
Lecture 5 (27.03.2013) Scribe: Tomasz Kociumaka
Lecturer: Marcin Mucha

Iterative & Dependent Rounding

1 Toy problem: minimum spanning tree

The following LP is a relaxation of the ILP for the MST problem.

minimize
∑
e∈E

wexe

∀∅6=S⊆V, x(E(S)) ≤ |S| − 1

x(E) = |V | − 1

∀e∈E xe ≥ 0

(1)

We shall prove that the vertices of the corresponding polytope are integral, i.e. they are spanning
trees of the graph. This way we get some insight on the combinatorial structure behind this
LP, which is going to be useful later. A general approach is going to be similar to the one for
the maximum-weight matching problem investigated in lecture 4. Here this is going to be more
complicated though, since the number of constraints fails to be polynomial. There is a separation
oracle for the LP, so we know that we can solve it in poly-time, but the structure of tight constraints
is going to be much more involved. The techniques we are to develop are very general (an exposition
can be found under the keyword ‘submodular (supermodular) functions’).

Fact 1 (see lecture 4). Let x? be an extremal solution of (1). Assume that x?(e) > 0 for all e ∈ E.
Then there exists a family S ⊆ 2V of |E| subsets of V such that ∀S∈S x?(E(S)) = |S| − 1 and the
these equations are linearly independent.

Definition 2. Sets A,B are crossing if A ∩B, A \B and B \A are all non-empty.

Definition 3. A family F ⊆ 2V is laminar if no two F, F ′ ∈ F are crossing, see Fig. 1

Figure 1: A sample laminar family; note that the sets are either disjoint or nested.

Theorem 4. There exists a laminar family S satisfying the conditions of Fact 1

Proof. Before we proceed, let us introduce some notation. For F ⊆ E let us denote the characteristic
vector of F by χ(F), i.e.

χ(F)(e) =

{
1 if e ∈ F,
0 otherwise.

Note that linear dependence of tight constraints is actually linear dependence of the corresponding
vectors χ(E(S)) in RE .

For a function f : E → R≥0 let us define a function if : 2V → R≥0 by

if (X) =
∑

e∈E(X)

f(e).

Moreover for X,Y ⊆ V let us define df (X,Y) as

df (X,Y) =
∑

e∈E(X\Y,Y \X)

f(e).

Lemma 5. The following equality on vectors holds for arbitrary X,Y ⊆ V :

χ(E(X)) + χ(E(Y)) + χ(E(X \ Y, Y \X)) = χ(E(X ∩ Y)) + χ(E(X ∪ Y)). (2)

Consequently for any f : E → R≥0

if (X) + if (Y) + df (X,Y) = if (X ∩ Y) + if (X ∪ Y).

In particular
if (X) + if (Y) ≤ if (X ∩ Y) + if (X ∪ Y).

Remark 6. The latter property of if is called supermodularity.

Proof. For each e ∈ E we check that (2) holds for the corresponding coordinate. One needs to
consider several cases depending on how endpoints of e are aligned with respect to X and Y . The
other equations are simple consequences of (2).

Let F denote the family of all tight sets, i.e.

F = {S ⊆ V : ix?(S) = |S| − 1}.

Lemma 7. If A,B ∈ F are intersecting (i.e. A ∩ B 6= ∅), then both A ∪ B ∈ F and A ∩ B ∈ F .
Moreover dx?(A,B) = 0 and consequently E(A \B,B \A) = ∅.

Proof. We have

|A| − 1 + |B| − 1 = ix?(A) + ix?(B) ≤ ix?(A) + ix?(B) + dx?(A,B) =

ix?(A ∩B) + ix?(A ∪B) ≤ |A ∩B| − 1 + |A ∪B| − 1 = |A| − 1 + |B| − 1.

We conclude that all the inequalities are actually equalities. In particular ix?(A∩B) = |A∩B| − 1
and ix?(A ∪ B) = |A ∪ B| − 1, i.e. A ∩ B and A ∪ B are both tight. Moreover dx?(A,B) = 0 and,
as we assume x?(e) > 0, this implies E(A \B,B \A) = ∅.

Note that we have used the assumption that A ∩ B 6= ∅ as ix?(∅) = 0 > −1 = |∅| − 1 while for
non-empty set the converse inequality is provided by (1).

We shall prove Theorem 4 in the following form, which is clearly equivalent to the original.

