
Chapter 3:

Model-checking on sparse graphs

Compilation date: November 10, 2019

In this chapter we present basic results on connections between the theory of sparse graph
classes and algorithmic finite model theory. This connection can be summarized in one sentence as
follows: for monotone graph classes (i.e. closed under taking subgraphs), the limit of algorithmic
tractability of problems definable in first-order logic is exactly marked by the notion of nowhere
denseness. To understand this claim better, we need to first introduce the language.

1 Elements of model theory

Structures. We will work with logical structures, which can be regarded as a generalization of
graphs. A structure is always over some signature (also called vocabulary), which is just a set
of symbols that are used to describe objects in a structure. We will mostly work with relational
structures, where the signature consists of relation symbols. Each relation symbol has a prescribed
arity, which is a nonnegative integer indicating how many elements are bound in a single tuple in
the relation. For instance, in graphs adjacency is a binary (i.e. arity 2) relation on vertices. Note
that we allow nullary relations, that is, relations of arity 0; these are essentially boolean flags added
to the structure. Throughout this chapter we will also allow unary functions in our signatures; we
note that this is not a usual setting, but it will be convenient for us.

For a signature Σ, a structure A over Σ consists of a universe U and the interpretation of each
symbol from Σ. For a relation symbol R, say of arity k, its interpretation RA ⊆ Uk can be any set of
k-tuples of elements of U . Note that the order of entries in tuples matter: if R is a binary relation,
then it may be that (x, y) ∈ RA, but (y, x) /∈ RA. For a function symbol f , its interpretation fA

can be any function from U to U .
For an example, directed graphs can be modelled as relational structures over a signature

consisting of one binary relation symbol indicating the existence of an edge. Here, the universe
is the vertex set. Undirected graphs can be modelled in the same way by assuming that the
interpretation of the symbol is always symmetric: (x, y) is an edge if and only if so is (y, x).

For a structure A, the Gaifman graph of A, denoted G(A), is the undirected graph with the
vertex set being the universe of A, where two elements are considered adjacent if and only if they
appear together in some tuple in some relation in A. In case A contains some functions, we also
add edges between every element x and its image fA(x).

When we speak about a class of structures, we always mean that those structures have the same
signature. A class of structures has bounded expansion if the Gaifman graphs of structures from
the class form a class of bounded expansion. Same for nowhere denseness etc.

The size of a structure A, denoted ‖A‖, is the cardinality of its universe plus the sum of
cardinalities of all its relations and functions, each multiplied by its arity.

1

First-order logic. For a fixed signature Σ, say consisting only of relation symbols for now,
we may consider the first order logic FO[Σ]. Formulas of this logic use variables which will be
later intrepreted as elements of the universe, and are built from atomic formulas using a few
constructions. The atomic formulas are:

• Equality check: x = y, where x, y are variables.

• Relation check: R(x1, . . . , xk), where x1, . . . , xk are variables and k is the arity of relation R.

Formulas can be combined into larger ones using the following constructions:

• Boolean connectives: if ϕ and ψ are formulas, then we can consider formulas ϕ ∨ ψ, ϕ ∧ ψ,
and ¬ϕ.

• Existential and universal quantification: if ϕ is a formula, then we can write a formula ∃xϕ
and ∀xψ.

Note here that a formula may use variables that are not bound by any quantifier. These are called
free variables and can be thought as parameters fed to the formula: the formula checks whether
some condition between these parameters holds. If x̄ is the set of free variables of a formula ϕ, we
often indicate it by writing ϕ(x̄). A sentence is a formula without free variables.

A formula is quantifier-free if it does not involve any quantifiers. If the signature also contains
function symbols, we can also apply them to variables in atomic formulas. Consequently, even in
quantifier-free formulas we may use atoms like f(g(x)) = g(f(x)) or R(f(x), g(y)).

For a set of variables x̄ and a universe U , we write U x̄ for the set of all valuations of variables
from x̄ in U , which are just functions mapping variables of x̄ to elements of U . We usually think
of elements of U x̄ as of tuples of elements of U , with an implicit assignment between the entries of
the tuple and the variables of x̄.

