
Lecture 1 (27.02.2013) Scribe: Lukasz Solak
Lecturer: Marek Cygan

Algebraic methods

1 Introduction

Presenting problems in terms of algebra leads to simple algorithms, in order to solve a problem
sometimes it is enough to check if determinant or rank of a specific matrix satisfies a simple
condition.

We will often use matrix multiplication in algorithms thus time in which we can multiply
matrices is crucial for analysis of algorithms. Because new algorithms for this problems appear,
we will denote time complexity of multiplying two n× n matrices over some ring as O (nω) where
ω stands for the lowest known exponent which currently is less than 2.3727 [3]. An example of
algorithm that multiplies matrices faster than O

(
n3
)

is Strassen’s algorithm [2]. Other algorithms
for matrix multiplication problem which are faster than Strassen’s algorithm asymptotically aren’t
practical because of high constant factor hidden in O notation.

Remark 1. Time complexity of algorithm for matrix multiplication might differ depending on
chosen computation model. For example if we choose Zm with large m for a ring then it is reasonable
to say that it contributes as O(log2(m)) factor to algorithm’s time complexity. To deal with this
we introduce Õ notation that omits logarithmic factors.

Lemma 2. If A is a square matrix of size n over some field, then it is possible to find det(A),
rank(A) and A−1 in Õ (nω) time.

In this lecture we extensively use computing matrix’s determinant as a subproblem and the
following equality comes handy in proofs:

det(A) =
∑
π∈Sn

sgn(π)
∏

1≤i≤n
ai,π(i)

where Sn is set of permutations of n-set (n being the size of the square matrix A).

2 Perfect matching in balanced bipartite graphs

We study the following problem.

Perfect matching in balanced bipartite graphs
Input: Bipartite graph G = (U ∪ V, E) where |U | = |V | = n
Question: Does there exists a perfect matching in G?

Let’s define a matrix A(G) where au,v =

{
xu,v if (u, v) ∈ E
0 otherwise

Theorem 3 (Edmonds). There exists a perfect matching in a balanced bipartite graph G if and
only if det(A(G)) 6= 0.

Proof. (⇒) If det(A(G)) 6= 0, then there must exist δ ∈ Sn such that sgn(δ)
∏

1≤i≤n ai,δ(i) 6= 0
therefore there exists a perfect matching consisting of edges (u, π(u)) where u ∈ U .

(⇐) Suppose there is a perfect matching, then there exists δ ∈ Sn such that u ∈ U is connected
with δ(u) in this matching. Therefore it is evident that sgn(δ)

∏
1≤i≤n ai,δ(i) 6= 0 moreover for

π1, π2 ∈ Sn such that π1 6= π2 if
∏

1≤i≤n ai,π1(i) 6= 0 ∧
∏

1≤i≤n ai,π2(i) 6= 0, then
∏

1≤i≤n ai,π1(i) 6=∏
1≤i≤n ai,π2(i) because of variables mismatch thus det(A(G)) 6= 0.

Remark 4. Note that symbolic determinant might grow large therefore we need some other way
to check if it is nonzero. One possibility is to use Lovasz’s algorithm described later.

Lemma 5 (Schwartz-Zippel). Let P ∈ F [x1, x2, . . . , xn] be a nonzero polynomial of total degree
d ≥ 0 over a field, F. Let S be a finite subset of F and let r1, r2, . . . , rn be selected randomly from
S. Then Pr[P (r1, r2, . . . , rn) = 0] ≤ d

|S| .

Proof. The proof is by mathematical induction on the number of variables. For n = 1 this follows
directly from the fact that a polynomial of degree d can have no more than d roots. Suppose the
theorem holds for all polynomials in n− 1 variables. We can consider P to be a polynomial in x1

by writing it as P (x1, . . . , xn) =
∑d

i=0 x
i
1Pi(x2, . . . , xn).

Since P is not identically 0, there is some i such that Pi is not identically 0. Let’s denote the
largest such i as i0. Then degPi0 ≤ d− i0.

