
Selected solutions from tutorials

Problem 1 (Problem 2, Tutorial 3). Suppose C is a class of bounded expansion. Prove that for every r ∈ N
there exists a constant cr such that the following holds. For every graph G ∈ C and every subset A of its
vertices, there exists a vertex subset B ⊇ A such that |B| ≤ cr|A| and for every vertex u ∈ V (G) − B, at
most cr vertices of B can be reached from u by a path of length at most r whose internal vertices do not
belong to B.

Solution. We first introduce some convenient notation. For any graph H, any set X ⊆ V (H) and any
u ∈ V (H) −X, the set of vertices of X which can be reached from u by a path of length at most r whose
internal vertices do not belong to X will be called the distance-r projection of u onto X in H, and denoted
by ΠH

r (u,X). Thus, we need to prove that there is some superset B ⊇ A whose size is bounded linearly in
|A|, and such that r-projections onto B have bounded sizes.

Let us fix the constant ξ = d2∇r−1(C)e. We consider the following iterative procedure.

1. Start with H = G and Y = A. We will maintain the invariant that Y ⊆ V (H).

2. As long as there exists a vertex u ∈ V (H)− Y with |ΠH
r (u, Y )| ≥ ξ do the following:

• Select an arbitrary subset Zu ⊆ ΠH
r (u, Y ) of size exactly ξ.

• For each w ∈ Zu, select a path Pw that starts at u, ends at w, has length at most r, and all its
internal vertices are in V (H)− Y .

• Modify H by contracting
⋃
w∈Zu

(V (Pw)− {w}) onto u, and add the obtained vertex to Y .

Observe that in a round of the procedure above we always make a contraction of a connected subgraph of
H−Y of radius at most r−1. Also, the resulting vertex falls into Y and hence does not participate in future
contractions. Thus, at each point H is an (r− 1)-shallow minor of G. For any moment of the procedure and
any u ∈ V (H), by τ(u) we denote the subset of original vertices of G that were contracted onto u during
earlier rounds. Note that either τ(u) = {u} when u is an original vertex of G, or τ(u) is a set of cardinality
at most 1 + (r − 1)ξ.

We claim that the presented procedure stops after at most |A| rounds. Suppose otherwise, that we
successfully constructed the graph H and subset Y after |A|+ 1 rounds. Examine graph H[Y ]. This graph
has 2|A| + 1 vertices: |A| original vertices of A and |A| + 1 vertices that were added during the procedure.
Whenever a vertex u is added to Y after contraction, then it introduces at least ξ new edges to H[Y ]: these
are edges that connect the contracted vertex with the vertices of Zu. Hence, H[Y ] has at least ξ(|A| + 1)
edges, which means that

|E(H[Y ])|
|V (H[Y ])|

≥ ξ(|A|+ 1)

2|A|+ 1
> ∇r−1(C).

This is a contradiction with the fact that H is an (r − 1)-shallow minor of G.
Therefore, the procedure stops after at most |A| rounds producing (H,Y ), where |ΠH

r (u, Y )| < ξ for each
u ∈ V (H) − Y . Define B = τ(Y ) =

⋃
u∈Y τ(u). Obviously, we have A ⊆ B. Since |τ(u)| = 1 for each

original vertex u ∈ A and |τ(u)| ≤ 1 + (r − 1)ξ for each u that was added during the procedure, we have
|B| ≤ ((r − 1)ξ + 2) · |A|. We are left with proving that distance-r projections are small.

By construction, we have V (H)−Y = V (G)−B. Take any u ∈ V (H)−Y and observe that ΠG
r (u,B) ⊆

τ(ΠH
r (u, Y )). Since |ΠH

r (u, Y )| < ξ for each u ∈ V (H)− Y and |τ(u)| ≤ 1 + (r − 1)ξ for each u ∈ V (H), we
have |ΠG

r (u,B)| ≤ ξ(1 + (r − 1)ξ). Hence, we may conclude by defining cr = ξ((r − 1)ξ + 2).

Problem 2 (Problem 3, Tutorial 3). Suppose C is a class of bounded expansion. Prove that for every r ∈ N
there exists a constant dr such that the following holds. For every graph G ∈ C and every its vertex subset
A ⊆ V (G), there exists a vertex subset B ⊇ A with the following properties:

• |B| ≤ dr|A|, and

• for every pair of vertices u, v ∈ A, if distG(u, v) ≤ r then distG[B](u, v) = distG(u, v).
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Solution. First, we apply the result of Problem 1 to the set A, yielding a set A′ with the asserted properties:
|A′| ≤ cr|A| and for every vertex u ∈ V (G) − A′, at most cr vertices of A′ can be reached from u by a
path of length at most r whose internal vertices do not belong to A′. Next, for each pair of distinct vertices
u, v ∈ A′, select an arbitrary path Pu,v that connects u and v, and whose internal vertices do not belong to
A′, and which is the shortest among the paths satisfying these properties; in case there is no such path, put
Pu,v = ∅. Then define B to be A′ plus the vertex sets of all paths Pu,v that have length at most r.

We first claim that B has indeed the required property of preserving distances up to r. More precisely,
take any distinct u, v ∈ A with distG(u, v) ≤ r. Let R be a shortest path between u and v in G, and let
a1, a2, . . . , aq be consecutive vertices of A′ visited on R, where u = a1 and v = aq. For each i = 1, 2, . . . , q−1,
let Ri be the segment of R between ai and ai+1. Then the existence of Ri certifies that some path of length at
most |Ri| between ai and ai+1 was added when constructing B from A′, and hence distG[B](ai, ai+1) ≤ |Ri|.
Consequently, by the triangle inequality we infer that

distG[B](u, v) ≤
q−1∑
i=1

distG[B](ai, ai+1) ≤
q−1∑
i=1

|Ri| = |R| = distG(u, v).

However, the opposite inequality distG[B](u, v) ≥ distG(u, v) follows directly from the fact that G[B] is an
induced subgraph of G. Hence indeed distG(u, v) = distG[B](u, v).

We are left with showing that |B| ≤ dr|A| for some constant dr. First, we have |A′| ≤ cr|A|, so we only

need to upper bound the ratio |B|
|A′| . Let H be a graph on vertex set A′, where uv ∈ E(A′) if and only if

Pu,v exists and has length at most r, and hence its vertex set was added in the costruction of B. Clearly
|B| ≤ |A′|+ (r − 1) · |E(H)|, so it suffices to prove an upper bound on |E(H)|.

Take any w ∈ B − A′, and consider for how many pairs {u, v} it can hold that w ∈ Pu,v. If {u, v} is
such a pair, then in particular both u and v can be reached from w by a path of length at most r that
internally avoids A′. However, we know that the number of such vertices is at most cr, so the number of
such pairs {u, v} is at most τ =

(
cr
2

)
. Consequently, we observe that graph H is a depth-(r − 1) congestion-

τ minor of G: we can realize all the paths Pu,v in G so that every vertex of B − A′ is used at most τ
times. Now we know by Lemma 2.27 of Chapter 1 of Lecture Notes that the edge density in depth-(r − 1)
congestion-τ minors of G is bounded by a function of ∇r−1(G) and τ . Both ∇r−1(G) and τ are bounded
by constants, namely by ∇r−1(C) and

(
cr
2

)
respectively. Hence |E(H)| is bounded by a constant times |A′|.

Since |B| ≤ |A′|+ (r − 1)|E(H)| and |A′| ≤ cr|A|, we are done.

For the next problem, see Tutorial 5 for missing definitions and previous problems.

Problem 3 (Problem 3, Tutorial 5). Let C be a class of bounded expansion and let d ∈ N. Prove that there
exists a constant c ∈ N such that for every graph G and graph H ∈ Φd(G), if σ is an optimum degeneracy
ordering of H, then wcold(G, σ) ≤ c.

Solution. By constructions, we have a sequence of graphs

G = G0 ⊆ G1 ⊆ . . . ⊆ Gd−1 ⊆ Gd = H

such that Gi+1 ∈ Φ(Gi), for i ∈ {0, 1, . . . , d − 1}. By Problem 1 of Tutorial 5, each of the classes Φi(C) for
i ≤ d has bounded expansion, so in particular it is ki-degenerate for some constant ki depending only on C
and i. In particular, Gd−1 is kd−1-degenerate and Gd is kd-degenerate.

Take any u ∈ V (G). We are going to prove that

|WReachd[G, σ, u]| ≤ 1 + kd + k2d + kd−1 · kd; (1)

this will give a constant upper bound on wcold(G, σ). To this end, we consider any v ∈ WReachd[G, σ, u]
and give an upper bound on the number of possible vertices v, where different cases of the alignment of u
and v give rise to different summands in the bound (1). The summand +1 in (1) corresponds to the case
u = v, hence from now on we assume that u 6= v.
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Since v ∈ WReachd[G, σ, u], in G there is a path P from u to v of length at most d, whose all vertices
are not smaller in σ than v. In particular we have distG(u, v) ≤ d. By Problem 2 of Tutorial 5 we infer that
distGd−1

(u, v) ≤ 2. We now consider various cases.
First assume that distGd

(u, v) = 1, that is, u and v became adjacent in Gd. Hence v is a neighbor of u
in Gd that is smaller in the order σ. But there can be only kd such neighbors — they correspond to the
summand kd in (1).

Hence, from now assume that distGd
(u, v) = 2, so also distGd−1

(u, v) = 2, which means that u and v have
a common neighbor w in Gd. Since in Problem 2 of Tutorial 5 we argued that every path of length larger
than 2 gets shortcutted in each iteration of Φ, we may assume that w lies on P . In particular v <σ w.

The next case is when v <σ w <σ u. Then in Gd we have that w is a neighbor of u smaller in σ, and
v is a neighbor of w smaller in σ. Hence, there are at most kd options for choosing w based on u, and at
most kd options for choosing v based on w, resulting in k2d options in total. So this case corresponds to the
summand k2d in the bound (1).

Finally, we are left with the case when u <σ w. Now comes the crucial observation. Let ~Gd−1 be the

orientation of Gd−1 used to construct Gd; in particular, all outdegrees in ~Gd−1 are bounded by kd−1. Observe
that the only case when the edge uv is not added in the construction of Gd (as we assume distGd

(u, v) = 2)

is when in ~Gd−1, the edges uw and vw are both oriented towards w. But then w is an outneighbor of u in
~Gd−1, and there can be only kd−1 outneighbors of u in ~Gd−1. Similarly as before, v is a neighbor of w in Gd
that is smaller in σ, so for fixed w there are at most kd options for v. We conclude that this case gives rise
to at most kd−1 · kd possible vertices v, which gives the last summand in (1) and finishes the proof.
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