Now for a formula ϕ(x̄) ∈ FO[Σ], a Σ-structure A with universe U , and ā ∈ U x̄ we may define
whether ϕ(ā) is true in A in the obvious way. We denote this fact by

A, ā |= ϕ or A |= ϕ(ā),

which should be read as “A with valuation ā is a model for ϕ”. For a structure A with universe U
and formula ϕ(x̄), by ϕ(A) we denote the set of all tuples ā ∈ U x̄ for which A |= ϕ(ā). Thinking of
structures as of databases, we sometimes say that ϕ selects ϕ(A) in A.

The model-checking problem is the following: given a sentence ϕ ∈ FO[Σ] and a Σ-structure A,
we would like to decide whether A |= ϕ. Whenever we have a class of structures C, we can restrict
this problem to the input structures belonging to C.

2 Statement of the results

It turns out on classes of sparse structures, the model-checking problem can be solved efficiently.

Theorem 2.1. For every class of structures C with bounded expansion, the model-checking problem
on C can be solved in time f(ϕ) · ‖A‖, where f is some computable function.

Theorem 2.2. For every nowhere dense class of structures C and any ε > 0, the model-checking
problem on C can be solved in time f(ϕ) · ‖A‖1+ε, where f is some computable function.

2

In fact, up to certain complexity assumptions, Theorem 2.2 constitutes the limit of algorithmic
tractability of model-checking on monotone graph classes: an algorithm with a similar running time
should not be expected on any monotone class that is somewhere dense. Since a precise statement
of this fact would require some prior knowledge of parameterized complexity, we omit its further
discussion.

In the next section we will give a full proof of Theorem 2.1. The main idea is to use low-
treedepth colorings, as we did for Subgraph Isomorphism. The proof of Theorem 2.2 is more
difficult and we will not give it.

3 Model-checking on classes of bounded expansion

The basic idea for the proof is to give a quantifier elimination procedure: an algorithm that given a
formula ϕ(x̄) and structure A, iteratively simplifies the formula while enriching the structure with
more information until the formula becomes quantifier-free and its satisfaction on a given tuple
can be checked trivially. We will start with designing such a procedure for very simple structures:
(colored) forests of bounded depth. Then we will lift the result to classes of bounded treedepth,
and then to arbitrary classes of bounded expansion using low treedepth colorings.

3.1 Forests of bounded depth

A class of structures C is a class of forests of bounded depth if the signature of C consists only
of relation symbols of arity 0 and 1, plus one function symbol which we shall denote parent(·).
Moreover, we assume that in all structures in C, the interpretation of parent(·) forms the parent
function of some rooted forest of depth at most d on the elements of the universe, where d ∈ N is a
fixed constant. Here, roots of the forest can be recognized as the vertices that point to themselves
in the parent(·) function.

The following lemma provides quantifier elimination on classes of forests of bounded depth.

Lemma 3.1. Let C be a class of forests of bounded depth and let ϕ(x̄) be an FO formula over the
signature of C. There exists a class of forests Ĉ of bounded depth (same as of C), a quantifier-free
formula ϕ̂(x̄) over the signature of Ĉ, and a linear-time algorithm that, given a forest T ∈ C, outputs
a forest T̂ ∈ Ĉ with the same universe and parent function as T, such that

ϕ(T) = ϕ̂(T̂).

Proof. We proceed by induction on the structure of the input formula by proving the statement for
all subformulas appearing in ϕ(x̄) in a bottom-up manner. For atomic formulas there is nothing
to prove. Also the induction step for negation and disjunction is very easy. For negation, suppose
we are considering a subformula of the form ¬ψ. Then having applied the induction assumption
to ψ, it suffices to just negate the obtained quantifier-free formula ψ̂. Similarly, for a disjunction
ψ1 ∨ ψ2 we apply the induction assumption to ψ1 and ψ2, thus obtaining formulas ψ̂1 and ψ̂2 and,
for a given forest T ∈ C, forests T̂1 and T̂2 with same universe and parent function as T. Then we
may take the formula ψ̂1 ∨ ψ̂2 and forest T̂ obtained by superposing T̂1 and T̂1: the signature of T̂
is the union of signatures of T̂1 and T̂1, and in T̂ we just inherit all relations from both T̂1 and T̂2.

The remaining induction step is the one for quantifiers. As a universal quantifier can be re-
placed by an existential quantifier combined with two negations, we need to prove the statement

3

for subformulas of the form ∃zψ(ȳ, z), assuming the statement is already proved for ψ(ȳ, z). By
applying the induction assumption to ψ(ȳ, z), we can assume that ψ(ȳ, z) is quantifier-free.

Observe that since ψ(ȳ, z) is quantifier-free, it is a boolean combination of atomic checks of the
following form:

• R holds, for some nullary relation R;

• R(parenti(s)) holds, for some unary relation R, 0 ≤ i ≤ d, and variable s ∈ ȳ, z;

• parenti(s) = parentj(t), for some 0 ≤ i, j ≤ d and variables s, t ∈ ȳ, z.

Note that the number of different atomic checks as above is bounded by O(d2|ȳ|2). Let a basic
formula be a conjunction of atomic checks and their negations, where each possible atomic check
as above is taken either in positive or in negative (i.e. negated). Then ψ(ȳ, z) can be equivalently
rewritten as a disjunction over some set of basic formulas; these are exactly basic formulas which
imply ψ(ȳ, z). Since disjunction commutes with existential quantification, and we have already
considered the induction step for a disjunction of two subformulas, we may apply the reasoning to
each such basic formula and then combine the results. Thus, from now on we assume that ψ(ȳ, z)
is a basic formula.

Consider any forest T ∈ C with universe U , and take any ā, b ∈ U ȳ,z Observe that since ψ(ȳ, z)
is basic, it is either non-satisfiable, or it exactly checks the isomorphism type of the subforest of T
induced by the nodes of ā, b and their ancestors in T; such subforest shall be denoted by T[ā, b]. As
non-satisfiable formulas can be just removed from consideration, we may assume the following.

Claim 1. There is a forest S of depth at most d over the signature of C, and a mapping τ from
ȳ, z to the nodes of S such that every leaf of S is in the image of τ , such that for every T ∈ C and
ā, b ∈ U ȳ,z, we have T |= ψ(ā, b) if and only if T[ā, b] is isomorphic to S, where the isomorphism
sends nodes mapped to variables ȳ, z by the valuation ā, b to respective nodes assigned by τ to
variables ȳ, z.

Now let us analyze the forest S. By somewhat abusing the notation, for a variable s ∈ ȳ, z, we
identify s with the node τ(s) of S.

Consider first the case that in S, z is an ancestor of some variable s ∈ ȳ. Then we can
finish the proof very easily: ψ(ȳ, z) forces the equality z = parenti(s), for some i ≤ d. Hence,
formula ∃zψ(ȳ, z) is equivalent to ψ̂(ȳ) obtained from ψ(ȳ, z) by replacing every occurrence of z
with parenti(s). Obviously, we then have Ĉ = C and T̂ = T.

Hence, we proceed with the other case: z is not an ancestor of any of the variables of s ∈ ȳ.
From now on we shall suppose that in S, the node z has a common ancestor with some variable
s ∈ ȳ; in the end we will argue that the remaining case can be treated in a similar way. Let then
i ∈ {1, . . . , d} be minimal such that parenti(z) = parentj(s) for some j ∈ {0, 1, . . . , d} and s ∈ ȳ.
Note that then z is a leaf in S and z = parent0(z), parent1(z), . . . , parenti−1(z), parenti(z) form the
path from z to the lowest ancestor of z that has at least two children in S (or belongs to ȳ itself).
Letting k ≤ d be the depth of z in S, note that parenti(z) is at depth ` := k − i.

For a forest T ∈ C, we shall call a node q at depth `+ 1 good if there is a descendant r of q at
depth k such that the path from r to q in T is isomorphic to the path from z to parenti−1(z) in
S (this isomorphism should preserve satisfaction of unary relations on the paths). Further, for a
node p at depth `, let ζ(p) ∈ {0, 1, . . . , |ȳ|,∞} be the number of good children of p, or ∞ if their
number is larger than |ȳ|.