Now we randomly pick r2, . . . , rn from S. By the induction hypothesis, Pr[Pi0(r2, . . . , rn) =
0] ≤ d−i0

|S| . If Pi0(r2, . . . , rn) 6= 0, then P (x1, r2, . . . , rn) is of degree i0 so Pr[P (r1, r2, . . . , rn) =

0|Pi0(r2, . . . , rn) 6= 0] ≤ i0
|S|

If we denote the event P (r1, r2, . . . , rn) = 0 by A, the event Pi0(r2, . . . , rn) = 0 by B we have
Pr[A] = Pr[A ∩ B] + Pr[A ∩ B′] = Pr[B]Pr[A|B] + Pr[B′]Pr[A|B′] ≤ Pr[B] + Pr[A|B′] ≤
d−i0
|S| + i0

|S| = d
|S|

Please recall that it is possible to compute the determinant of a square matrix over a field in
Õ(nω) time.

Algorithm 6 (Lovasz). To test whether det(A) = 0 for the matrix A (with elements being polyno-
mials) choose some field F (for example Zp for some large prime p) and randomly assign values to
variables, and then check whether the determinant of a resulting matrix (with elements from F) is
equal to zero.

Remark 7. Using the Schwartz-Zippel lemma we can estimate that the probability of Lovasz’s
algorithm saying that the determinant is equal to zero when it is not (it is always correct the other
way around) is lower than 1

n when we choose F such that |F | = Ω(n2). The probability of a false
zero can be reduced further by repeating the algorithm or choosing a field with more elements.

Corollary 8. Given a bipartite graph G it is possible to check whether there exists a perfect matching
in time Õ(nω) with high probability.

3 Perfect matching in arbitrary graphs

Perfect matching in arbitrary graphs
Input: Graph G = (V,E)
Question: Does there exists a perfect matching in G?

Definition 9 (Tutte’s matrix). Matrix A(G) where au,v =


xu,v if u < v ∧ (u, v) ∈ E
−xv,u if u > v ∧ (u, v) ∈ E
0 otherwise

Theorem 10 (Tutte). There exists a perfect matching in G iff det(A(G)) 6= 0.

Proof. Let H = {π ∈ Sn : there exists at least one odd cycle in π} then we can write det(A(G)) =∑
π∈H sgn(π)

∏
1≤i≤n ai,π(i) +

∑
π∈Sn\H

∏
1≤i≤n ai,π(i). Firstly let’s prove that the first sum equals

zero. We will do it by pairing permutations in H such that sum of each pair will be zero. Let
f(π) be a permutation that comes from π by reversing the odd cycle which contains the vertex
with the lowest number. Note that f creates the mentioned pairing. For each π ∈ H, we pair
π with f(π). It creates pairing because f(f(π)) = π. if π ∈ H then sgn(π) = sgn(f(π)) and∏

1≤i≤n ai,f(π)(i) = −
∏

1≤i≤n ai,π(i) because reversing the odd cycle provide odd number of sign
changes therefore each pair sums up to zero.

If π ∈ Sn\H and
∏

1≤i≤n ai,π(i) 6= 0 then edges (u, π(u)), u ∈ V create a directed cycle cover of
G consisting of even length cycles. Note that two elements of the sum consist of the same variables
(including multiplicities) iff the corresponding permutations have the same underlying undirected
cycle covers.

(⇒) Suppose there exists a perfect matching. We can create a directed cycle cover of G by
taking each edge of the perfect matching two times, once for each direction. There’s exactly one
permutation π corresponding to the created cycle cover therefore det(A(G)) 6= 0.

(⇐) If det(A(G)) 6= 0 then there exists δ ∈ Sn\H such that
∏

1≤i≤n ai,π(i) 6= 0 therefore we
can obtain a perfect matching by taking every second edge from each cycle of the cycle cover
corresponding to δ.

4 Finding the shortest cycle in directed graphs

4.1 Testing whether directed graph contains nontrivial cycle

First, we are going to solve the following problem, which is trivially solvable using graph searching
algorithms, as it will be helpful in further sections. Note that in the following definition a cycle has
to be of lenght at least two.

Testing whether directed graph contains a cycle
Input: Directed graph G = (V,E)
Question: Does there exist a cycle in G?

Let’s define a matrix A(G) where au,v =


1 if u = v

xu,v if (u, v) ∈ E
0 otherwise

Lemma 11. There exists a cycle in G iff det(A(G)) 6= 1.