Lemma 8. Let L be an inclusion-wise maximal laminar subfamily of F . Then L spans F , where
the linear structure is given by vectors χ(E(S)) for S ∈ F .

Proof. For a proof by contradiction assume that L is inclusion-wise maximal but fails to span F .
Then there exists S ∈ F \ spanL. Let us choose S to minimize number of sets T ∈ L that cross S.
As L is maximal, this value is at least one; therefore let T ∈ L cross S.

Let us consider sets T ∩S and T ∪S, which are tight by Lemma 7. Observe that T ∩S or T ∪S
cross only those T ′ ∈ L that S crosses. For a proof, we assume that S does not cross T ′, i.e. these
sets are disjoint or nested. As T, T ′ ∈ L these sets are also disjoint or nested. A straightforward
inspection of all cases shows that T ∩ S and T ∪ S do not cross T ′.

Obviously T ∩ S and T ∪ S do not cross T , so these sets cross less sets in L than S. Hence,
T, T ∩ S, T ∪ S ∈ spanL. However, by Lemmas 5 and 7 we get χ(E(S)) = χ(E(S ∩ T)) + χ(E(S ∪
T))− χ(E(T)), so S ∈ span(L), a contradiction with the definition of S.

The technique we have used is called uncrossing. Below, we present its constructive variant.

Remark 9. A laminar family L satisfying the conditions of Lemma 8 can be found in polynomial
time.

Proof. The ellipsoid method, as well as other LP solvers, along with an extremal optimal solution
return a family of tight constraints defining this solution. These constraints give a (linear) base S
of spanF . There is no reason for S to be laminar, but we can transform S preserving spanS so
that finally we obtain a laminar family that still spans F .

The construction we are to give is going to mimic the non-constructive proof presented above.
We maintain a linearly-independent laminar family L ⊆ F . If L spans S, then L also spans F , so
we are done. Otherwise we can find S ∈ S such that S /∈ spanL. Then, we modify S several times
maintaining an invariant S ∈ F \ spanL. In each step we decrease the number of sets T ∈ L that
cross S so that finally L ∪ {S} is laminar, i.e. we can extend L by adding S. Note that we modify
a ‘local’ copy of S, we never change the base S.

In a single step we take T ∈ L crossing S and replace S with S ∩ T or S ∪ T , depending on
which set is not generated by L. By Lemma 7, S is generated by T, S ∩ T and S ∪ T , so it is not
possible that both S ∩ T and S ∪ T are generated by L. The argument that the number of sets in
L crossing S decreases is exactly the same as in the non-constructive proof.

Theorem 10. The linear program (1) is integral.

As usually, edges e such that x?(e) = 0 can be removed and the solution remains optimal and
extremal, so we assume that x?(e) > 0 for all e ∈ E.

We present two proofs of the theorem above. While the first one is simpler, it is the second
that gives more insight.

First proof. Let us start with the following lemma.

Lemma 11. A laminar family of subsets of an n-element universe has up to 2n elements. At most
n− 1 of them may contain 2 or more elements.

Proof. Simple induction.

Together with Theorem 4 this shows that |E| = |L| ≤ |V | − 1, since sets S of cardinality less
than two correspond to null vectors, i.e. cannot be contained in a linearly-independent family L.
However ix?(V) = |V | − 1 and applying the constraint ix?(S) ≤ |S| − 1 to the endpoints of an edge
e, we obtain x?(e) ≤ 1 for each edge. Consequently the LP (1) is integral.

Second proof. We argue using a discharging method. Initially, we charge each edge with one unit
(charging). Then each edge e gives x?(e) of its charge to the smallest set S ∈ L such that e ∈ E(S)
(discharging). Since L is laminar, such a set is uniquely determined unless e /∈ E(S) for all S ∈ L.
In this case, e does not give its charge to anybody.

By Theorem 4, |E| = |L|, so the initial charge is |L|. We shall prove that each S ∈ L receives
at least one unit of its potential. Consequently the sets of L in total receive |L| units of charge.
This means that no potential is left in the edges, in particular x?(e) = 1 for all e ∈ E since each
edge is left with 1− x?(e) units of charge.

Claim 12. Each S ∈ L receives at least one unit of charge.

Proof. Let S1, . . . , Sk be inclusion-wise maximal (proper) subsets of S present in L. Observe that
the charge that S receives is

ix?(S)−
k∑
i=1

ix?(Si).

This is because S receives charge from edges that are induced by S but not by any subset of S
present in L. Sets S, S1, . . . , Sk are all tight and sets Si are pairwise disjoint, which gives:

ix?(S)−
k∑
i=1

ix?(Si) = |S| − 1−
k∑
i=1

(|Si| − 1) =

∣∣∣∣∣S \
k⋃
i=1

Si

∣∣∣∣∣+ k − 1.

If k ≥ 2 this already proves the claim. If k = 1, then |S \ S1| ≥ 1, since S1 is a proper subset
of S, so the claim remains valid. Finally, for k = 0 we repeat what we have already seen in the
first proof: sets of cardinality ≤ 1 correspond to null vectors, so they cannot be present in S.
Consequently |S| ≥ 2, which implies the claim.

2 Minimum degree-bounded spanning tree

Minimum degree-bounded spanning tree
Input: A connected graph G, a weight function w : E → R≥0 and a bound function b : B → Z+

Output: A tree T spanning G such that ∀v∈V degT (v) ≤ b(v) and
∑

e∈T we is minimum.

Note that we cannot hope for traditional approximation algorithms for this problem. In order to
overcome some issues with definitions, we turnG into a complete graph by adding edges of huge cost,
so that any solution using these edges is worse than any solutions avoiding them. This way some
solution always exists, so we can start speaking about approximation algorithms. Nevertheless,
if we set we ∈ {0, 1} and bv = 2 respectively for all e ∈ E and v ∈ V , then any approximation
algorithm could be used to decide whether the graph formed by the zero-weight edges contains a
Hamiltonian path, i.e. to solve an NP-complete problem.

This is why we develop a different kind of approximation algorithm. We shall give an algorithm
that gives a spanning tree of weight not exceeding the optimum, but violating some of the degree
constraints by one. The following results are due to Singh and Lau [6].

Before we proceed, let us take a look at the following LP, which is a relaxation of the ILP for
the MDBST problem.

minimize
∑
e∈E

wexe

∀∅6=S⊆V, x(E(S)) ≤ |S| − 1

x(E) = |V | − 1

∀v∈V x(δ(v)) ≤ bv
∀e∈E xe ≥ 0

(3)

Here δ(v) denotes the set of edges incident to v. In contrast with a similar LP for the MST
problem, this LP is not integral for some graphs. (This is nothing unexpected; otherwise we could
solve MDBST in polynomial time and prove P = NP).

The algorithm is going to iteratively remove edges and degree-constraints. We will prove that
it finally obtains a tree T such that

∑
e∈T we ≤ OPT and ∀v∈V degT (v) ≤ bv+1, where OPT is the

optimum of the LP (3). Since some the degree constraints are removed, formally we work with the
following LP (E,W) with W ⊆ V being a set of vertices on which we still impose the constraints:

minimize
∑
e∈E

wexe

∀∅6=S⊆V, x(E(S)) ≤ |S| − 1

x(E) = |V | − 1

∀v∈W x(δ(v)) ≤ bv
∀e∈E xe ≥ 0

(4)

The algorithm works according to the following pseudocode:

Algorithm 1: Minimum Degree-Bounded Spanning Tree

while W 6= ∅ do
x? := an extremal optimal solution of LP (E,W);
E := {e ∈ E : x?(e) > 0};
foreach v ∈W : degG(v) ≤ bv + 1 do

W := W − v;

x? := an extremal optimal solution of LP (E, ∅);
return x?

Finally we have W = ∅, i.e. we get a linear program, that we have already proved in Theorem 10
to give the minimum spanning tree. Moreover, we never increase the optimum of the LP by removing
constraints and edges e with x?(e) = 0. That is why we always return a spanning tree of weight not
exceeding the optimum of the original LP, which in turn is not greater than the optimum integral
solution, i.e. the solution of MDBST. While removing a constraint for v, we have just bv + 1 edges
incident to v, so it is also evident that we never violate any degree-constraint by more than one.

What needs to be shown, however, is that Algorithm 1 always terminates. This is a simple
consequence of the following lemma:

Lemma 13. If W 6= ∅ and G is not a tree, then there exists v ∈W such that deg(v) < bv + 2.

Proof. For a proof by contradiction we assume that deg(v) ≥ bv + 2 for all v ∈ W . Again, we
assume that we have an extremal optimal solution x? which is positive on all edges.

