Sparsity — tutorial 12

VC dimension, neighborhood complexity, and approximation

neighborhood complexity in nowhere dense graph classes

Problem 1. Let \mathcal{C} be a nowhere dense class of graphs and let $G \in \mathcal{C}$. For $r \in \mathbb{N}$ and a vertex ordering σ of G, let

$$W_{r,\sigma} = \{ \operatorname{WReach}_r[G, \sigma, v] : v \in V(G) \}.$$

Prove that there exists a constant k, depending only on \mathcal{C} and r (and not on G and σ), such that $\mathcal{W}_{r,\sigma}$ has VC dimension at most k.

Hint: use uniform quasi-wideness. How many elements of a 2r-scattered set may a WReach, set contain?

Problem 2. Let $r \in \mathbb{N}$, $\varepsilon > 0$, and \mathcal{C} be a nowhere dense class of graphs. Take any graph $G \in \mathcal{C}$, say with n vertices, and let σ be a vertex ordering of G with $\operatorname{wcol}_{2r}(G, \sigma) \leq n^{\varepsilon}$. For a set $A \subseteq V(G)$, let

$$B = \bigcup_{a \in A} \mathrm{WReach}_r[G, \sigma, a].$$

For a vertex $u \in V(G)$, let

$$X[u] = B \cap \mathrm{WReach}_r[G, \sigma, u].$$

Prove that

$$|\{X[u] \colon u \in V(G)\}| \le |A| \cdot n^{k\varepsilon}$$

for some constant k depending only on \mathcal{C} and r.

Problem 3. Discuss how the solution of the above problem can be used to prove that for a fixed nowhere dense class \mathcal{C} and $r \in \mathbb{N}$, the distance-r neighborhood complexity in graphs from \mathcal{C} is of the order $\mathcal{O}(|A|^{1+\varepsilon})$.

approximation

Problem 4. Let G be a graph. Consider the following linear program for fractional dominating sets.

Dominating Set LP

- Variables: x_v for all $v \in V(G)$
- Objective: minimize $\sum_{v \in V(G)} x_v$
- Constraints:
 - $-\sum_{w\in N[v]} x_w \ge 1$ for all $v\in V(G)$; and
 - $-x_v \ge 0$ for all $v \in V(G)$.

Assume G is d-degenerate. Let $D_1 = \{v \in V(G) : x_v \ge 1/(3d)\}$ and $D_2 = V(G) \setminus N[D_1]$, that is, D_1 consists of all vertices which get weight at least 1/(3d) and D_2 are the vertices that are not dominated by D_1 . Clearly, $D_1 \cup D_2$ is a dominating set of G.

Prove that $|D_1 \cup D_2| \leq 3dk$, where k is the size of a minimum dominating set of G.

Problem 5. Let \mathcal{F} be a set family on ground set A. A set cover for A with sets from \mathcal{F} is a subset $\mathcal{G} \subseteq \mathcal{F}$ such that $\bigcup_{F \in \mathcal{G}} F = A$. Prove that there exists a randomized polynomial-time algorithm which given a set system \mathcal{F} of VC dimension $d \geq 2$, computes a set cover for \mathcal{F} that has size at most $\mathcal{O}(2^d \cdot \tau(\mathcal{F}) \ln \tau(\mathcal{F}))$ with probability at least $\frac{1}{2}$.