## Sparsity — tutorial 11

## VC dimension and friends

**Problem 1.** For a set system  $S = (U, \mathcal{F})$ , we can consider the *dual set system*  $S^* = (\mathcal{F}, U^*)$ , where the ground set consists of the sets from  $\mathcal{F}$ , while the family  $U^* \subseteq 2^{\mathcal{F}}$  consists of sets

$$\mathcal{F}_e : \{ F \in \mathcal{F} : e \in F \}$$
 for each element  $e \in U$ .

Prove that if S has VC dimension d, then  $S^*$  has VC dimension at most  $2^{d+1} - 1$ .

**Problem 2.** Determine the VC dimension of the following set systems:

- $U = \mathbb{R}^2$ ,  $\mathcal{F} = \text{lines in } \mathbb{R}^2$ ;
- $U = \mathbb{R}^2$ ,  $\mathcal{F} = \text{axis-aligned rectangles in } \mathbb{R}^2$ ;
- $U = \mathbb{R}^2$ ,  $\mathcal{F} = \text{convex polygons in } \mathbb{R}^2$ ;
- $U = \mathbb{R}^d$ ,  $\mathcal{F} = \text{half-spaces in } \mathbb{R}^d$ .

**Problem 3.** A graph G is a map graph if with every vertex u of G we may associate a polygon  $R_u$  in the plane so that the interiors of regions  $R_u$  are pairwise disjoint and two vertices  $u, v \in V(G)$  are adjacent in G if and only if the corresponding regions  $R_u$  and  $R_v$  share a point on their boundaries. Prove that the class of map graphs has bounded semi-ladder index, but is not nowhere dense.

In the solution of the next problem you may use the following fact.

**Fact 1.** Let G be an n-vertex graph such that  $K_t \not \preccurlyeq_1 G$  for some constant  $t \in \mathbb{N}$ . Then G has at most  $\binom{t+1}{2} \cdot n^{3/2}$  edges.

**Problem 4.** Let G be a graph such that  $K_t \not\preccurlyeq_4 G$  for some  $t \in \mathbb{N}$  and let  $A \subseteq V(G)$ . Suppose that every pair of elements of A has a common neighbor in V(G) - A. Prove that there exists a vertex v in V(G) - A which has  $\Omega_t(|A|^{1/4})$  neighbors in A.

In the next problems we will prove the following fact.

**Fact 2.** Let G be a bipartite graph with sides of the bipartition A and B. Let  $m, t, d \in \mathbb{N}$  and suppose  $|A| \geq (m+d)^{2t}$ . Then at least one of the following assertions hold:

- (a) A contains a distance-2 independent set of size m;
- (b)  $K_t \preccurlyeq_4 G$ ;
- (c) B contains a vertex of degree at least  $\Omega_t(d^{1/4})$ .

For the proof of Fact 2, construct a binary tree labelled with all the elements of A, by inserting them one by one and using the following question when comparing the inserted vertex  $v \in A$  with a vertex  $u \in A$  already residing in the tree: do u and v have a common neighbor? If the answer is positive, proceed to the son of the current node, otherwise proceed to the daughter of the current node. Let  $\tau$  be the obtained tree.

**Problem 5.** Prove that if  $\tau$  has a node with m letters D, then A contains a distance-2 independent set of size m.

**Problem 6.** Prove that if  $\tau$  has a node with d letters S, then either  $K_t \leq_4 G$  or B contains a vertex of degree at least  $\Omega_t(d^{1/4})$ .

**Problem 7.** Prove that if  $\tau$  has a node with alternation 2t then  $K_t \preceq_2 G$ .

**Problem 8.** Prove Fact 2 and discuss how it can be used to show that the function  $N_r(m)$  in uniform quasi-wideness is actually a polynomial in m (with degree depending on the class and r).

**Problem 9.** Let  $\mathcal{C}$  be a nowhere dense class of graphs and let  $G \in \mathcal{C}$ . For  $r \in \mathbb{N}$  and a vertex ordering  $\sigma$  of G, let

$$\mathcal{W}_{r,\sigma} = \{ \operatorname{WReach}_r[G, \sigma, v] : v \in V(G) \}.$$

Prove that there exists a constant k, depending only on  $\mathcal{C}$  and r (and not on G and  $\sigma$ ), such that  $\mathcal{W}_{r,\sigma}$  has VC dimension at most k.

**Problem 10.** Let  $r \in \mathbb{N}$ ,  $\varepsilon > 0$ , and  $\mathcal{C}$  be a nowhere dense class of graphs. Take any graph  $G \in \mathcal{C}$ , say with n vertices, and let  $\sigma$  be a vertex ordering of G with  $\operatorname{wcol}_{2r}(G, \sigma) \leq n^{\varepsilon}$ . For a set  $A \subseteq V(G)$ , let

$$B = \bigcup_{a \in A} \mathrm{WReach}_r[G, \sigma, a].$$

For a vertex  $u \in V(G)$ , let

$$X[u] = B \cap \mathrm{WReach}_r[G, \sigma, u].$$

Prove that

$$|\{X[u] \colon u \in V(G)\}| \le |A| \cdot n^{k\varepsilon}$$

for some constant k depending only on  $\mathcal C$  and k.

**Problem 11.** Discuss how the solution of the above problem can be used to prove that for a fixed nowhere dense class  $\mathcal{C}$  and  $r \in \mathbb{N}$ , the distance-r neighborhood complexity in graphs from  $\mathcal{C}$  is of the order  $\mathcal{O}(|A|^{1+\varepsilon})$ .