Claim 14. There exists a set T ⊆W and a laminar family L ⊆ 2V such that

• ∀v∈T x?(δ(v)) = bv,

• ∀S∈L ix?(S) = |S| − 1,

• span(L) = {S ⊆ V : ix?(S) = |S| − 1},

• vectors χ(E(S)) for S ∈ L and χ(δ(v)) for v ∈ T are linearly independent,

• |E| = |L|+ |T |.

Proof. Due to the fact we’ve seen in lecture 4, the linear space spanned by non-trivial tight
constraints has dimension |E|. The tight constraints are of two forms: ix?(S) = |S| − 1 and
x?(δ(v)) = bv. Let F be the family of tight constraint of the first type. By Lemma 8 F is generated
by a linearly-independent laminar family L.

A simple fact from linear algebra states that if B is a base of V and B′ spans V ′, then B can be
extended by a subset of T ⊆ B′ so that B ∪ T is a base of V + V ′. We apply it for B = L and B′

corresponding to the tight conditions of the second type. This way we get T ⊆ V , which together
with L satisfies all conditions of the claim.

Now, we apply a discharging argument similar to the one in the proof of Theorem 10. Again
each edge e is charged with one unit. Then, if e is induced by some S ∈ L, then e gives x?(e) to
the smallest such set S. Moreover, it splits the remaining charge evenly between its endpoints, i.e.
each endpoint receives 1−x?(e)

2 charge.
We shall see that each S ∈ L and each v ∈ T receives at least one unit of charge. Then, by a

more involved argument, we shall prove that some charge is not counted this way.
A proof that each S ∈ L gets at least 1 unit of charge is identical to the one in the proof of

Theorem 10. Moreover, each vertex v ∈ V receives exactly 1−x?(e)
2 from each incident edge e, which

for v ∈W in total gives∑
e∈δ(v)

1− x?(e)
2

=
deg(v)− x?(δ(v))

2
≥ deg(v)− bv

2
≥ bv + 2− bv

2
≥ 1.

It remains to find some charge not counted this way. Let v ∈ V \ T . If v receives some charge
we are done, so we may assume that each edge incident to v satisfies x?(e) = 1. Thus, if vw ∈ E,
then ix?{v, w} = 1, so {v, w} ∈ spanL as a tight set. Moreover V is forced by (4) to be tight, so
V ∈ spanL.

The characteristic vectors clearly satisfy the following equality

2χ(E) =
∑
v∈V

χ(δ(v)) =
∑
v∈T

χ(δ(v)) +
∑

v∈V \T

∑
w:vw∈E

χ({vw}). (5)

Assume that T is not empty and fix t ∈ T . Then (5) allows to express χ(δ(t)) as a linear combination
of vectors χ(δ(v)) for other v ∈ T and vectors in spanL (i.e. vectors in L as well). This is a

contradiction with our choice of L and T and thus T = ∅. However for v ∈ V \ T we have shown
that x?(δ(v)) = deg(v). In particular for v ∈ W this implies deg(v) = bv, a contradiction with the
assumption that deg(v) ≥ bv + 2 for all v ∈W , since W 6= ∅.

Remark 15. Algorithm 1 can be changed so that an LP solver is called only once.

Proof. Note that just in the first phase we need x? to be optimal. In the further ones it suffices for
x? to be extremal; we also need to make sure that

∑
e x

?
ewe does not increase.

In order to make the analysis simpler, we assume that just one vertex is removed from W in a
single phase. This might increase the number of phases but does not influence the correctness of
the algorithm. Let us investigate what may happen with x?, when a vertex v is removed from W .
Note that x? as an extremal vertex is defined by a collection C of |E| (linearly-independent) tight
constraints. We are given these constraints by the LP solver and we shall maintain such a set. The
only effect of removing v from W is the deletion the corresponding constraint. If this constraint
does not belong to C, then x? is still extremal. Otherwise, the remaining constraints define a line,
which can be determined with a single Gaussian elimination. When we move x? along this line,
then in one of the directions the objective function does not increase.

The idea is to move x? in this direction as long as it does not violate any constraints. Then, we
add to C any of the constraints that prevent x? from moving further. The polytope we consider
is bounded, so this way we clearly obtain an extremal feasible solution. Technically, we perform a
binary search algorithm and use the separation oracle to check feasibility and obtain a constraint
that is violated. Note that we need to use high-precision numbers, as the solution might be a
fraction with denominator as large as Θ(n!).

3 Dependent rounding

Ultimately, we are going to give an O
(

logn
log logn

)
approximation algorithm for Asymmetric Travel-

ling Salesmen Problem (with triangle inequality). Note there is a simple O(log n) approximation
algorithm (see the Algorithmics course). A few years ago Asadpour et al. [2] have broken a long-

standing barrier providing the O
(

logn
log logn

)
-approximation. Nevertheless many people believe that

a 2-approximation exists.
However, before presenting the new result for ATSP, we first introduce the technique of depen-

dent rounding using a simpler problem as an example.

3.1 Minimum-capacity integer multicommodity flow

Minimum-Capacity Integer Multicommodity Flow
Input: A graph G, a family of triples (si, ti,Pi), where si, ti ∈ V (G) and Pi is a collection of
si-ti-paths in G
Output: Choose a single path from each Pi to minimize the maximum number of paths passing
through a single edge.

Note that one might consider a capacitated version of this problem and the algorithm we develop
can still be used to solve it. In this version we minimize maxe∈E

pe
ce

, where pe is the number of
paths passing through e and ce is the capacity of e.

The following LP is a relaxation of the ILP solving the problem. Let P =
⋃
i Pi.

minimize y

∀e∈E
∑

P∈P : e∈P
xP ≤ y

∀i
∑
P∈Pi

xP = 1

∀P∈P xP ≥ 0

(6)

Let x? be an optimal solution. Observe that x? gives a probability distribution on each family
Pi. Let us analyze a simple randomized algorithm, which computes x? and then, for each i draws
a random path P ∈ Pi from this distribution.

Let ALG be the solution obtained by the algorithm and let OPT be the optimum of the ILP
(which is clearly larger than the optimum of the LP). Note that ALG is formally a random variable.
Let XP be a binary random variable, XP = 1 means that the algorithm includes P in the solution.

Observe that E[XP] = x?P . Consequently for each e ∈ E we have

E

[∑
P∈P : e∈P

XP

]
=

∑
P∈P : e∈P

E[XP] =
∑

P∈P : e∈P
x?P ≤ OPT.

Nevertheless we care about the worst edge, so bounding the expectation for each edge does suffice
for the analysis.

Definition 16. Binary variables X1, . . . , Xn are negatively correlated if for any I ⊆ {1, . . . , n}

P [∀i∈IXi = 0] ≤
∏
i∈I

P[Xi = 0]

P [∀i∈IXi = 1] ≤
∏
i∈I

P[Xi = 1]

Theorem 17 (Chernoff-Hoeffding bounds, generalized version). Let X1, . . . , Xn be negatively cor-
related binary variables, X =

∑n
i=1Xi and µ = E[X]. Then for any δ > 0 and U ≥ µ

P[X ≥ (1 + δ)U] ≤
(

eδ

(1 + δ)1+δ

)U
In particular, for δ ≤ 1

P[X ≥ (1 + δ)U] ≤ e−
Uδ2

3

For a proof and more details, see [4, 5].

Lemma 18. Variables XP for P ∈ P are negatively correlated.

Proof. Observe that variables P from different Pi are independent. That is for any Q ⊆ P

P [∀P∈QXP = 1] =
∏
i

P [∀P∈Q∩PiXP = 1] .

If P, P ′ ∈ Pi, then P[XP = 1 ∧XP ′ = 1] = 0, so

P [∀P∈Q∩PiXP = 1] ≤
∏

P∈Q∩Pi

P[XP = 1]

and consequently

P [∀P∈QXP = 1] =
∏
i

P [∀P∈Q∩PiXP = 1] ≤
∏
i

∏
P∈Q∩Pi

P[XP = 1] =
∏
P∈Q

P[XP = 1].

Moreover for any Qi ⊆ Pi we have

P [∀P∈QiXP = 0] = 1−
∑
P∈Qi

x?P ≤
∏
P∈Qi

(1− x?P) =
∏
P∈Qi

P[XP = 0]

and thus

P [∀P∈QXP = 0] =
∏
i

P [∀P∈Q∩PiXP = 0] ≤
∏
i

∏
P∈Q∩Pi

P[XP = 0] =
∏
P∈Q

P[XP = 0].

Theorem 19. Let c ≥ 12 be a real constant. If OPT > c lnn, then ALG ≤ OPT +
√
cOPT lnn

with high probability (i.e. the converse holds with inverse polynomial probability, here O(n−2)).

Proof. Let us fix a single edge e ∈ E. Let Xe =
∑

P∈P :e∈P XP . As we have already shown

E[Xe] ≤ OPT , moreover c lnn
OPT ≤ 1. Then, using the second part of Theorem 17, we get

P
[
Xe ≥ OPT +

√
OPTc lnn

]
= P

[
Xe ≥ OPT

(
1 +

√
c lnn
OPT

)]
≤

e−OPT
c lnn
3OPT = e−

c
3
lnn = n−

c
3 ≤ n−4.

Using the union bound we obtain

P
[
ALG ≥ OPT +

√
OPTc lnn

]
= P

[
∃e∈EXe ≥ OPT +

√
OPTc lnn

]
≤ mn−4 ≤ n−2.

Corollary 20. The algorithm is an O(log n) approximation with high probability.

3.2 Dependent rounding

Let us consider the following extension of the Minimum-Capacity Integer Multicommodity
Flow problem.

Extended Minimum-Capacity Integer Multicommodity Flow
Input: A graph G, a family of tuples (si, ti,Pi, ki), where si, ti ∈ V (G), Pi is a collection of
si-ti-paths in G, and ki ∈ Z+

Output: Choose ki paths from each Pi to minimize the maximum number of paths passing
through a single edge.

The following LP is a relaxation of the ILP formulation of this problem

minimize y

∀e∈E
∑

P∈P : e∈P
xP ≤ y

∀i
∑
P∈Pi

xP = ki

∀P∈P xP ≥ 0

∀P∈P xP ≤ 1

(7)

Provided that we can draw paths so that E[XP] = x?p for an optimal solution x? of (7), the
analysis for the original problem still holds. Nevertheless x? does not give a probability distribution
over Pi, so it is not clear how to draw paths, in particular several naive approaches fail.

The following technique provides a solution in much more general setting, see [3, 1].

Theorem 21. Let G = (V,E) be a bipartite graph and x : E → (0, 1) be an arbitrary function.
Then we can (algorithmically) construct binary random variables Xe such that

• E[Xe] = xe for each e ∈ E,

•
∑

e∈δ(v)Xe ∈ {bdvc , ddve} for each v ∈ V where dv =
∑

e∈δ(v) xe,

• variables Xe for e ∈ δ(v) are negatively correlated for each v ∈ V .

Note for our purposes is suffices to consider a bipartite graph with a single vertex in one of the
colour classes. Nevertheless, we will prove the result in full generality.

Proof of Theorem 21. Let us consider the following algorithm

Algorithm 2: Dependent Rounding

while E 6= ∅ do
Let C ⊆ E by a cycle or an inclusion maximal simple path in G; Let
C = M1 ∪M2, where Mi are matchings;
α := min{xe : e ∈M1} ∪ {1− xe : e ∈M2};
β := min{1− xe : e ∈M1} ∪ {xe : e ∈M2};
with probability β

α+β do
foreach e ∈M1 do xe := xe − α;
foreach e ∈M2 do xe := xe + α;

otherwise
foreach e ∈M2 do xe := xe − β;
foreach e ∈M1 do xe := xe + β;

foreach e ∈ E do
if xe = 0 then set Xe = 0; E := E − e;
if xe = 1 then set Xe = 1; E := E − e;

See lecture 6 for a remainder of the proof.

References

[1] A. A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing algorithms
with proven performance guarantee. J. Comb. Optim., 8(3):307–328, 2004.

[2] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi. An O(log n/ log log
n)-approximation algorithm for the asymmetric traveling salesman problem. In M. Charikar,
editor, SODA, pages 379–389. SIAM, 2010.

[3] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent rounding and its
applications to approximation algorithms. J. ACM, 53(3):324–360, 2006.

[4] M. Mitzenmacher and E. Upfal. Probability and computing - randomized algorithms and prob-
abilistic analysis. Cambridge University Press, 2005.

[5] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an extension of the
chernoff-hoeffding bounds. SIAM J. Comput., 26(2):350–368, 1997.

[6] M. Singh and L. C. Lau. Approximating minimum bounded degree spanning trees to within
one of optimal. In D. S. Johnson and U. Feige, editors, STOC, pages 661–670. ACM, 2007.

