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1 Introduction

In the first chapter we have defined nowhere dense classes by forbidding large cliques as depth-r mi-
nors. In this chapter we study a dual characterization, expressed in terms of distance-r independence.
Recall that a vertex subset A ⊆ V (G) in a graph G is distance-r independent if any two different
vertices a, b ∈ A are at distance larger than r.

The intuition is that in a large sparse graph, one should be able to find many vertices that are
pairwise far from each other, i.e., form a large distance-r independent set. This intuition is not
entirely correct. Consider for example a star S, i.e., a tree of depth 1: no two vertices of S are
at distance greater than 1. However, if we were allowed to delete a bounded number of vertices,
we could delete the center of the star and in the resulting graph we are left with many distance-r
independent vertices, whatever value for r we choose.

We will formalize this concept of deleting a few elements to find large distance-r independent
sets by introducing the notion of uniform quasi-wideness. We will then show that the new con-
cept is equivalent to nowhere denseness. Later, we present several combinatorial and algorithmic
applications of uniform quasi-wideness.

2 Uniform wideness

Let us first consider the simpler concept of uniform wideness, which will help to understand uniform
quasi-wideness.

Definition 2.1. A class of graph C is called uniformly wide if for every r ∈ N there is a function
Nr : N → N such that for every m ∈ N , G ∈ C and A ⊆ V (G) with |A| ≥ Nr(m), there exists
B ⊆ A with |B| ≥ m such that B is distance-r independent in G

In other words, a class of graphs is uniformly wide if for every value of r, in every huge set A we
still find a large distance-r independent set. The appropriate definition of huge and large depends
on the value of r we care for. It is not difficult to see that uniformly wide classes are very simple
classes, as the next theorem shows.

Theorem 2.2. A class C of graphs is uniformly wide if and only if C is a class of bounded degree,
i.e., there is a number d such that the maximum degree ∆(G) of every G ∈ C is bounded by d.

Proof. Assume first that C is uniformly wide. By definition, for every r ∈ N there is a function
Nr : N→ N such that for all m ∈ N , G ∈ C, and A ⊆ V (G) with |A| ≥ Nr(m) there exists B ⊆ A
with |B| ≥ m such that B is distance-r independent in G. We claim that for each G ∈ C, the
maximum degree of G is smaller than N2(2). Take any vertex v of G and let A = N(v). Then all
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vertices of A are pairwise at distance at most 2, hence there is no set B ⊆ A of size 2 that would be
distance-2 independent. We infer that |N(v)| = |A| < N(2, 2), and this must hold for every vertex
v of G.

Conversely, assume that C has bounded degree, and let d be an integer such that the maximum
degree ∆(G) of every G ∈ C is bounded by d. Define Nr(m) = m · (d + 1)r. We claim that C is
uniformly wide with function Nr. To see this, let G ∈ C and A ⊆ V (G) with |A| ≥ Nr(m) for some
integers r,m ∈ N. We can now greedily pick elements from A to the set B as follows. Choose an
arbitrary vertex v ∈ A and put it into the set B, then remove all elements at distance at most r
from v from the set A. As every vertex has degree at most d, we remove at most (d+ 1)r vertices
from A in each step, which after m steps gives us the desired set B.

3 Uniform quasi-wideness

We now slightly change the definition of wideness to allow the deletion of a small number of vertices.

Definition 3.1. A class of graph C is called uniformly quasi-wide if for every r ∈ N there exists a
function Nr : N → N and a constant sr ∈ N such that for all m ∈ N , G ∈ C, and A ⊆ V (G) with
|A| ≥ Nr(m), there exists S ⊆ V (G) with |S| ≤ sr and B ⊆ A − S with |B| ≥ m such that B is
distance-r independent in G− S.

In other words, a class of graphs is uniformly quasi-wide if for every value of r and for every
huge set A, we can delete a very small number of vertices such that we find a large distance-r
independent subset of A in G− S. Again the appropriate definitions of huge, large and very small
depend on the value of r we care for. This is governed by the functions Nr(·) and constants sr.
Constants sr are sometimes called the margins, while Nr(·) are the wideness functions.

A

Figure 1: Definition of uniform quasi-wideness. In a huge set A (yellow) we may find a large subset
B (blue) that is distance-r independent after removing a small subset of vertices S (crossed out),
whose size depends only on the radius r. In case r is even, distance-r independence of B in G−S is
equivalent to saying that balls of radius r/2 around vertices of B in G−S are disjoint, as depicted
in the figure.

The rest of this section is devoted to proving the somewhat surprising fact that uniform quasi-
wide classes are exactly the nowhere dense classes.

Theorem 3.2. A class C of graphs is uniformly quasi-wide if and only if it is nowhere dense.
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We split the proof into two lemmas. The direction from left to right is easy to prove.

Lemma 3.3. If a class C is uniformly quasi-wide, then C is nowhere dense.

Proof. Assume C is uniformly quasi-wide and this is witnessed by constants sr and functions Nr(·).
Suppose Kt is a depth-r topological minor in some G ∈ C. We prove that then t < N2r+1(2s+ 2),
where s := s2r+1; this will imply that C is nowhere dense.