Proof. Note that identity permutation contributes to the determinant’s sum the value of 1.
⇒ Suppose there exists a cycle v1 − v2 − . . . − vk − v1, vi 6= vj for i 6= j then let’s take the

permutation δ such that π(vi) = vi+1 for 1 ≤ i < k, π(vk) = v1 and identity for other vertices.
Then

∏
1≤i≤n ai,π(i) 6= 0 and because every other nonzero element of the sum consists of different

set of variables we conclude that det(A(G)) 6= 1

⇐ If det(A(G)) 6= 1 then there exists a permutation δ such that it is not identity and
∏

1≤i≤n ai,δ(i) 6=
0 therefore there exists a cycle in the graph corresponding to the cycle in δ.

4.2 Finding the shortest cycle in directed graphs

Finding the shortest cycle in directed graph without negative cycles
Input: Directed weighted graph G without a negative cycle
Question: Edges that create the shortest cycle in G

The algorithm consists of the following steps

1. Find the length of the shortest cycle

2. Find all edges that are part of some shortest cycle (one edge would suffice but we can find all
without additional effort)

3. Find the shortest cycle

Let l : E → {−M, . . . ,M} be length function.

4.2.1 Step 1.

Let’s define a matrix A(G) where au,v =


1 if u = v

yl(u,v) · xu,v if (u, v) ∈ E
0 otherwise

For a multi-variable polynomial q, let us denote by:

• deg∗y(q) – the degree of the smallest degree term of y in q

• termd
y(q) – the coefficient of yd in q

• term∗y(q) – termd
y(q) for d = deg∗y(q)

Note that deg∗y(det(A(G))− 1) is the length of the shortest cycle.

Theorem 12 (Strojohann). The determinant of a matrix over single variable polynomials of degree
≤ d can be computed in Õ(dnω).

To apply Strojohann’s theorem we must get rid of negative exponents, therefore we multiply
every element of the matrix by yM . So now we are looking for deg∗y(det(A(G) · yM)− ynM)− nM
which we can find in the following way.

1. Randomly assign values to variables of A(G) (except for y) from some field F, |F | = O(n2)

2. Compute γ = det(A(G) · yM)− ynM

3. Return deg∗y(γ)− nM

4.2.2 Step 2.

Definition 13 (Straight-line program). Given a set S, a straight-line program (SLP) is a family of
functions F = {fi : 1 ≤ i ≤ m}, fi : Sn+i−1 → S for some fixed n ∈ N. An SLP is evaluated on a
tuple (s1, . . . , sn) by recursion in the following way: f1 is evaluated on (s1, . . . , sn) as a function. The
remaining evaluations are recursive, f̂i+1(s1, . . . , sn) = fi+1(s1, . . . , sn, f1(s1, . . . , sn), . . . , fi(s1, . . . , sn)).
f̂m(s1, . . . , sn) is treated as a final output of SLP program.

The term straight-line reflects the fact that evaluating an SLP can be achieved by a program
which does not branch or loop so its execution is a straight-line. It is common for SLPs to be built
entirely from simple functions such as f(x, y) = x+ y or f(x) = x · x.

Theorem 14 (Baur-Strassen [1]). If an algorithm in SLP (straight-line program) form computes
f(x1, . . . , xn) using T operations then using 3T operations it is possible to compute ∂f

∂xi
for every

i ∈ {1, . . . , n} simultaneously.

Lemma 15. Strojohann’s algorithm can be written in SLP form.

Lemma 16. xu,v lie on some shortest cycle iff ∂ term∗
y(det(A(G)·yM)−ynM)

∂xu,v
6= 0

Proof. Easy exercise for the reader.

4.2.3 Step 3.

When we have an arc (u, v), that belongs to some shortest cycle it is enough to find the shortest
path from v to u in the graph G. The algorithms computing shortest paths will be the subject of
the next lecture.

References

[1] Jacques Morgenstern. How to compute fast a function and all its derivatives: a variation on
the theorem of Baur-strassen. SIGACT News, 16(4):60–62, 1985.

[2] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–356,
1969.

[3] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
STOC, pages 887–898, 2012.

