Selected solutions from tutorials

Problem 1 (Problem 2, Tutorial 3). Suppose C is a class of bounded expansion. Prove that for every r € N
there exists a constant ¢, such that the following holds. For every graph G € C and every subset A of its
vertices, there exists a vertex subset B O A such that |B| < ¢,|A| and for every vertex u € V(G) — B, at
most ¢, vertices of B can be reached from w by a path of length at most r whose internal vertices do not
belong to B.

Solution. We first introduce some convenient notation. For any graph H, any set X C V(H) and any
u € V(H) — X, the set of vertices of X which can be reached from u by a path of length at most r whose
internal vertices do not belong to X will be called the distance-r projection of u onto X in H, and denoted
by 2 (u, X). Thus, we need to prove that there is some superset B O A whose size is bounded linearly in
|Al, and such that r-projections onto B have bounded sizes.

Let us fix the constant £ = [2V,_1(C)]. We consider the following iterative procedure.

1. Start with H = G and Y = A. We will maintain the invariant that Y C V(H).
2. As long as there exists a vertex u € V(H) — Y with [IIZ (u,Y)| > ¢ do the following:

e Select an arbitrary subset Z, C IIH (u,Y) of size exactly &.

e For each w € Z,, select a path P, that starts at u, ends at w, has length at most r, and all its
internal vertices are in V(H) — Y.

e Modify H by contracting ¢, (V(Pw) — {w}) onto u, and add the obtained vertex to Y.

Observe that in a round of the procedure above we always make a contraction of a connected subgraph of
H —Y of radius at most »— 1. Also, the resulting vertex falls into Y and hence does not participate in future
contractions. Thus, at each point H is an (r — 1)-shallow minor of G. For any moment of the procedure and
any u € V(H), by 7(u) we denote the subset of original vertices of G that were contracted onto u during
earlier rounds. Note that either 7(u) = {u} when w is an original vertex of G, or 7(u) is a set of cardinality
at most 1+ (r — 1)¢&.

We claim that the presented procedure stops after at most |A| rounds. Suppose otherwise, that we
successfully constructed the graph H and subset Y after |A| + 1 rounds. Examine graph H[Y]. This graph
has 2|A| + 1 vertices: |A| original vertices of A and |A| + 1 vertices that were added during the procedure.
Whenever a vertex u is added to Y after contraction, then it introduces at least £ new edges to H[Y]: these
are edges that connect the contracted vertex with the vertices of Z,. Hence, H[Y] has at least £(|A| + 1)
edges, which means that
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This is a contradiction with the fact that H is an (r — 1)-shallow minor of G.

Therefore, the procedure stops after at most |A| rounds producing (H,Y), where [IIZ (u,Y)| < £ for each
u € V(H)—-Y. Define B =7(Y) = ,cy 7(u). Obviously, we have A C B. Since |7(u)| = 1 for each
original vertex u € A and |7(u)| < 1+ (r — 1)§ for each u that was added during the procedure, we have
|IB| < ((r —1)§+2) - |A]. We are left with proving that distance-r projections are small.

By construction, we have V(H) —Y = V(G) — B. Take any u € V(H) —Y and observe that 11 (u, B) C
T(TH (u,Y)). Since |TTH (u,Y)| < € for each u € V(H) — Y and |7(u)| < 1+ (r — 1)¢ for each u € V(H), we
have |TIG (u, B)| < £(1 4+ (r — 1)€). Hence, we may conclude by defining ¢, = £((r — 1)€ + 2). O

> Vr_l(C).

Problem 2 (Problem 3, Tutorial 3). Suppose C is a class of bounded expansion. Prove that for every r € N
there exists a constant d, such that the following holds. For every graph G € C and every its vertex subset
A C V(GQ), there exists a vertex subset B D A with the following properties:

e |B| < d,|A|, and

e for every pair of vertices u,v € A, if distg(u,v) < r then distgp)(u,v) = dista(u,v).



Solution. First, we apply the result of Problem 1 to the set A, yielding a set A’ with the asserted properties:
|A’| < ¢, |A| and for every vertex u € V(G) — A’, at most ¢, vertices of A’ can be reached from u by a
path of length at most r whose internal vertices do not belong to A’. Next, for each pair of distinct vertices
u,v € A, select an arbitrary path P, , that connects v and v, and whose internal vertices do not belong to
A’, and which is the shortest among the paths satisfying these properties; in case there is no such path, put
P, ., =10. Then define B to be A’ plus the vertex sets of all paths P, , that have length at most r.

We first claim that B has indeed the required property of preserving distances up to r. More precisely,
take any distinct u,v € A with distg(u,v) < r. Let R be a shortest path between v and v in G, and let
a1, as,...,aq be consecutive vertices of A’ visited on R, where v = a; and v = a4. Foreachi=1,2,...,¢—1,
let R; be the segment of R between a; and a; 1. Then the existence of R; certifies that some path of length at
most |R;| between a; and a;41 was added when constructing B from A’, and hence distp)(ai, air1) < |Ryl.
Consequently, by the triangle inequality we infer that
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However, the opposite inequality distgpz)(u,v) > distg(u,v) follows directly from the fact that G[B] is an
induced subgraph of G. Hence indeed distg(u,v) = distgp)(u, v).
We are left with showing that |B| < d,.|A| for some constant d,.. First, we have |A’| < ¢,|A|, so we only

need to upper bound the ratio ||f/||. Let H be a graph on vertex set A’, where uv € E(A’) if and ouly if
P, exists and has length at most r, and hence its vertex set was added in the costruction of B. Clearly
|B| < |A'|+ (r—1) - |E(H)], so it suffices to prove an upper bound on |E(H)|.

Take any w € B — A’, and consider for how many pairs {u,v} it can hold that w € P, ,. If {u,v} is
such a pair, then in particular both v and v can be reached from w by a path of length at most r that
internally avoids A’. However, we know that the number of such vertices is at most c,, so the number of
such pairs {u, v} is at most 7 = (CQT ) Consequently, we observe that graph H is a depth-(r — 1) congestion-
7 minor of G: we can realize all the paths P, , in G so that every vertex of B — A’ is used at most 7
times. Now we know by Lemma 2.27 of Chapter 1 of Lecture Notes that the edge density in depth-(r — 1)
congestion-7 minors of G is bounded by a function of V,_1(G) and 7. Both V,_;(G) and 7 are bounded
by constants, namely by V,_1(C) and (%) respectively. Hence |E(H)| is bounded by a constant times |A’|.
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Since |B| < |A'| 4+ (r — 1)|E(H)| and |A'| < ¢,|A|, we are done. O

For the next problem, see Tutorial 5 for missing definitions and previous problems.

Problem 3 (Problem 3, Tutorial 5). Let C be a class of bounded expansion and let d € N. Prove that there
exists a constant ¢ € N such that for every graph G and graph H € ®%(Q), if ¢ is an optimum degeneracy
ordering of H, then weoly(G, o) < c.

Solution. By constructions, we have a sequence of graphs
G=GoCG1C...CGg1CGyg=H

such that G; 1 € ®(G;), for i € {0,1,...,d — 1}. By Problem 1 of Tutorial 5, each of the classes ®*(C) for
i < d has bounded expansion, so in particular it is k;-degenerate for some constant k; depending only on C
and ¢. In particular, G4_1 is kq_1-degenerate and G is kq-degenerate.

Take any u € V(G). We are going to prove that

|[WReachy[G, o,u]| <1+ kq+ k3 + ka1 - ka; (1)

this will give a constant upper bound on wcolg(G, o). To this end, we consider any v € WReachy|G, o, u]
and give an upper bound on the number of possible vertices v, where different cases of the alignment of u
and v give rise to different summands in the bound (1). The summand +1 in (1) corresponds to the case
u = v, hence from now on we assume that u # v.



Since v € WReachy[G, o, u], in G there is a path P from u to v of length at most d, whose all vertices
are not smaller in o than v. In particular we have distg(u,v) < d. By Problem 2 of Tutorial 5 we infer that
distg,_, (u,v) < 2. We now consider various cases.

First assume that distg, (u,v) = 1, that is, v and v became adjacent in G4. Hence v is a neighbor of u
in G4 that is smaller in the order o. But there can be only k; such neighbors — they correspond to the
summand kg in (1).

Hence, from now assume that distg, (u, v) = 2, so also distg,_, (u,v) = 2, which means that v and v have
a common neighbor w in Gg4. Since in Problem 2 of Tutorial 5 we argued that every path of length larger
than 2 gets shortcutted in each iteration of ®, we may assume that w lies on P. In particular v <, w.

The next case is when v <, w <, . Then in G5 we have that w is a neighbor of v smaller in o, and
v is a neighbor of w smaller in 0. Hence, there are at most kg4 options for choosing w based on u, and at
most kg options for choosing v based on w, resulting in k§ options in total. So this case corresponds to the
summand k2 in the bound (1).

Finally, we are left with the case when u <, w. Now comes the crucial observation. Let C_T"d,l be the
orientation of G4_1 used to construct G4; in particular, all outdegrees in C_jd_l are bounded by kgy_1. Observe
that the only case when the edge uv is not added in the construction of G4 (as we assume distg, (u,v) = 2)
is when in Gg_1, the edges uw and vw are both oriented towards w. But then w is an outneighbor of u in
éd_l, and there can be only k;_1 outneighbors of u in Ga_1. Similarly as before, v is a neighbor of w in G4
that is smaller in o, so for fixed w there are at most k4 options for v. We conclude that this case gives rise
to at most k4—1 - kq possible vertices v, which gives the last summand in (1) and finishes the proof. O