We are ready to define the forest T̂. It is obtained from T by adding |ȳ|+ 3 unary relations:

4

• There is one new unary relation that selects all good nodes at depth `+ 1.

• For each m ∈ {0, 1, . . . , |ȳ|,∞} there is a new unary relation that selects all nodes p at depth
` for which ζ(p) = m.

Note that all nullary and unary relations present in T are preserved intact in T̂. It is easy to
compute T̂ from T in linear time using a bottom-up dynamic programming to distinguish all good
nodes. We take Ĉ = {T̂ : T ∈ C}, so the signature of Ĉ is obtained from the signature of C by adding
all the new unary relations described above.

We now construct the formula ψ̂(ȳ) that will be equivalent to ∃zψ(ȳ, z), in the sense that ψ̂(ȳ)
selects same tuples in T̂ as ∃zψ(ȳ, z) selects in T. For T ∈ C with universe U and ā ∈ U ȳ, in ψ̂(ā)
we perform the following checks:

• First, check whether the satisfaction of nullary relations in T is as presecribed by ψ, and
whether T[ā] is appropriately isomorphic to S[ā].

• Second, check whether in T the number of good children of parenti(ā(s)) is larger than the
number of good children of parenti(ā(s)) that are contained in T[ā].

It is easy to see that the above checks can be performed using a quantifier-free formula ψ̂(ȳ), applied
to ā in T̂. For the second check, observe that the number of good children of parenti(ā(s)) in T is
directly encoded using new unary relations at parenti(ā(s)), while all the children of parenti(ā(s))
that are contained in T[ā] can be accessed by applying the parent function appropriately many
times to the nodes of ā — so we can count how many of them are good. Also, note that there
are at most |ȳ| such children, so it is fine not to distinguish between the numbers above |ȳ| when
counting good children of parenti(ā(s)).

To see that ψ̂(T̂) = ∃zψ(T) observe that the second check presented above is equivalent to
checking whether there is a possibility to valuate variable z to some node b so that T[ā, b] is
appropriately isomorphic to S.

We are left with arguing what happens when in S, node z has no common ancestor with any
other variable from ȳ. Then z and its ancestors form a separate connected component in the
forest S. We perform an analogous argumentation, with the following modification. In a given
forest T, we mark every root q as good if there is a descendant r of q such that the ancestors of r in
T form a path that is isomorphic to the path of the ancestors of z in S. Now instead of memorizing
for every node the number of good children (up to threshold |ȳ|), which would make little sense now,
we use |ȳ|+ 2 new nullary relations to memorize whether the number of good roots is 0, 1, . . . , |ȳ|,
or larger than |ȳ|. The rest of the reasoning follows in the same way.

3.2 Structures of boundeed treedepth

We now lift the quantifier elimination procedure to classes of bounded treedepth. This lift will be
almost automatic, but we first need to encode structures of bounded treedepth in rooted forests.

Lemma 3.2. Let C be a class of structures of bounded treedepth and let ϕ(x̄) be an FO formula
over the signature of C. There exists a class of forests of bounded depth Ĉ, a formula ϕ̂(x̄) over
the signature of Ĉ, and a linear-time algorithm that given A ∈ C outputs a forest T ∈ Ĉ with the
following properties: T has the same universe as A, E(G(T)) ⊆ E(G(A)), and

ϕ(A) = ϕ̂(T).

5

Proof. We may assume that the signature of C consists only of relation symbols. This is because
every function f can be replaced with a new binary relation Rf that binds each argument a with
f(a), that is, Rf (a, b) is true if and only if b = f(a). Note that this requires also an easy syntactic
modification of the formula ϕ(x̄): whenever f(x) is used for some variable x, instead we use a new
variable x′ that is introduced using existential quantification and bound to x by requiring that
Rf (x, x′) holds.

Having this assumption, we present an algorithm that for a given structure A ∈ C computes a
suitable forest T. The formula ϕ̂(x̄) will be defined on the way, while the class Ĉ will comprise all
forests T produced for all input A ∈ C.

For a given A ∈ C, we first compute the Gaifman graph G := G(A). Then we compute any
depth-first search forest T of G; we treat T as a rooted forest on the same vertex set as G, which
is the universe of A. