
Lecture 7 (10.04.2013) Scribe: Grzegorz Prusak
Lecturer: Marcin Mucha

Metric embeddings into trees

1 Introduction

Sometimes general metric problems are easier to solve for specific metrics (for example for euclidean
metrics or tree metrics). In this lecture we focus on tree metrics. Specifically we will construct for
any metric space (V, d) a mapping V → T , where T is a weighted tree (in fact a distribution on
such mappings), such that distances are approximately maintained, i.e. duv ≤ Tuv ≤ cduv
where Tuv is z tree distance between the nodes to which u and v have been mapped. c is called
distortion of the mapping.

Theorem 1. Every embedding of Cn to a tree has distortion Ω(n).

Proof. Consider any embedding of Cn into a tree T which does not decrease any distances. Extend
this embedding for the whole circle (viewed as a metric space) by linear interpolatoin between each
pair of consecutive cycle vertices.

Lemma 2. There exist 2 points of the circle at distance at least 2π
3 , which are mapped to the same

point in the tree.

Proof. Consider how 3 circle points at distance 2π
3 from each other are mapped into the tree. In

Figure 1: Illustration for the proof of Lemma 2

the tree, paths between them cross in a single point, which is therefore the image of some point in
each of 3 segments of the circle (see Figure 1). It is easy to see that 2 of these 3 points have to be
at distance at least 2π

3 from each other.

Now, take 2 circle points from the lemma. Let x be their common image, and also look at the
nearest cycle vertices to their left and to their right, denote them by a, b and c, d respectively (see
Figure 2). Also, denote the images of all these points by the same symbols.

For n big enough:

dac + dbd ≥
4π

3
−O(

1

n
)

a b

c

d

Figure 2: Illustration for the definition of the points a, b, c, d.

and

Tab + Tcd = Tax + Txb + Tcx + Txd ≥ Tac + Tbd ≥
4π

3
−O(

1

n
).

which gives the claim since dab, dcd = O(1/n), so one of these distances is increased Ω(n) times.

Although distortion might need to be even linear in the size of the base metric space (as shown
in the theorem above), we will present a randomized algorithm, which returns a tree and a mapping,
such that expected distortion of every single edge will be O(log n). Namely for all u, v:

• duv ≥ Tuv (deterministically) and,

• E(Tuv) ≤ O(log n)duv

For example, for a cycle it is enough to remove a random edge and then for u, v at distance d we get:

E(Tuv) =
n− d
n

d+
d

n
(n− d) =

2d(n− d)

n
≤ 2d.

2 Algorithm of Fakcharoenphol, Rao and Talwar (FRT)

Let us assume that ∀u,vduv ≥ 1 (this can be guaranteed by scaling appropriately) and let

∆ = min{k : 2k > 2 max(duv)}

We will use the tree illustrated in Figure 3 in our construction Vertices are mapped to corresponding
singletons in the leafs. Each point of the tree represents a cluster of points. Sum of clusters on
each tree level gives V . Length of the edges between level i and i− 1 is 2i. Every cluster in level i
is contained in a ball of radius r (where 2i−1 ≤ r < 2i), centered in some vertex, but not necessary
a vertex of the cluster.

Lemma 3. If lowest common ancestor of x, y is in the level i, then Txy = 2i+2 − 4

Proof. Let 2i ≤ dxy < 2i+1. The the minimum radius of a ball containing both x and y is ≥ 2i−1.
Their LCA is thus in the level ≥ i, and so Txy ≥ 2i+2 − 4. Also, if i = 0, then we still have
Txy ≥ 4.

This implies

V

.

.

.

. . .

{v1}{v2} {vn}

logΔ

0

1

i

Δ

Δ/2

2

2i

2i+1

.

.

.

.

