INTRODUCTION TO SPARSITY
MicHAL PILIPCZUK

ABSTRACT

Starting from an innocently looking question of what it means for a graph to be sparse, we will
develop the basics of the structural theory of sparse graph classes: a relatively new and rapidly
growing area of graph theory. We will explore different combinatorial aspects of sparsity,
expressed via seemingly different, but actually equivalent definitions: density of shallow
minors, generalized coloring numbers, low treedepth colorings, neighborhood complexity,
and maybe others. An example result that we will be able to derive from our toolbox is the
following: there is a constant ¢ such that every planar graph can be colored with ¢ colors so
that every two vertices that are at distance exactly three from each other have different colors.

During this mini-course we will explore the theory of structural sparsity for graphs. This theory
was initiated by Jaroslav Negetfil and Patrice Ossona de Mendez around 2008 and since then
it has been developed by many graph theorists from all around the globe. It turns out that
fundamental results about sparsity somehow bring together three facets of the subject:

e combinatorics: studying different graph-theoretical viewpoints on sparsity and finding
links between them:;

e algorithm design: applying combinatorial tools to design efficient algorithms on sparse
graphs, and ask combinatorial questions based on expected algorithmic applications;

e logic and model theory: use abstract notions of sparsity to establish boundaries of
expressibility and tractability of variants of logical formalisms.

Here we will focus on the combinatorial aspect, but it may happen that some algorithms will be
produced on the way.

There are freely available lecture notes that cover everything that will be presented during this
mini-course, and much more: https://www.mimuw.edu.pl/ "mp248287/sparsity/| .

1. DEGENERACY
For a graph G, by V(G) and E(G) we denote the vertex and edge set of G, respectively. A graph
H is a subgraph of G, denoted H C G, if H can be obtained from G by deleting vertices and edges.
Definition 1.1. The density of a graph G is the ratio between the numbers of edges and vertices:

density(G) = EEE;'

1.1. Prove that the density of a graph G is equal to half of the average degree in G.

Definition 1.2. The hereditary density of a graph G is the largest density among its subgraphs:

density*(G) = max density(H).
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Definition 1.3. A graph G is d-degenerate if every its subgraph contains a vertex of degree at
most d. The degeneracy of G, denoted degeneracy(G), is the smallest d for which G is d-degenerate.

1.2. Prove that for every graph G we have
density*(G) < degeneracy(G) < 2-density*(G).
1.3. Prove that a graph is 1-degenerate if and only if it is a forest (that is, an acyclic graph).

1.4. Prove that a graph G is d-degenerate if and only if there is a linear ordering o of vertices of
G such that every vertex has at most d neighbors that are smaller in o.

Definition 1.4. The arboricity of a graph G, denoted arboricity(G), is the minimum number a
such that the edges of G can be partitioned into a forests.

1.5. Prove that for every graph G we have
arboricity(G) < degeneracy(G) < 2-arboricity(G).

1.6. Prove that planar graphs are 5-degenerate. Is the number 5 optimum? Is this also true for
planar multigraphs?

1.7. Prove that every d-degenerate graph admits a proper coloring with d+1 colors. Here, a
proper coloring of a graph is a coloring of its vertices where the endpoints of every edge receive
different colors.

1.8. Prove that a d-degenerate graph on n vertices has at most 1+2¢-n different cliques, where
a clique is a set of pairwise adjacent vertices.

Definition 1.5. A set of vertices I in a graph G is independent if there are no edges with both
endpoints in I. A set of vertices D is dominating if every vertex of G either belongs to D or has
a neighbor in D. The size of a largest independent set in G is denoted by «(G), while the size of
a smallest dominating set in G is denoted by v(G).

1.9. Prove that every d-degenerate graph on m vertices contains an independent set of size at
least 75.

1.10. Suppose G is a graph and o is a linear ordering of G witnessing that G is d-degenerate, as
in Problem For a vertex u, let N*[u] denote the set consisting of w and all its neighbors that
are smaller in o. Consider the following algorithm:

e Let H be a graph with the same vertex set as G, where we consider a pair of vertices v and
v adjacent if and only if the set NT[u]NNT[v] is not empty.

e Let I be an inclusion-wise maximal independent set in H.

o Let D=, .; NT[u].

uel
Prove that D is a dominating set in G that satisfies |D| < (d+1)2-v(G).
1.11. Prove that in a d-degenerate graph at least half of the vertices have degree at most 2d.

1.12. For a graph G, the 1-subdivision of G is obtained by replacing every edge of G by a path
of length 2, where the middle vertex has degree exactly 2. Prove that the 1-subdivision of any
graph is 2-degenerate.
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2. SHALLOW MINORS AND NOTIONS OF SPARSITY

Definition 2.1. A graph H is a minor of GG, denoted H =< G, if there exists a minor model of H
in G. The minor model consists of a connected subgraph I,, C G for each vertex u of H, called
the branch set of u, so that the following conditions are satisfied: branch sets I,, are pairwise
vertex-disjoint and whenever uv is an edge in H, there is an edge between I, and I, in G.

2.1. Prove that H is a minor of G if and only if H can be obtained from G using the following
operations: vertex removal, edge removal, and edge contraction.

2.2. Prove that planar graphs are minor-closed (i.e., every minor of a planar graph is also planar).
THEOREM 2.2. A graph is planar if and only if it does not contain K5 nor K33 as a minor.
2.3. Prove that every graph that does not contain K; as a minor has density smaller than 2.

THEOREM 2.3. Every K;-minor-free graph has density bounded by O(ty/logt) and this bound
is asymptotically tight.

Definition 2.4. A graph H is a depth-d minor of G, denoted H <4 G, if there exists a minor
model of H in G where every branch set has radius at most d. Here, a connected graph has radius
at most d if it contains a vertex that is at distance at most d from any other vertex of the graph.

Figure 2.1: A diamond graph and its minor and topological minor models in a larger graph. Both
models have depth 1.
2.4. Prove that if J <, H and H =<, G, then J <o4ptatb G.

Definition 2.5. For a graph class C, the depth-d reduct of C is the class
Cvd:={H: H =4G for some G€C}.
The greatest reduced average density at depth d in C is the quantity

Va(C):= sup density(H).
Hecvd
Definition 2.6. A class of graph C has bounded expansion if V4(C) < +oo for all d€N. In other
words, there exists a function f: N— N such that density(H) < f(d) whenever H is a depth-d
minor of a graph from C.

Definition 2.7. A class of graph C is nowhere dense for every d € N, the class CVd does not
contain all graphs. Equivalently, there exists a function ¢t: N— N such that for every d € N, the
clique Ky(g) is not a depth-d minor of any graph from C.
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2.5. Prove that every proper (that is, not containing all graphs) minor-closed class of graphs has
bounded expansion.

2.6. Prove that for any A € N, the class of all graphs with maximum degree at most A has
bounded expansion.

2.7. Prove that if a class of graphs C has bounded expansion, then for every d € N the class CVd
also has bounded expansion. Prove the same implication for nowhere denseness as well.

2.8. Prove that if a class of graphs has bounded expansion then it is nowhere dense.

2.9. Prove that for every ¢t € N there exists a graph with density at least ¢ and with no cycle of
length at most t. Conclude that there exists a class of graphs that is nowhere dense but does not
have bounded expansion.

Definition 2.8. A graph H is a topological minor of G, denoted H <° G, if there exists a
topological minor model of H in G. The topological minor model 7 consists of a vertex 7n(u)
of G for each vertex u of H, and a path n(e) in G for each edge e of H, so that the following
conditions are satisfied: for each wv € E(H), the path n(uv) has endpoints n(u) and n(v), and
paths {n(e): e€ E(H)} are vertex-disjoint apart from sharing endpoints whenever necessary.

Further, H is a depth-d topological minor of G, denoted H <{ G, if there exists a topological minor
model of H in G where every path has length at most 2d+1.

2.10. Prove that if H <° G then H <G, and if H X5 G then H 23 G.

2.11. Give a class of graphs that excludes K5 as a topological minor, but whose closure under
taking minors contains all graphs.

2.12. We define the notion of topologically nowhere denseness in the same way as nowhere dense-
ness, but we use shallow topological minors instead of minors. Prove that a class of graphs is
nowhere dense if and only if it is topologically nowhere dense.

THEOREM 2.9. A class of graphs has bounded expansion if and only if it has topologically
bounded expansion.

3. GENERALIZED COLORING NUMBERS: BASICS

Definition 3.1. Let G be a graph, let ¢ be a vertex ordering of G, and let d € N. For vertices
u,v € V(G) with u <, v, we say that:

e u is strongly d-reachable from v if there is a path of length at most d from v to u whose
every internal vertex w satisfies v <, w; and

e v is weakly d-reachable from v if there is a path of length at most d from v to u whose every
internal vertex w satisfies u <, w.

For a vertex v, we denote

WReachy[G,0,v] = {wu:u<,v and u is weakly d-reachable from v },
SReachy[G,o,v] = {u: u<,v and u is strongly d-reachable from v }.

Note that every vertex is both weakly and strongly d-reachable from itself.
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Definition 3.2. Let G be a graph, o be a vertex ordering of G, and d € N. The d-admissibility
of a vertex v of G, denoted admy(G,o,v), is equal to the maximum size of a family of paths P
with the following properties:

e cvery path from P has length at most d and leads from v to a vertex that is smaller in o;
e paths from P are pairwise vertex-disjoint apart from sharing the endpoint v.

Definition 3.3. Let G be a graph and let d € N. For a vertex ordering o of G, we define the
weak d-coloring number, the strong d-coloring number, and the d-admissibility of o as follows:

weoly(G,0) = max |WReachy[G,0o,v],
veV(G)

coly(G,0) = max |SReachy[G,0,v]|,
veV(G)

admg(G,0) = max admgy(G,o,v).
veV(G)

The weak d-coloring number, the strong d-coloring number, and the d-admissibility of G are defined
as the minimum among vertex orderings o of G of the respective parameter for o. That is, if by
II(G) we denote the set of vertex orderings of G, then

weolg(G) = gglr}(%) weolq(G, o),
coly(G) = aglni(%) coly(G, o),
admg(G) = énnl(%) admg(G, o).

u € SReachy[G, 0, v)

00000000000000&F0000&OTFO00TODOOOO — >

u v
u € WReachg |G, 0, v]

0000000008000 o0 00000000000 >

u v
admg(G,o,v) =5

000000000 0000000000®00000000000 — »
v

Figure 3.1: Different notions of reaching smaller vertices by short paths. In the first panel, u is
strongly 4-reachable from v. In the second panel, u is weakly 8-reachable from v. In the third
panel, the 3-admissibility of v is 5.

3.1. Prove that for every graph G we have

wceoly (G) —1=col; (G) —1=adm; (G) = degeneracy(G).
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3.2. Prove that for every graph G, its vertex ordering o, and d € N we have
admgy(G, o) < coly(G,0) <wcoly(G,0).
3.3. For every d € N, compute
admg(Forests), coly(Forests), wcolg(Forests).
3.4. Prove that for every graph G, its vertex ordering o, and d € N we have
colg(G,0) <1+ (admgy(G,0))?.

3.5. Prove that for every graph G, its vertex ordering o, and d € N we have
d
weolg(G, o) Z (coly(G, o 71)
i=0

3.6. Prove that for every graph G, its vertex ordering o, d € N, and vertices u,v € V(G), the set
WReachq |G, o,u] "WReachy[G, 0, v]

intersects all paths of length at most d connecting u and v.
3.7. Prove that for every graph G and d € N we have

Vd(G) S WCOl4d+1(G).
3.8. For a graph G, vertex subset S, vertex u € S, and d€N, let bg(u,.S) be the maximum number
of paths of length at most d that all start in u, end in S—{u}, and are vertex-disjoint apart from w.
Consider the following algorithm: starting with S =V(G), iteratively remove from S any vertex
u that has the smallest by(u,S) until S becomes empty. Prove that if o is the reversal of the
order of removal of vertices by this algorithm, then ¢ achieves optimum d-admissibility, that is,
admg(G, o) =admg(G).
FAcT 3.4. For every graph G we have

admy(G) <6d([Va_1(G)])*.

3.9. Conclude the following Theorem [3.5

THEOREM 3.5. The following conditions are equivalent for a graph class C:
(1) € has bounded expansion, that is, V4(C) is finite for every d € N;
(2) admgy(C) is finite for every d €N;
(3) colg(C) is finite for every d € N;

(4) weoly(C) is finite for every d € N.
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4. GENERALIZED COLORING NUMBERS: APPLICATIONS

4.1. Let G be a graph, o be a vertex ordering of G, and d € N. For every vertex u € V(G), define
the cluster of u as follows:

Cy ={veV(Q): ueWReachy,|G,0o,v]}.

Prove that the following conditions hold:

e each cluster has radius at most 2d;

e cach vertex of V(G) appears in at most wcolaq(G, o) clusters; and

e for each vertex u € V(G), the ball {v: dist(u,v) <d} is entirely contained in some cluster.
Such a family of clusters is called an distance-d neighborhood cover of G with radius 2d and overlap
weolag (G, o).
Definition 4.1. A set of vertices I in a graph G is distance-d independent if vertices of I are
pairwise at distance more than d. A set of vertices D is distance-d dominating if every vertex of
G is at distance at most d from a vertex of D. The size of a largest distance-d independent set
in G is denoted by a4(G), while the size of a smallest distance-d dominating set in G is denoted
by 7a(G).
4.2. Prove that for every graph G and d € N, we have

@d(G) 2 74(G) > az4(G).
4.3. Construct a sequence of graphs G1,G3, s, ... satisfying the following: for every i € N,
OéQ(Gi):l and ’}/1(Gi) ZZ

4.4. Consider the following algorithm applied on a graph G with a vertex ordering o. For
every vertex u, mark the vertex of WReachy[G,o,u] that is the smallest in o. Letting D be
the set of all marked vertices, prove that D is a distance-d dominating set of G that satisfies
|D| S WCOle(G7U) -’}/d(G).

4.5. Consider the following algorithm deployed on a graph G with a vertex ordering o.
e Start with A=(, D=0, and R=V(G).
e Aslong as R is not empty, do the following:

— Let u be the vertex of R that is the smallest in o.

— Add u to A, add WReachy4[G,0,u] to D, and remove all vertices that are distance-d
dominated by WReach4|G,0,u] from R.

Prove that once the algorithm terminates, the following assertions hold:

(1) D is a distance-d dominating set in G that satisfies | D| < wcolaq(G,0)-|A].
[A]

(2) A contains a distance-2d independent set of size at least — —~=—.
2a(G,0)

Conclude that for every graph G and d € N, we have
24(G) <7a(G) < weolpg(G)? - a2a(G).
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5. LOW TREEDEPTH COLORINGS

Definition 5.1. A rooted forest is an acyclic graph in which for every connected component we
pick one of its vertices to be the root. This imposes an ancestor/descendant relation on vertices:
a vertex w is an ancestor of a vertex v if and only if v and v are in the same connected component
and v lies on the unique path from u to the root of this component.

The depth of a rooted forest is the maximum number of vertices on a path from the root of some
connected component to any of its vertices.

Definition 5.2. A treedepth decomposition of a graph G is a rooted forest I’ on the same vertex
set as (G that satisfies the following condition: for every edge uv of G, either u is an ancestor of
v in F or vice versa. The treedepth of G, denoted td(G), is the minimum depth of a treedepth
decomposition of G.

Figure 5.1: A graph and its tree-depth decomposition of depth 4.

5.1. Prove that the treedepth of a path on n vertices is at most [log,(n+1)].

5.2. Consider the following game on a graph G played by two players: Connector and Splitter.
In each round, Connector first picks a connected component C' of G and then Splitter picks one
vertex u of C'. The game continues on the graph C' —u, i.e., the component C' with u removed.
The Splitter wins when the graph becomes empty.

Prove that the treedepth of a graph is equal to the minimum number of rounds needed for the
Splitter to win the game.

5.3. Prove that the treedepth of a path on n vertices is at least [logy(n+1)].

Definition 5.3. The depth-first search is a search algorithm that given a connected graph G and
any its vertex ug, performs as follows. The search is always at some vertex v, initially set to be .
When the search enters v via some edge, it marks v as visited and inspects the neighbors of v in
any order. For each neighbor w that upon inspection appears to be not yet marked as visited,
the search enters w through vw, calls itself recursively on w, and having processed w withdraws
back to v through vw. Once all neighbors are inspected, the search finishes processing v.

The DFS forest of a graph G is any forest obtained by running depth-first search in each connected
component of G starting from any vertex, and including all the traversed edges. We may view
such a DFS forest as rooted by taking the starting vertices of the searches to be the roots.

5.4. Prove that every DFS forest of a graph G is a treedepth decomposition of G.
5.5. For a graph G, let Ip(G) be the length of the longest path in G. Prove that

log, Ip(G) < td(G) <Ip(G).
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5.6. Prove that for every graph G we have
td(G) = weols (G).

Definition 5.4. For peN, a coloring X of vertices of a graph G is p-centered if for every connected
subgraph H of G, either the vertices of H receive more than p different colors under A, or there
exists a color ¢ such that exactly one vertex of H is colored c.

5.7. Prove that 1-centered colorings of a graph are exactly its proper colorings.

5.8. Prove that any p-centered coloring of a graph G is a treedepth-p coloring in the following
sense: For every p’ <p, every set of p’ colors induces in G a subgraph of treedepth at most p’.

5.9. Prove that if G has a treedepth-p coloring using N colors, then G also has a p-centered

coloring using N~p(g) colors.

5.10. Let G be a graph, o be its vertex ordering, and p € N. Let us color the vertices of G using
wcolgp—1(G,0) colors by inspecting vertices in the increasing order w.r.t. ¢ and assigning each
vertex u a color that is not present among other vertices of WReachy,—1[G,0,u]. Prove that the
coloring obtained in this way is p-centered.

5.11. Prove that a class of graphs C has bounded expansion if and only if the following condition
holds: for every peN there exists a number N(p) such that every graph from C admits a p-centered
coloring using at most N(p) colors.

Definition 5.5. For a graph G and d €N, we define a graph G=¢ as follows: the vertex set of
G=% is the same as of G, while two vertices u,v are adjacent in G=¢ if and only if they are at
distance ezactly d in G.

5.12. Prove that every graph G of treedepth at most d admits a coloring using at most 2% — 1
colors with the following property: for any pair of vertices v and v, if the distance between u and
v in G is finite and odd, then uw and v receive different colors.

5.13. Prove that if C is a class of bounded expansion and d € N is odd, then there is a number M
such that for every graph G €C, the graph G=¢ admits a proper coloring with at most M colors.

5.14. Estimate the constant M given by the solution of Problem for C =Planar and d=3.

6. NEIGHBORHOOD COMPLEXITY

6.1. Prove that a bipartite planar graph on n vertices has less than 2n edges.

6.2. Prove that if G is a planar graph and A is a subset of its vertices, then the cardinality of
the set family
{NPNA:veV(G)}

is at most 7| A|+1. Here, N[v] is the closed neighborhood of v which consists of v and its neighbors.

6.3. Let C be a graph class of bounded expansion. Prove that for every graph G € C and subset
of vertices A C V(G), we have

H{NPpINA: veV(G)} <4V ©+v,(C)+1)-|A|+1.
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In the next few problems we will work out a proof of the following theorem

THEOREM 6.1. Let C be a graph class of bounded expansion and let d € N be fixed. Then there
exists a constant C' such that for every graph G € C and nonempty subset of vertices A CV(G),
we have

{Nw]NA: veV(G)} <C-|A|

Here N%[v] is the distance-d neighborhood of v which consists of all vertices at distance at most
d from v.

Definition 6.2. For a graph G, set of vertices A, and v € V(G), the distance-d profile of v on A
is the function profile,[v, A]: A—{0,1,...,d,+oco} defined as follows: for a € A, we put

dist(v,a) if dist(v,a) <d,
+oo otherwise.

profile,[v, A](a) = {

6.4. Prove that in Theorem [6.1]it suffices to bound the number of different functions on A realized
as distance-d profiles by C'-|A].

Let o be a vertex ordering of G with optimum weak 2d-coloring number, that is,
wcolaq (G, o) = weolgq(G) < weolyg(C).

Let us define
B:= U WReachq|G, 0,al.

a€A
Further, for each u € V(G) let

X [u] = WReachy[G, 0,u]N B.
6.5. Prove that if for two vertices u,v € V(G) we have
Xu]=Xv] and profile[u, X [u]] = profile,[v, X [v]],

then also
profile,[u, A] = profile,[v, A].

Conclude that it suffices to bound the cardinality of the family {X[u]: v € V(G)} by C-|B]| for
some constant C.

6.6. Prove that for every u € V(G) with non-empty XJu], if b is the vertex of X[u| that is the
largest in the ordering o, then we have

X [u] € WReachyq|G,0,b].

Using this observation finish the proof of Theorem [6.1]
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