Suppose otherwise, that t ≥ N2r+1(2s+ 2). Fix a depth-r topological minor model φ of a clique
K on t vertices in G. Let A = φ(V (K)). Consider any vertex subset S ⊆ V (G) of size at most s,
and let A′ ⊆ A be constructed from A as follows: whenever φ(u) ∈ S for some u ∈ V (K), remove
φ(u) from A′, and whenever an internal vertex of φ(uv) belongs to S for some uv ∈ E(K), remove
both u and v from A′. Thus, when constructing A′ from A we remove at most 2s vertices, implying
|A−A′| ≤ 2s. Now observe that every two vertices of A′ are at distance at most 2r + 1 in G− S,
because the path between them in the model φ was left untouched by the removal of S. Hence,
any subset B ⊆ A − S that is (2r + 1)-independent in G − S contains at most 2s + 1 vertices: at
most 2s vertices of A − A′ and at most 1 vertex of A′. Since |A| = t ≥ N2r+1(2s + 2) and S was
chosen arbitrarily, this is a contradiction. Hence t < N2r+1(2s+ 2) and C is nowhere dense.

The other direction is much harder to prove.

Lemma 3.4. If a class C is nowhere dense, then C is uniformly quasi-wide.

We split the proof into several steps. In the following, fix the function

t(r) = ωr(C) + 1

and a graph G ∈ C. Thus, for all r ∈ N we have that Kt(r) 64r G. Also fix a large A ⊆ V (G). Our
strategy is to inductively construct sequences

G = G0 ⊇ G1 ⊇ . . . ⊇ Gr and S1, S2, . . . , Sr,

where Gi are graphs and Si are vertex sets such that for all i ∈ {1, . . . , r}, we have

1. Gi = Gi−1 − Si and

2. Si ⊆ V (Gi−1).

Moreover, we will find a sequences

A = A0 ⊇ A1 ⊇ . . . ⊇ Ar and m0 ≥ m1 ≥ . . . ≥ mr = m,

where Ai are vertex sets and mi are integers, such that for all i ∈ {1, . . . , r},

1. Ai ⊆ A is distance-i independent in Gi−1 − Si, Ai ∩ Si = ∅,

2. |Ai| ≥ mi, and

3. Si = ∅ if i is odd and |Si| < t(i/2) if i is even.
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We will then return the set Ar of size m which is distance-r independent in Gr = G − S, where
S =

⋃
1≤i≤r Sr. The construction will be applicable provided initially the invariant |A0| ≥ m0

holds, hence we will set Nr(m) simply as the obtained m0. More precisely, for each i ∈ {1, . . . , r}
we will provide a lower bound on mi−1 such that in Ai−1 of size at least mi−1 we will be able to find
a suitable Ai of size at least mi. Then we will be able to trace these lower bounds from mr = m
back to the final m0.

The following two lemmas will imply that it suffices to consider only the cases i = 1 and i = 2.
Their proofs are immediate.

Lemma 3.5. Let A be a distance-2j independent set in G. Let H 4j G be the depth-j minor of G
obtained by contracting the disjoint distant-j neighborhoods NG

j [v] for v ∈ A to single vertices. The

vertex of H resulting from contracting NG
j [v] will be identified with the original vertex v of G, thus

via this identification A is both a subset of vertices of G and a subset of vertices of H. Then any
subset of A is distance-(2j + 1) independent in G if and only if it is distance-1 independent in H.

Lemma 3.6. Let A be a distance-(2j + 1) independent set in G. Let H 4j G be the depth-j
minor of G obtained by contracting the disjoint distance-j neighborhoods NG

j [v] for v ∈ A to single

vertices. The vertex of H resulting from contracting NG
j [v] will be identified with the original vertex

v of G, thus via this identification A is both a subset of vertices of G and a subset of vertices of H.
Then, for any S ⊆ V (H)−A = V (G)−

⋃
v∈ANj(v), it holds that a subset of A is distance-(2j+ 2)

independent in G− S if and only if it is distance-2 independent in H − S.

Figure 2: Reduction to cases i = 1 and i = 2 in Lemmas 3.5 and 3.6: contracting balls of radius j
around vertices of a distance-2j independent set turns distance-(2j+1) independence into distance-1
independence, and distance-(2j + 2) independence into distance-2 independence.

The construction will be done iteratively for i = 1, 2, . . . , r, where in step i we wish to construct
Ai and Si by examining the graph Gi−1 and the distance-(i − 1) independent set Ai−1 in it. The
whole procedure will work as follows, assuming that for the cases i = 1 and i = 2 we have already
given the construction. Starting with the set A = A0, using the case i = 1 we will find a large
independent subset A1 ⊆ A without deleting any vertices, hence S1 = ∅, as claimed. Now that A1 is
distance-1 independent, using the case i = 2 we will find a small set S2 and a large subset A2 of A1

which is distance-2 independent in the graph G2 = G1−S2 (hence, the set is distance-2 independent
after deleting S2, just as required in the definition of uniform quasi-wideness). As A2 is distance-2
independent in G2, we can contract the disjoint 1-neighborhoods of elements of A2 (identifying
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contracted vertices with elements of A2, as in Lemmas 3.5 and 3.6), thus obtaining a depth-1 minor
H 41 G2. Using the case i = 1 again, we find a large subset A3 ⊆ B2 that is distance-1 independent
in H and apply Lemma 3.5 to conclude that it is, in fact, distance-3 independent in G3. We continue
with this set in the graph G3. Again, we contract the disjoint 1-neighborhoods of elements of A3

(identifying contracted vertices with elements of A3), thus obtaining a depth-1 minor H 41 G3.
Using case i = 2 in H we find a small set S4 ⊆ V (H) − A3 = V (G3) −

⋃
a∈A3

NG3
1 [a] and a large

set A4 ⊆ A3 which is distance-2 independent in H −S4. We apply Lemma 3.6 to conclude that A4

is distance-4 independent in G4 = G3 − S4; the lemma is applicable since S4 ⊆ V (H) − A4. We
continue this argumentation for r steps to construct the graphs Gi and sets A1 and Si with the
desired properties.

It remains to show cases i = 1 and i = 2: how to construct A1 out of A0, and how to construct
A2, S2 out of A1. One of the main ingredients for this is Ramsey’s Theorem.

Theorem 3.7. Let a, b ∈ N. Then there exists a number R(a, b) such that for every coloring of the
edges of a complete graph on R(a, b) vertices with colors red and blue we will either find a clique
on a vertices whose edges are all blue or a clique on b vertices whose edges are all red.

Proof. We prove by induction on a + b that it suffices to take R(a, b) = R(a − 1, b) + R(a, b − 1).
Clearly, for all n ∈ N we may take R(n, 1) = R(1, n) = 1; then, it is easy to see by induction that
the above recurrence will yield

R(a, b) ≤
(
a+ b− 2

a− 1

)
.

Assume that we have established the bounds for R(a−1, b) and R(a, b−1) and consider a complete
graph K on R(a− 1, b) + R(a, b− 1) vertices whose edges are colored red and blue. Pick a vertex
v and partition the remaining vertices into two sets A and B, such that for every vertex w ∈ A
the edge vw is blue and for every vertex w ∈ B if the edge vw is red. We have |A| + |B| + 1 =
R(a− 1, b) +R(a, b− 1), and hence either |A| ≥ R(a− 1, b) or |B| ≥ R(a, b− 1). In the first case,
by induction we know that A contains either a clique on a − 1 vertices with all edges blue, or a
clique on b vertices with all edges red. In the latter subcase we are immediately done, and in the
former case we may add v to this clique to obtain a clique on a vertices will all edges blue. The
second case is analogous. This finishes the proof of the theorem.

We may now give the construction for i = 1. Recall that t(0) is such that Kt(0) 640 G, that is,

Kt(0) is not a subgraph of G. Suppose we are given a set A of size |A| ≥ m0 :=
(m1+t(0)−2

t(0)−1
)
, where

m1 is the target size of a distance-1 independent set we are interested in. By Ramsey’s theorem,
in G[A] we may either find a clique of size t(0) or an independent set of size m1. The former case,
however, cannot happen since Kt(0) is not a subgraph of G. So we obtain an independent set of
size m1, as promised. To lift this to the case of i = 2j + 1 using Lemma 3.6, as explained before,
we will apply this argument to a graph that is a j-shallow minor of the original graph, hence we
will need to set mi−1 :=

(mi+t(j)−2
t(j)−1

)
. Note again that Si = ∅ in this case.

The case i = 2, which will lift to the induction step for even i, is much harder. In this case
we assume that in our graph G we have already found a huge distance-1 independent set A1, and
we want to find a large distance-2 independent set in it, possibly after removing some small set of
vertices S1 that is disjoint from A1; we will have that |S1| < t := t(1). Denote by D the set of all
neighbors of vertices of A1 and consider the graph G′ defined as the subgraph of G on the vertex
set A1 ∪D where we preserve only edges with one endpoint in A1 and second in D. Clearly G′ is
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bipartite, with bipartition A1]D. Since A1 is independent in G, it is easy to see that any subset of
A1 is distance-2 independent in G if and only if it is distance-2 independent in G′; so we may focus
on G′. We will use the following extension of Ramsey’s Theorem for a finite number of colors.

Theorem 3.8. Let n1, . . . , nk ∈ N. There exists a number R(n1, . . . , nk) such that for every
coloring of the edges of a complete graph on R(n1, . . . , nk) vertices with k different colors c1, . . . , ck
we will find for some 1 ≤ i ≤ k a clique on ni vertices all of whose edges are colored with color ci.

This variant of Ramsey’s Theorem can easily be proved by induction on the number of colors,
using the two-color case. We will apply it to prove the following lemma.

Lemma 3.9. Let G be a bipartite graph with sides A and B. Let m, t, d ∈ N. If |A| ≥ R(t, . . . , t,m),
where t is repeated

(
d−1
2

)
times, then at least one of the following assertions holds.

(a) A contains a set A′ ⊆ A of size m such that no two vertices of A′ have a common neighbor;

(b) in G there is a 1-subdivision of Kt with all principal vertices contained in A; or

(c) B contains a vertex of degree at least d.

Let us motivate the statement of the lemma by examining its application to the graph G′

we discussed before. The lemma says that provided A1 is sufficiently large, we will either find a
distance-2 independent set, which is exactly what we are looking for, or a 1-subdivision of Kt, which
should not happen due to Kt 641 G, or we may find a vertex v in D that has degree at least d.
We will add this vertex to the set S1 of vertices to delete and inductively continue with the set
A′1 = NG′(v) ∩ A1. We will apply the lemma again to the bipartite graph induced by A′1 and its
neighborhood and with v deleted (with a smaller value d′), again, giving us either a large distance-2
independent subset (in which case we are done), a 1-subdivision of Kt (which is again not possible
by assumption), or another vertex of high degree. We apply the lemma again and again, always on
the subset of A1 induced by the neighborhood of the high degree vertex, which eventually, if the
initial value of d was chosen large enough, gives us a complete bipartite graph Kt,t. This however,
is not possible, as Kt,t contains Kt itself as a depth-1 minor. We conclude that before we could
apply the lemma t times, we must have found a large distance-2 independent set. Precise argument
will follow, but now we give a proof of Lemma 3.9.

Proof of Lemma 3.9. Assume that B does not contain a vertex of degree at least d (otherwise we
conclude that the third assertion holds). Enumerate the vertices of B as b1, . . . , bn. Let K be the
complete graph with vertex set A whose edges we will color with

(
d−1
2

)
+ 1 colors. We initially

consider all edges as colorless. Now we consider the vertices b1, . . . , bn in increasing order. In each
step i, 1 ≤ i ≤ n, we consider the set X = N(bi)∩A and color each edge uv for u, v ∈ X which has
not previously received a color with an integer between 1 and

(
d−1
2

)
such that no two edges that

are colored in this step get the same color. This is possible as the degree of bi is assumed to be at
most d− 1. Finally, we color all edges which do not have received a color in the steps 1, . . . , n with
color

(
d−1
2

)
+ 1.

As |A| ≥ R(t, . . . , t,m), in the resulting colored graph we can either find a clique of size t whose
edges are all colored with one of the colors 1, . . . ,

(
d−1
2

)
, or a clique of size m whose edges are all

colored with color
(
d−1
2

)
+1. In the latter case, the vertices of the clique define a subset A′ ⊆ A such

that no two vertices in A′ have a common neighbor, as stated in the first assertion of the lemma.
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In the former case, all edges of the monochromatic clique have been added at different steps in
the construction, as all edges receive different colors in each individual step. Hence the edges have
been colored in

(
t
2

)
different steps, and each edge can be associated with a different vertex bi that

caused coloring of exactly this edge. Hence we find a 1-subdivision of Kt with all principal vertices
in A. This is the second assertion of the lemma.

As we discussed, the idea is to apply Lemma 3.9 to the graph G′ defined earlier not once, but
t times. For convenience, we write Rd(t,m) for R(t, . . . , t,m) where the first argument is repeated(
d−1
2

)
times. Then let

R?(s, t,m) :=

{
t if s = 0;

Rk(t,m) if s ≥ 1, where k = R?(s− 1, t,m).

The next lemma explains the iterative application of Lemma 3.9.

Lemma 3.10. Let G be a bipartite graph with partitions A and B. If |A| ≥ R?(t, t,m), then at
least one of the following assertions holds.

(a) A contains a set A′ ⊆ A of size m and B contains a set S of size less than t such that no two
vertices of A′ have a common neighbor outside of S;

(b) in G there is a 1-subdivision of Kt with all principal vertices contained in A;

(c) in G there is a complete bipartite subgraph Kt,t.

Proof. We will iteratively find vertices s1, s2, . . . and subsets A = A0 ⊇ A1 ⊇ A2 ⊇ . . . with
|Ai| ≥ R?(t− i, t,m) and Ai ⊆ N(s1) ∩N(s2) ∩ . . . ∩N(si). Suppose s1, . . . , si and Ai are already
defined for some i < t. Then apply Lemma 3.9 to the graph G[Ai ∪Bi] with d = R?(t− i− 1, t,m),
where Bi = B − {s1, . . . , si}. This application yields either objects witnessing the satisfaction of
the first or the second assertion (for S = {s1, . . . , si}), or gives a vertex si+1 that has at least
R?(t − i − 1, t,m) neighbors in Ai. In the former two cases we may stop the iteration, and in the
latter case we may define Ai+1 := Ai ∩ N(si+1) and proceed. Finally, observe that if s1, . . . , st
and At (with |At| ≥ R?(0, t,m) = t) have been constructed, then {s1, . . . , st} ∪ At is a complete
bipartite graph in G, so the third assertion holds.

Using Lemma 3.10 we may solve directly the case i = 2 of the main construction. Assuming
that |A1| ≥ m1 := R?(t, t,m2), where m2 is the requested size of a distance-2 independent set after
this step, apply Lemma 3.10 to the bipartite graph G′ we defined. This application cannot yield
either a 1-subdivision of Kt or a Kt,t subgraph of G′, since both these graphs contain Kt as a
depth-1 minor, which is excluded since we assumed Kt 641 G. The last conclusion — a set S1 ⊆ D
with |S1| < t together with a subset A2 ⊆ A1 with |A2| ≥ m2 that is distance-2 independent in
G′ − S — is exactly what we were looking for.