Figure 3: The tree construction used in the FRT algorithm

Lemma 4. dxy ≤ Txy

Algorithm 1: Fakcharoenphol, Rao and Talwar

FRT(V):
Draw a random permutation π of V ;
Draw (uniformly) a random number r0 from

[
1
2 , 1
)
;

Start with cluster V on level log ∆;
while there is an unsplit cluster S on level k > 0 do

Split(S,k);

Split(S,k):
r := r02k;
foreach v ∈ V (in π order) do

Insert ball B(v, r) ∩ S as a new son of S;
S := S\B(v, r);

Theorem 5 (Fakcharoenphol, Rao and Talwar). The above construction gives a tree embedding
with average distortion O(log n)

Proof. To analyze the algorithm let us fix a pair of vertices and analyze the expected value of Txy.
Let us first introduce the following two classes of events:

• Cwk – w separates x from y on level k, i.e. level k ball centered in w contains exactly one of
x, y.

• Swk – w decides about x, y on level k, i.e. w is the first vertex at level k which separates x
and y, and whose ball is added to the tree.

Also, let bw = 1/i if w is ranked i-th in the ordering of increasing values of min(dwx, dwy).
Notice that

Lemma 6.
P (Swk|Cwk) ≤ bw.

We also have

Lemma 7. ∑
k

P (Cwk)2
k+3 ≤ 16dxy.

Proof. Let R1 = dwx and R2 = dwy. We then have |R2 −R1| ≤ dxy. W.l.o.g. assume that R2 > R1.
Then, since we have

P (Cwk) =

∣∣[R1, R2] ∩ [2i−1, 2i]
∣∣

|[2i−1, 2i]|
we get the claim

∑
k

P (Cwk)2
k+3 ≤

∑
k

∣∣[R1, R2] ∩ [2i−1, 2i]
∣∣

|[2i−1, 2i]|
2i+3 =

∑
k

16
∣∣[R1, R2] ∩ [2i−1, 2i]

∣∣ = 16 |[R1, R2]| ≤ 16dxy.

Now we can come back to the proof of the theorem. We have Txy = 2k+3 − 4, where k is the
highest level such that x, y. Therefore

Txy = max
k=0... log ∆−1

1{∃w:Cwk∧Swk}2
k+3 − 4 ≤

∑
k=0... log ∆−1

∑
w∈V

1{Cwk∧Swk}2
k+3.

Going to expectations we get

ETxy ≤
∑
w

∑
k

P (Cwk ∧ Swk)2k+3 =
∑
w

∑
k

P (Cwk)P (Swk|Cwk)2k+3.

We now use both the lemmas we proved to get

ETxy ≤
∑
w

∑
k

P (Cwk)bw2k+3 =
∑
w

bw
∑
k

P (Cwk)2
k+3 ≤

∑
w

bw16dxy = O(log n)dxy.

Lemma 8. We can demand from the tree to have no unmapped nodes (i.e. V ′ = V) and still
maintain O(log n) expected distortion.

Proof. To achieve that we use the following algorithm:

Algorithm 2: Getting rid of extra nodes

while there exist vertices beyond V do
Take v ∈ V : w(parent of v) 6∈ V ;
Merge v and w;

Multiply all edges by 4;

Let T ′ be the resulting tree metric. Note that we have

T ′xy ≤ 4Txy

for all x, y since there is only one operation increasing the distances (multiplication by 4) and it is
performed only once. We also have

T ′xy ≥ Txy.

This is because at most one downward edge of the lca(x, y) will be contracted. The other one’s
length stands for 1

4 of Txy, therefore after multiplication it will stand for the whole original path.

Finally let us mention that the trees constructed in this section have special structure which is
sometimes used in algorithms. The following definition captures the essense of this structure.

Definition 9. A k-Hierarchically Separated Tree (k-HST) is a rooted tree in which the father edge
of any node is at least k times longer than all its children edges.

Note that the tree constructed in this section is a 2-HST.

3 Group Steiner Tree

Group Steiner Tree (GST)
Input: graph G = (V,E); cost function c : E → R+;∀i=1..kSi ⊆ V
Question: What is the min cost tree T in V , such that ∀i=1..kT ∩ Si 6= ∅?

We now present an O(log n log ∆ log k)-approximation algorithm for GST, due to Garg, Kon-
jevod and Ravi. This algorithm first constructs for a given metric space (V, d) an FRT tree (V, T).
We then add, for every non-leaf node, an extra zero-cost edge with a leaf at it’s end. In this way,
we can assume that all vertices of V are mapped to leaves. We now consider the following LP
relaxation of GST:

minimize
∑
e∈E

wexe

∀i,e xe ≥ f ie
∀i,v 6∈Si

∑
e∈δ(v)

f ie = 0

∀i,v f iv =
∑

f ivv′

xe, f
i
e, f

i
v ≥ 0

(1)

Here:

• xe models buying the edge e.

• f ie for fixed i describe the flow used to connect group i to the root.

• f iv = f ip(v)v is just an alias used to simplify notation, here p(v) is a parent of v.

We are now ready to describe the algorithm itself.

Algorithm 3: O(log n log ∆ log k)-approximation for GST

Construct an FRT tree (V, T) and augment it as described above;
Solve the LP relaxation for (V, T);

Mark root as active;
while there exists an active node v do

foreach son v′ of v do
Buy vv′ (i.e. add to the solution) with probability

xvv′
xp(v)v

;

If vv′ is bought, v′ becomes active;

v becomes inactive;

The following is easy to prove by induction.

Lemma 10. Probability that edge e is purchased is equal to xe. Therefore the expected cost of the
solution is OPTLP

Let h = log ∆. Then we also have

Lemma 11. Fix group Sg and vertex v ∈ V with depth i > 0. Let Pv be the probability that the
algorithm does not reach the group Sg from v, given that it does reach v. Then

Pv ≤ 1− fgv
(h− i+ 1)Xp(v)v

.

Proof. We use backwards induction on i. Consider first the case where i = h, i.e. v is a leaf. If the
algorithm reaches v, then either fgv = 0 and we are fine, or fgv > 0, in which case v ∈ Sg and so the
algorithm has already reached Sg.

Consider now the case where i < h, i.e. v is not a leaf, and assume the claim holds for larger i.
We then have

Pv =
∏

v′:p(v′)=v

(
1− xvv′

xp(v)v
(1− Pv′)

)
≤
∏
v′

(
1− xvv′

xp(v)v

fgv′

(h− i)xvv′

)
.

We now use the fact that 1− x ≤ e−x to bound this by∏
v′

exp

(
−

fgv′

(h− i)xp(v)v

)
= exp

(
−

∑
fgv′

(h− i)xp(v)v

)
= exp

(
− fgv

(h− i)xp(v)v

)
.

Now, by inverting the inequality ex ≥ 1 + x, and applying it to x = a
b we get

e−
a
b ≤ 1

1 + a
b

=
b

a+ b
= 1− a

a+ b
.

By applying this inequality to our bound we get

Pv ≤ 1− fgv
(h− i)xp(v)v + fgv

≤ 1− fgv
(h− i+ 1)xp(v)v

,

where the last step follows from fgv ≤ xp(v)v.

Note that the above argument also works when v is the root, even though technically p(v) does
not exist (the same argument works, or one can even add a dummy parent vertex). Since the
algorithm always reaches the root, we obtain

Corollary 12. For every group Sg the algorithm reaches Sg with probability at least 1
h+1 .

If we repeat the algorithm (h + 1) log k times and take the union of all these solutions, the
probability that any given group is not connected is at most(

1− 1

h+ 1

)(h+1) log k

∼ 1

k
.

If we do get some groups that are not connected, we simply connect them in the cheapest
possible way. Each such connection clearly costs at most OPT . The total cost is therefore bounded
by

(h+ 1) log k OPTLP +
∑
g=1..k

1

k
OPT = O(h log k)OPT = O(log ∆ log k)OPT.

To get the final approximation ratio, we need to multiply this by O(log n) since we started with
the FRT embeddding.

