Sparsity — tutorial 8

FO model checking and shrubdepth

Problem 1. Prove that for every class structures \mathcal{C} with bounded expansion and FO formula $\varphi(\bar{x})$, there exists an algorithm that, given a structure \mathbb{A} , computes the set $\varphi(\mathbb{A})$ in time $\mathcal{O}(\|\mathbb{A}\| + |\varphi(\mathbb{A})|)$.

Problem 2. Prove that for every class structures \mathcal{C} with bounded expansion and FO formula $\varphi(\bar{x})$, there exists a linear-time algorithm that, given a structure \mathbb{A} , computes $|\varphi(\mathbb{A})|$.

Problem 3. Prove that for every class structures \mathcal{C} with bounded expansion and FO sentence φ , there exists an algorithm that given a structure a structure \mathbb{A} , computes a data structure for \mathbb{A} implementing the following operations in constant time:

- Query: Does $\mathbb{A} \models \varphi$?
- Update: Add/remove a given element u to/from a given unary relation R.

Definition 0.1. For a graph G, a connection model for G with a label set Λ is a pair consisting of:

- a labelling λ of vertices of G with labels from Λ ,
- \bullet a rooted tree T whose leaves are the vertices of G, and
- for every non-leaf node x of T, a symmetric set $Z_x \subseteq \Lambda^2$,

such that the following condition holds. For every pair of vertices $u, v \in V(G)$, we have

$$uv \in E(G) \Leftrightarrow (\lambda(u), \lambda(v)) \in Z_x$$
, where x is the lowest common ancestor of u and v in T.

The *shrubdepth* of G is the lowest number d such that G has a connection model of depth at most d over a label set of size d.

Problem 4. Prove that the following classes have bounded shrubdepth:

- cliques;
- complements of matchings;

while the following classes do not have bounded shrubdepth:

- paths;
- half-graphs.

Here, a half-graph is a bipartite graph on vertex set $\{u_1, \ldots, u_n\} \cup \{v_1, \ldots, v_n\}$ where u_i and v_j are adjacent if and only if $i \leq j$.

Definition 0.2. For a graph G and $d \in \mathbb{N}$, by G^d we denote a graph on the vertex set V(G) where u and v are adjacent if and only if $\operatorname{dist}_G(u,v) \leq d$. For a class C, we denote $C^d = \{G^d : G \in C\}$.

Problem 5. Prove that if a class C has bounded treedepth, then for every fixed $d \in \mathbb{N}$ the class C^d has bounded shrubdepth.

Problem 6. Prove that if a class \mathcal{C} has bounded expansion and $d \in \mathbb{N}$ is fixed, then the class \mathcal{C}^d admits low shrubdepth colorings in the following sense: for every $p \in \mathbb{N}$ there exists N such that every graph $G \in \mathcal{C}^d$ has a coloring with N colors in which every subset of p colors induced a subgraph of shrubdepth at most f(p), for some function $f: \mathbb{N} \to \mathbb{N}$.