As we discussed earlier, the case i = 2 presented above lifts to all even i by applying Lemma 3.6.
More precisely, we apply case i = 2 to the graph H obtained by contracting distance-(i/2) neigh-
borhoods of vertices Ai, and the independent set Ai in H. Observe that in this setting, to exclude
assertions (b) and (c) in Lemma 3.10 it suffices to take t := t(i/2). Indeed, if in the contracted
graph H we find either a 1-subdivision of Kt with all principal vertices in Ai, or a Kt,t with one
side contained in Ai and second outside of Ai, then in the graph before contractions, both of these
would yield a depth-(i/2) minor model of Kt, a contradiction.
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To summarize, we put

mi−1 :=

{(mi+t(i/2)−2
t(i/2)−1

)
if i is odd;

R?(t(i/2), t(i/2),mi) if i is even.

By requesting mr := m, this gives a value of Nr(m) := m0 for which the whole construction can
be performed. This concludes the proof of Lemma 3.4, which was the missing part of the proof of
Theorem 3.2.

We give two remarks about the proof. First, it should be clear that it is algorithmic: a straight-
forward implementation of the proof gives a polynomial-time procedure that given r,m ∈ N together
with G and A of appropriate size, outputs suitable S and B. Note that the procedure needs to have
constants t(i) for i ≤ r hard-coded. Second, the provide proof yields tower-Ramsey bounds on the
function Nr(m), due to stacking applications of Ramsey’s Theorem in the proof of Lemma 3.10.
There is a smarter (though, more involved) way of executing the proof of this lemma, which actually
yields polynomial bounds. As a consequence, the following statement is true: if C is nowhere dense,
then C is uniformly quasi-wide with margins sr and wideness functions Nr(·), where for every fixed
r ∈ N, the function Nr(m) is a polynomial of m. Note that the degree of this polynomial (highly)
depends on the class C and integer r.

4 The splitter game

We now provide an intuitive game characterization of nowhere denseness, which is close in spirit
to uniform quasi-wideness. Historically, it was introduced as a tool in the design of an almost
linear-time FPT algorithm for FO model checking on nowhere dense graph classes.

Definition 4.1. Let G be a graph and let `,m, r ∈ N. The (`,m, r)-Splitter Game on G is played
by two players, Connector and Splitter, as follows. We let G0 := G. In round i of the game,
Connector chooses a vertex vi ∈ V (Gi−1). Then Splitter picks a subset Wi ⊆ N

Gi−1
r (vi) of size at

most m. We let Gi := Gi−1[N
Gi−1
r (vi)]−Wi. Splitter wins if Gi = ∅. Otherwise the game continues

on Gi. If Splitter has not won after ` rounds, then Connector wins.

In the Splitter Game, a strategy for Splitter is, well, what one expects it to be. Formally, it is a
function σ that maps every partial play (v1,W1, . . . , vi,Wi, vi+1) to a new move Wi+1 ⊆ NGi

r [vi+1]
of Splitter. Similarly for Connector. A strategy σ is a winning strategy for Splitter in the (`,m, r)-
splitter game on G if Splitter wins every play in which he follows the strategy σ. If Splitter has a
winning strategy on G, we say that he wins the (`,m, r)-splitter game on G.

We first show that nowhere denseness guarantees that Splitter wins the Splitter Game within
a bounded number rounds.

Lemma 4.2. Let C be a nowhere dense class of graphs. Then for every r ∈ N there are ` ∈ N and
m ∈ N such that for every G ∈ C, Splitter wins the (`,m, r)-Splitter Game on G.

Proof. As C is nowhere dense, it is also uniformly quasi-wide, say with margins (sr)r∈N and wideness
functions (Nr(·))r∈N. Fix r ∈ N and let ` := Nr(2sr + 1) and m := ` · (r + 1). Note that both `
and m only depend on C and r. We claim that for any G ∈ C, Splitter wins the (`,m, r)-Splitter
Hame on G; for this, we present a suitable winning strategy.
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v1

G0

W1

v2

G1

W2
· · ·

Figure 3: First two rounds of the Splitter Game. In the ith round, Connector first picks a vertex
vi and the arena gets restricted to the distance-r neighborhood of vi. Then the Splitter removes
a set Wi of at most m vertices from the arena. The goal of Splitter is to obtain an empty graph
within ` rounds, the goal of Connector is to prevent this.

Let G ∈ C be a graph. In the (`,m, r)-Splitter Hame on G, Splitter uses the following strategy.
In the first round, if Connector chooses v1 ∈ V (G0), where G0 := G, then Splitter chooses W1 :=
{v1}. Now let i ≥ 1 and suppose that v1, . . . , vi−1, G1, . . . , Gi−1,W1, . . . ,Wi−1 have already been
defined. Suppose Connector chooses vi ∈ V (Gi−1). We define Wi as follows. For each j < i,
choose a path Pj,i in Gj−1 of length at most r connecting vj and vi. Such a path must exist

as vi ∈ V (Gi) ⊆ V (Gj) ⊆ N
Gj−1
r [vj ]. We let Wi :=

⋃
1≤j<i V (Pj,i) ∩NGi−1

r [vi]; in other words, the
move Wi of Splitter consists of all vertices of all the paths Pj,i that are still in the arena. Note
that |Wi| ≤ (i − 1) · (r + 1) ≤ m, as the paths have length at most r and hence consist of at
most r + 1 vertices. It remains to be shown is that the length of any such play is bounded by `.

