Sparsity — tutorial 5

Generalized coloring numbers

Definition 0.1. For a graph G, let $\Phi(G)$ be the set of all graphs H that can be obtained as follows:

- Compute any vertex ordering σ of G with optimum degeneracy.
- Let \vec{G} be the orientation of G according to σ , i.e., every edge is oriented towards the endpoint that is smaller in σ .
- Let H be the supergraph of G obtained by adding all edges uv such that in \vec{G} there either exist arcs (u, w) and (w, v) for some vertex w, or arcs (w, u) and (w, v) for some vertex w.

For a class \mathcal{C} , we denote $\Phi(\mathcal{C}) = \bigcup_{G \in \mathcal{C}} \Phi(G)$. By Φ^d we denote the d-fold composition of the operator Φ .

Problem 1. Prove that if \mathcal{C} is a class of bounded expansion, then $\Phi(\mathcal{C})$ is also a class of bounded expansion.

Problem 2. Prove that if G is a graph and u, v are vertices of G such that $2 < \operatorname{dist}_G(u, v) < +\infty$, then for any $H \in \Phi(G)$ we have $\operatorname{dist}_H(u, v) < \operatorname{dist}_G(u, v)$.

Problem 3. Let \mathcal{C} be a class of bounded expansion and let $d \in \mathbb{N}$. Prove that there exists a constant $c \in \mathbb{N}$ such that for every graph G and graph $H \in \Phi^d(G)$, if σ is an optimum degeneracy ordering of H, then $\operatorname{wcol}_d(G,\sigma) \leq c$.

Problem 4. For a fixed class \mathcal{C} of bounded expansion and $d \in \mathbb{N}$, give a linear-time algorithm that given a graph $G \in \mathcal{C}$ computes a vertex ordering σ of G that satisfies $\operatorname{wcol}_d(G, \sigma) \leq c$, for some constant c depending only on \mathcal{C} and d.

Problem 5. For all $n \in \mathbb{N}$, construct a graph G_n with $\operatorname{ind}_2(G) = 1$ and $\operatorname{dom}_1(G) \geq n$.

Problem 6. Prove that for every graph G and integer $d \in \mathbb{N}$, it holds that $dom_{2d}(G) \leq ind_d(G)$.

Problem 7. Let \mathcal{C} be a class of bounded expansion and let $d \in \mathbb{N}$. Give a two-line proof that there exists a constant $c \in \mathbb{N}$ such that every distance-2d independent set I in a graph $G \in \mathcal{C}$ contains a distance-(2d+1) independent set I' of size at least |I|/c. How would a similar argument work if one only assumed that \mathcal{C} is nowhere dense?

Problem 8. Let $d \in \mathbb{N}$, let G be a graph, and let σ be a vertex ordering of G. Consider the following algorithm. Every vertex $u \in V(G)$ picks v(u) to be the smallest vertex of $\operatorname{WReach}_d[G, \sigma, u]$ in the ordering σ . Then, define D as the set of those vertices that have been picked by any vertex:

$$D := \{v(u) \colon u \in V(G)\}.$$

Prove that D is a distance-d dominating set of G that moreover satisfies $|D| \leq \operatorname{wcol}_{2d}(G, \sigma) \cdot \operatorname{dom}_{d}(G)$.

Problem 9. Suppose G is a graph and σ is a vertex ordering of G of degeneracy at most d. For a vertex u, let $N^+[u]$ denote the set consisting of u and all its neighbors that are smaller in σ . Consider the following algorithm:

- Let H be a graph with the same vertex set as G, where we consider a pair of vertices u and v adjacent if and only if the set $N^+[u] \cap N^+[v]$ is not empty.
- Let I be an inclusion-wise maximal independent set in H.
- Let $D = \bigcup_{u \in I} N^+[u]$.

Prove that D is a dominating set in G that satisfies $|D| < (d+1)^2 \cdot \text{dom}(G)$.