ⊥ instead of 0, and > instead of integers greater
than 0.

This leads us to the following corollary

Corollary 2. There is an O(nω) algorithm for the Boolean Matrix Multiplication problem.

Now we can see a simple application of this tool.

Transitive closure
Input: Directed graph G = (V,E)
Question: G∗ = (V, {(u, v) : u ; v in G})

Bruteforce algorithm involves n graph searching, each in time O(m), which gives O(mn) in
total, that is O(n3) for dense graphs. Can we do better than this?

Consider boolean matrix A, of size n× n defined:

Auv =

{
> (uv) ∈ E
⊥ in opposite case

Now take X = A∨ I, so Xuv = > if and only if there is a path from u to v of size not exceeding
one. It is easy to see by induction, that Xk

ij = > if and only if there is a path from u to v of

length not exceeding k, i.e. for k ≥ n, we know that Xk is the incidence matrix of G∗ — we will
denote this matrix as X∗. Take just: X0 = X,X1 = X2

0 , X2 = X2
1 , · · · — repeating boolean matrix

multiplication log n times, one can calculate X∗, and hence G∗ itself in time O(nω log n).
We would like to get rid of this logarithm factor, and provide O(nω) algorithm for transitive

closure.
Assume for simplicity that n is a power of two (one can always add at most n isolated vertices

to make this assumption true). Let X =

[
A B

C D

]
, and X∗ =

[
E F

G H

]
.

P1 P2A

B

C

D

Figure 1: Graph decomposition corresponding to the block matrix

[
A B
C D

]



We will prove that

X∗ =

[
(A ∨BD∗C)∗ EBD∗

D∗CE D∗ ∨GBD∗

]
(1)

Indeed, let P1 be the set of vertices corresponding to the first n/2 rows (and columns as well), P2

— corresponds to the last n/2 rows (columns). By abuse of notation A,B,C,D,E, F,H,G will be
treated sometimes as sets of edges/paths in G.

Consider for example a path from v1 in P1 to v2 in P2. It can be decomposed into parts which
are either edges from A (inside P1) or consists of: one edge in B (leading to P2), then some number
of edges from D (inside P2), then an edge from C back to P1. This exactly corresponds to the
block (A ∨BD∗C)∗ of the matrix X.

Now any path from P1 to P2 may be decomposed as a path from E (from the first vertex, to
the last vertex on the path which is in P1, then an edge from B, and lastly a path inside P2 of the
form D∗. A similar argument holds for the last two blocks of the matrix X.

In order to compute X∗ for a matrix of size n×n it suffices to compute D∗, and then (A∨BD∗C)∗
— transitive closure of matrices of size n

2 ×
n
2 (plus constant number of BMM). Recursive formula

for the time complexity of this algorithm is:

T (n) = 2T (n/2) + 6BMM(n/2) +O(n2)

This recursion leads to T (n) = O(BMM(n)) = O(nω) (the last step proven during exercises).

3 APSP

3.1 Undirected, unweighted case

Consider now the All Pairs Shortest Paths problem on an undirected, unweighted connected graph
G. Our goal is to achieve Õ(nω) time complexity. This algorithm was first given by Seidel in [1].

Definition 3. For an unweighted graph G = (V,E) we denote Gk = (V, {(u, v) : dG(u, v) ≤ k}).

Note that, if A(G) is boolean adjacency matrix of a graph G, we have the following property:
A(Gk) ∨ I = (A(G) ∨ I)k.

Now the outline of the algorithm could be summarized as follows:

• Compute G2.

• Count all pairs shortest paths in G2.

• Fix them a little, to get APSP in G.

Remark 4. Recursion depth here is at most log n, as G2logn
= Gn = Kn (we assume G is con-

nected), and APSP is trivial there.

Remark 5. The “Compute G2” step can be done in O(nω) time, by boolean matrix multiplication.

Lemma 6. 2dG2(u, v)− 1 ≤ dG(u, v) ≤ 2dG2(u, v)

Proof. If there is a path of length p in G2 it induces a path of length at most 2p in G (every edge
from G2 becomes a path of length at most two). On the other hand if there is a path of length 2k
or 2k − 1 in G, one can find a corresponding path of length k in G2: for a path v1v2v3 . . . vp in G,
v1v3v5 . . . vp is a path in G2.



One needs to know for every u, v in G, whether this length is 2dG2(u, v) or 2dG2(u, v) − 1.
Following lemmas give us simple criteria in terms of distances in G2.

Lemma 7. If dG(u, v) = 2dG2(u, v), then for every w ∈ NG(v) we have dG2(u,w) ≥ dG2(u, v).

Proof. It follows simply from Lemma 6. Indeed: for w being a neighbour of v, surely from triangle
inequality for d we have dG(u,w) ≥ dG(u, v)− 1. Now, using Lemma 6, one can conclude:

dG2(u,w) ≥ 1

2
dG(u,w) ≥ 1

2
(dG(u, v)− 1) =

1

2
(2dG2(u, v)− 1) = dG2(u, v)− 1

2

As dG2(u,w) is an integer, it has to be at least dG2(u, v) — this is what was claimed in the statement
of the lemma.

Lemma 8. If dG(u, v) = 2dG2(u, v)− 1, then for every w ∈ NG(v) we have dG2(u,w) ≤ dG2(u, v),
furthermore there exist a vertex w ∈ NG(v), s. t. dG2(u,w) < dG2(u, v)

Proof. For the first part of the lemma: for every w ∈ NG(v) we have:

dG2(u,w) ≤ 1

2
(dG(u,w) + 1) ≤ 1

2
(dG(u, v) + 1 + 1) =

1

2
(2dG2(u, v) + 1) = dG2(u, v) +

1

2

Again, as both or those distances are integers, we have the desired inequality.
For the existence part of lemma: take w as first vertex on the shortest path from v to u.

Now dG(u,w) = dG(u, v) − 1, hence dG(u,w) = 2dG2(u, v) − 2, and from Lemma 6, we have
dG2(u,w) = dG2(u, v)− 1.

Now we need a way to determine for every pair (u, v) whether we are in the case from Lemma 7,
or in the case from Lemma 8. We will see that it can be done again using matrix multiplication.

Let D2 be a matrix representing distances in G2, A — the adjacency matrix of G. Take
Y = AD2, and observe that

Yvu =
∑

w∈N(v)

dG2(w, u).

Now it is easy to distinguish between vertices of even and odd distances in G. Namely: if Yuv <
degG(v)(D2)uv we know that dG(u, v) = 2dG2(u, v) − 1, and dG(u, v) = 2dG2(u, v) in the opposite
case.

3.2 Undirected, weighted case

Seidel algorithm has been generalized to weighted graph G, were each edge has assigned integer
weight from the set {0, . . . ,M}. This generalization is due to Shoshan and Zwick [2]. On those
graphs one can solve APSP in time Õ(Mnω). There is no known algorithm for that problem
running in O(n3−ε) for general weights.

3.3 Min-Plus product

In order to solve the APSP problem efficiently it would suffice to calculate the so called Min-Plus
product: (A∗B)ij = mink(Aik+Bkj). Indeed: if A were a matrix with edge weights as its elements
(and 0 on diagonal), A ∗ A would have shortest paths of length not exceeding 2. The question of
APSP in a given graph reduces to solving O(log n) Min-Plus product instances.



Unfortunately (Z,min,+) does not form a ring, so we cannot take the standard matrix multi-
plication algorithm to calculate the min-plus product of two matrices right away.

Those two problems are actually related more closely: as one can consider MPP as a spe-
cial case of directed, weighted APSP. Indeed: given a matrix A of size n × m and a matrix B
of size m × l, one can consider a graph with n + m + l vertices as on Figure 2, with vertices:
{u1, . . . un, v1, . . . vm, w1, . . . wl}. Take an edge with weight aij from the vertex ui to vj , and an
edge of weight bij from vi to wj for every i and j. Now the length of the shortest paths from ui to
wj is exactly the value of the corresponding element in the min-plus product: (A ∗B)ij .

u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

w1

w2

w3

w4

w5

w6

a53

b25

Figure 2: Graph for min-plus product A ∗B

Claim 1. If elements of matrices A and B are integers from {0, . . . ,M} or ∞, one can find
min-plus products of those matrices in time O(Mnω).

Consider matrix A′, where

a′ij =

{
xaij for aij <∞

0 for aij =∞

Let matrix B′ be construdcted from B in similar manner. Now every entry of A′B′ is a poly-
nomial, say: (A′B′)ij = cn1x

n1 + cn2x
n2 + . . ., for n1 < n2 < . . .. It is easy to check, straight from

definition that that lowest degree of non-vanishing monomial (i.e. n1) is in fact demanded value of
corresponding element in min-plus product (A ∗B)ij .

If elements of input matrices are polynomials of degree not exceeding M it is possible to compute
product of those matrices in time Õ(Mnω) — all appearing polynomials are of degree at most 2M ,
and one can add those two in linear time (just as-is), and multiply them in O(M logM) by Fast
Fourier Transform. Now using O(nω) ring operations one can multiply two matrices over that ring.



Unfortunately this does not give us immediately Õ(Mnω) time algorithm for undirected weighted
(with bounded weights) APSP. If we take A ∗ A, then the resulting matrix has elements of value
not exceeding 2M , after the next step we get a matrix with entries of value 4M — this blows
up rapidly, and we can solve MPP problem only when guarantied that the value of elements is
bounded. To overcome this difficulty, Shoshan and Zwick calculated simultaneously blog2 nc most
significant bits of every distance, and remainders of this distance modulo M — they used min-plus
product for both those tasks. It obviously is enough to determine distance itself, as for every u, v
d(u, v) ≤ (n− 1)M . For more information check [2].

3.4 Directed unweighted case

The following approach for directed, unweighted APSP problem has been proposed by Zwick in [3].
Given graph G = (V,E), let A be matrix defined as follows:

aij =


0 for i = j
1 for vivj ∈ E
∞ in opposite case

For a matrix D, and P, T ⊂ {1, 2, . . . , n} let DP,T be the matrix created from D by taking rows
P and columns T .

Also crop(D, s) will denote D with substituted ∞ instead of elements larger then s. That is
D′ = crop(D, s) if

d′ij =

{
dij for dij ≤ s
∞ for dij > s

Consider the following algorithm:

D ← A
for i := 1→ dlog3/2 ne do

s := d(3/2)ie
B :=sample of 9(n log n)/s vertices from V , taken uniformly at random
D := min(D,DV,B ∗DB,V )
D := crop(D, (3/2)i+1)

end for

Note that in the matrix DV,B there might be∞ elements, which can be simulated by big enough
integers - the details are left to the reader.

In the time complexity analysis of our algorithm we strongly depend on the following result by
Coppersmith:

Theorem 9. One can multiply a matrix of size n× p by a matrix of size p× n in time

O(n1.85p0.54 + n2+o(1))

In particular, that means that if p < n0.29 one can multiply two matrices of that size in time
n2+o(1).

Now for the min-plus product DV,B ∗DB,V , you can either solve it by brute-force algorithm (in
time n2 · (n log n)/s) or by our reduction to fast matrix multiplication, and then using Coppersmith
method (in time Õ(n1.85 · (n log n/s)0.54 · s)). Note that the factor s comes from our reduction of
MPP to matrix multiplication — time complexity of solving MPP depends on an upper bound on



values of elements, but here elements does not exceed s (unless they are infinite) thanks to cropping
those elements.

Now the time complexity of a single step is

O(min(n3 log n/s, n1.85(n log n/s)0.54s)) = O(n2.58)

We are left to prove that the above algorithm computes APSP with high probability.

Lemma 10. Given that after phase i all paths of length not exceeding
(
3
2

)i
are good, after phase

i + 1 all paths of length not exceeding
(
3
2

)i+1
are good with probability at least 1− 1

n .

Proof. Consider two vertices u, v such that
(
3
2

)i ≤ d(u, v) ≤
(
3
2

i+1
)

, and take any shortest path

from u to v. Take Q as “middle” 1
2(32)i vertices on this path, i.e. in a way that there is at most

1
2(32)i vertices from u to the first vertex in Q, and there is at most 1

2(32)i vertices from the last

vertex in Q to v. It can be done, as the length of this path does not exceed
(
3
2

)i+1
. Now we know

that the distance from u to any of vertices in Q is good, and distances from Q to v is good as well.
If only B had nonempty intersection with Q, we would get proper value of d(u, v) by a min-plus
product.

For a single vertex q ∈ Q, the probability that it is not taken into B is 1 − 9 logn
s . Now the

probability that none vertex of Q is taken is at most:(
1− 9 log n

s

)s/3
≤ e−3 logn =

1

n3

Now by a union bound over all pairs u, v, the probability that we fail in step i is at most 1
n

(given that we haven’t failed in previous steps).

Now correctness of this algorithm follows simply from the lemma above, namely:

P[algorithm failed to compute APSP] =

=
∑
i

P[everything went good until phase i, and algorithm failed in phase i]

≤
∑
i

P[algorithm failed in phase i|everything was good until then]

≤
∑
i

1

n
=

log3 n

n

As usual, we can achieve arbitrary low probability of error by repeating whole algorithm c times.
The above algorithm can be derandomized, the details can be found in [3].

References

[1] R. Seidel. On the all-pairs-shortest-path problem. In STOC, pages 745–749, 1992.

[2] A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs with integer weights.
In FOCS, pages 605–615, 1999.

[3] U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
J. ACM, 49(3):289–317, 2002.