Assume toward a contradiction that Connector may survive for ` rounds. Let (v1, . . . , v`,
G1, . . . , G`,W1, . . . ,W`) be a play witnessing this, where the moves of the Splitter are accord-
ing to the presented strategy. As ` = Nr(2sr + 2), for A := {v1, . . . , v`} there is a set S ⊆ V (G)
with |S| ≤ sr such that A − S contains subset B of size 2sr + 2 that is distance-r independent
in G− S. Suppose B = {vi1 , . . . , vi2sr+2} with i1 < . . . < i2sr+2; for brevity we write wj := vij .

We now consider the pairs (w2j−1, w2j) for 1 ≤ j ≤ sr + 1. By construction, Qj := Pi2j−1,i2j

is a path of length at most r from w2j−1 to w2j in Gi2j−1−1. We now observe that paths Qj , for
j ∈ {1, . . . , sr + 1}, are pairwise disjoint. Indeed, if 1 ≤ j < j′ ≤ sr + 1, then the whole path Qj

was removed by the Splitter in round i2j (formally, V (Qj)∩ V (Gi2j−1) ⊆Wi2j ), hence it is entirely
disjoint with the vertex set of the graph Gi2j′−1−1 due to j′ > j. On the other hand, since Qj′

is entirely contained in the graph Gi2j′−1−1 by definition, indeed Qj and Qj′ are disjoint. Now,
since S contains at most sr vertices, some path Qj has to be entirely disjoint with S. However,
this means that w2j−1 and w2j do not belong to S and are at distance at most r in G − S. This
contradicts the assumption that B is distance-r indendent in G− S and finished the proof.

We now observe that also the converse of Lemma 4.2 holds.

Lemma 4.3. Let C be a class of graphs. If for every r ∈ N there are `,m ∈ N such that for every
graph G ∈ C, Splitter wins the (`,m, r)-splitter game, then C is nowhere dense.
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Proof. We prove the contrapositive. Suppose C is somewhere dense, hence C admits all complete
graphs as depth-r minors, for some fixed depth r ∈ N. Then we claim that for every choice
of `,m ∈ N, there is a graph G ∈ C such that Connector wins the (`,m, 3r+ 1)-splitter game on G.

Fix `,m ∈ N. We choose G ∈ C such that G contains the complete graph K := K`m+1 as a
depth-(3r + 1) minor. Let φ be a minor model of K in G and for every vertex u of K, let γ(u) be
the center of the branch set φ(u), that is, a vertex of φ(u) that is at distance at most r from all
the vertices of φ(u). Connector uses the following strategy to win the (`,m, 3r + 1)-Splitter Game
on G. First, Connector chooses γ(u) for any vertex u of K. The distance-(3r+ 1) ball around γ(u)
contains the whole branch sets of all vertices of K. Splitter removes any m vertices. We actually
allow him to remove the complete branch sets (under φ) containing all m vertices he chose. In
round 2 we may thus assume that we still find the complete graph K(`−1)m+1 as a depth-r minor
of the current arena. By continuing to play in this way until, after round ` the arena still contains
some vertices and the Connector wins.

Lemmas 4.2 and 4.3 together imply the following characterization of nowhere denseness in terms
of the Splitter Game.

Theorem 4.4. For a class of graphs C, the following conditions are equivalent:

• C is nowhere dense;

• for every r ∈ N there exists `,m ∈ N such that for every G ∈ C, Splitter wins the (`,m, r)-
Splitter Game on G.

5 Algorithmic applications: parameterized Distance-r Dominat-

ing Set

As an algorithmic application of uniform quasi-wideness we now design an efficient algorithm for
the (parameterized) Distance-r Dominating Set problem on nowhere dense classes. Recall that
in a graph G, a subset of vertices D is distance-r dominates a subset of vertices A if every vertex
of A is at distance at most r from a vertex of D. Further, D is an distance-r dominating set of G if
D distance-r dominates the whole vertex set. By domr(G,A) we denote the smallest size of a set
that distance-r dominates A in G, and domr(G) — the distance-r domination number of G — is
the smallest size of a distance-r dominating set in G.

We will consider the Distance-r Dominating Set problem defined in the decision variant as
follows: given a graph G and parameter k, is it true that domr(G) ≤ k? In general, our goal will
be two-fold: (a) to design an efficient algorithm assuming r and k are small, and (b) to reduce
the size of the input instance to a function of r and k only. In the terminology of parameterized
complexity, point (a) is to design an efficient fixed-parameter algorithm for the problem, and point
(b) is to design a kernelization procedure.

The main idea is that in the considered problem, every vertex of the graph can serves two
roles. First, it is a potential dominator: a vertex that we may pick to the dominating set so that
it dominates other vertices. Second, it is a dominatee: a vertex that imposes a constraint that it
needs to be dominated. In the beginning, all the vertices start with both roles. We separate the
roles and reduce the number of essential dominatees and of essential dominators separately.

We start with reducing the number of essential dominatees. To formalize the notion of being
essential for getting dominated, we introduce the following definition.
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Definition 5.1. Let G be a graph and k ∈ N. A set Z ⊆ V (G) is a distance-r domination core
for G and k if every set D ⊆ V (G) of size at most k which distance-r dominates Z, also distance-r
dominates V (G).

Thus, intuitively a distance-r domination core is a subset of vertices whose domination forces
the domination of the whole graph. Obviously, Z = V (G) is always a distance-r domination core,
but we will be looking for small domination cores.

Fix a nowhere dense class C of graphs. Then C is uniformly quasi-wide, say with margins
(sr)r∈N and wideness functions (Nr(·))r∈N. Fix r, k ∈ N and let s := s2r. The next, slightly
surprising lemma shows that in a distance-r domination core that is too large one can always find
an irrelevant dominatee that can be safely removed.

Lemma 5.2. Suppose G ∈ C and let Z ⊆ V (G) be a vertex subset satisfying

|Z| ≥ N2r ((k + 1)(r + 1)s + 1) .

Then we can compute in polynomial time a vertex w ∈ Z such that for any set D ⊆ V (G) satisfying
|D| ≤ k, the following equivalence holds:

D distance-r dominates Z if and only if D distance-r dominates Z − {w}.

Proof. By Theorem 3.2 and the remark after its proof, we can find in polynomial time sets S ⊆ V (G)
and B ⊆ Z − S such that |S| ≤ s, |B| ≥ (k + 1)(r + 1)s + 1 > (k + 1)(r + 1)s and B is distance-
2r independent in G − S. For each v ∈ B, compute profiler[v, S], the distance-r profile of v on
S. Recall here that profiler[v, S] is a function from S to {0, 1, . . . , r,∞} such that for a ∈ S we
put profiler[v, S](a) = dist(v, a) if this distance is at most r, and profiler[v, S](a) = ∞ otherwise.
Clearly, we can compute these distance profiles in polynomial time. Note that there are at most
(r + 1)s different distance-r profiles on S. Since |B| > (k + 1)(r + 1)s, there are k + 2 elements
b1, . . . , bk+2 ∈ B which have the same distance profile. Now we choose w := b1 and show that for
any set D ⊆ V (G) with |D| ≤ k, D distance-r dominates Z if and only if D distance-r dominates
Z − {b1}.

b1

bj

x

Z

{b1, . . . , bk+2}

S

D

eq
u
a
l

Figure 4: Situation in the proof of Lemma 5.2.

The direction from left to right is obvious. Now, suppose D distance-r dominates Z − {b1}.
Consider the sets Wi := NG−S

r [bi] for i ∈ {2, . . . , k + 2}. Since B is distance-2r independent in
G−S, the sets Wi are pairwise disjoint. Since there are k+1 of these sets, at least one of them, say
Wj , does not contain any element of D. However, since bj ∈ Z − {b1} and D distance-r dominates
Z − {b1}, there is a path of length at most r from some element x ∈ D to bj . This path must
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go through an element of S. Since b1 and bj have the same distance-r distance profiles on S, we
conclude that there is also a path of length at most r from x to b1 and therefore D distance-r
dominates Z.

An immediate corollary of Lemma 5.2 is that we can always find a small domination core.
Simply start with Z = V (G), which is trivially a distance-r domination core, and apply the above
procedure to remove an irrelevant dominatee from the distance-r domination core Z until |Z| <
N2r ((k + 1)(r + 1)s + 1).

Corollary 5.3. There is an algorithm running in polynomial time that given a graph G ∈ C com-
putes a distance-r domination core of G for parameter k of size smaller than N2r ((k + 1)(r + 1)s + 1).

Having a small domination core is already sufficient to design an efficient parameterized algo-
rithm for the problem.

Lemma 5.4. Given a graph G with n vertices and m edges, vertex subset Z, and numbers k, r ∈ N,
one can decide whether domr(G,Z) ≤ k in time 2k|Z| · |Z|O(1) · (n+m).

Proof. First, we compute the set system

F = {NG
r [u] ∩ Z : u ∈ V (G)}.

This can be done in time O(|Z|(n + m)) by running a BFS from every vertex of Z, recording for
every vertex u ∈ V (G) the profile of its distances to vertices of Z, and collecting sets NG

r [u] ∩ Z
in a trie. Next, observe that domr(G,Z) ≤ k if and only if Z can be covered by at most k sets
from F . As |F| ≤ 2|Z|, this can be done in time 2k|Z| · |Z|O(1) by investigating all subsets of F of
size at most k.

Corollary 5.5. For any nowhere dense class C and r ∈ N, the Distance-r Dominating Set
problem on an n-vertex graph from C can be solved in time f(k) · nc for some function f and a
universal constant c, indepndent of C.

Proof. Using Corollary 5.3, in polynomial time we compute a distance-r domination core Z for G
and k of size at most g(k), for some function g depending only on C and r. By the definition of
a distance-r domination core we have that domr(G) ≤ k if and only if domr(G,Z) ≤ k. Then we
use Lemma 5.4 to verify whether domr(G,Z) ≤ in time 2k·g(k) · g(k)O(1) · n2 and check whether it
is not larger than k.

In the above proof we did not try to optimize the function f(k), but let us take a closer
look on how we can estimate its magnitude. First, the size of the core Z is at most g(k) =
N2r((k+1)(r+1)+1), which, by the remark after the proof of Theorem 3.2, is actually polynomial
in k. Next, the exponential factor 2k|Z| in the statement of Lemma 5.4 comes from a brute-force
bound of 2|Z| on the size of the family F . However, we know that if G is drawn from a fixed nowhere
dense class C and r is fixed — which is the setting considered in Corollary 5.5 — then the size of F is
bounded by Oε(|Z|1+ε) for any ε > 0; this is just neighborhood complexity in nowhere dense classes.
Therefore, the algorithm of Lemma 5.4 in this situation works in time g(k)k(1+ε)+O(1) · (n+m). As
g(k) = kO(1), we conclude that the running time of the whole algorithm is 2O(k log k) ·nc; this is not
bad at all.
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We now move to the second algorithmic corollary, namely reducing the instance size to a function
of k. For this, we additionally need to reduce the number of essential dominators, that is, the number
of vertices that may be used to dominate other vertices. Obviously, only vertices at distance at
most r from a vertex belonging to a distance-r domination core Z are relevant. Furthermore, if
there are two vertices v, v′ ∈ V (G) with Nr[v] ∩ Z = Nr[v

′] ∩ Z, it suffices to keep one of v and v′

as a representative, as they serve the same role when we consider dominating vertices in Z.

Theorem 5.6. Suppose C is a nowhere dense class of graphs and r ∈ N is fixed. Then there exists
a function p : N → N and a polynomial-time algorithm that on input G ∈ C and k ∈ N computes
an induced subgraph H ⊆ G on at most p(k) vertices and a vertex subset Z ⊆ V (H) such that
domr(G) ≤ k if and only if domr(H,Z) ≤ k

Proof. Using the algorithm of Corollary 5.3, we first compute a distance-r domination core Z in G
of size smaller than N2r ((k + 1)(r + 1)s + 1).

Now, for every vertex v ∈ V (G) we compute the set

Lv := NG
r [v] ∩ Z

Consider two vertices v, v′ ∈ V (G) equivalent if Lv = Lv′ . Clearly, the number of equivalence
classes of this relation is at most 2|Z|, hence let A be any set of at most 2|Z| vertices containing one
element from each equivalence class. Construct a set W as follows: start with putting A ∪ Z into
W and then, for every pair of vertices v ∈ A and z ∈ Z, if distG(v, z) ≤ r then add the vertices
of any path of length at most r between v and z to W . Clearly the size of W computed in this
manner is bounded by a function of k only, and we are left with verifying that H := G[W ] and Z
satisfy the asserted property: domr(G) ≤ k if and only if domr(H,Z) ≤ k. Since Z is a distance-r
domination core in G, we have domr(G) ≤ k iff domr(G,Z) ≤ k. Hence, it suffices to prove that
domr(G,Z) = domr(H,Z).

In one direction, if D ⊆ V (H) distance-r dominates Z in H, then D also distance-r dominates
Z in G, because H is an induced subgraph of G. This proves that domr(G,Z) ≤ domr(H,Z).

In the other direction, take any D ⊆ V (G) that distance-r dominates Z in G. For each x ∈ D,
some vertex x′ that is equivalent to x has been included in A. Let D′ := {x′ : x ∈ D}; clearly
|D′| ≤ |D| and D′ ⊆ A ⊆ W . It is now straightforward to see that D′ distance-r dominates Z in
H, since for each x ∈ D the corresponding vertex x′ ∈ D′ distance-r dominates exactly the same
vertices of Z in H as x distance-r dominated in G. This is because we explicitly added to H a path
of length at most r between x′ and every vertex of Z that was distance-r dominated by x′ in G.
This proves that domr(G,Z) ≥ domr(H,Z), so domr(G,Z) = domr(H,Z) and we are done.

Again, let us discuss the obtained bounds on the function p(k). First, as before, the computed
core Z has size at most g(k) = N2r((k+ 1)(r+ 1) + 1), which is actually polynomial in k. Next, the
size of the set A is bounded by the number of possible distance-r neighborhoods in Z, which due
to G being drawn from a fixed nowhere dense class C, is actually bounded by Oε(|Z|1+ε) for any
ε > 0, instead of the trivial 2|Z| upper bound that we used. Hence, the total number of vertices
in H is bounded by a Oε(g(k)2+ε), which is polynomial in k. This means that we have obtained a
polynomial kernel for Distance-r Dominating Set on any nowhere dense class C.

The degree of the polynomial upper bound on the size of the above kernel, while being dependent
only on C and r, is generally large and highly depends on them. However, with other ideas and
more technical work, one can improve the result to an (almost) linear kernel, as explained in the
following theorems.
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Theorem 5.7. Let C be a class of graphs of bounded expansion and r ∈ N be fixed. Then there is a
polynomial-time algorithm that on input G ∈ C and k ∈ N computes an induced subgraph H ⊆ G on
O(k) vertices and a vertex subset Z ⊆ V (H) such that domr(G) ≤ k if and only if domr(H,Z) ≤ k

Theorem 5.8. Let C be a nowhere dense class of graphs and r ∈ N be fixed. Then for every ε > 0
there is a polynomial-time algorithm that on input G ∈ C and k ∈ N computes an induced subgraph
H ⊆ G on O(k1+ε) vertices and a vertex subset Z ⊆ V (H) such that domr(G) ≤ k if and only if
domr(H,Z) ≤ k

We actually already know all the tools needed for the proofs of the above theorems. However,
they are a bit technical and consist of several steps, so we choose to omit them in this edition of
the course. An interested reader is referred to the lecture notes from the previous edition of the
course for a proof of Theorem 5.7.
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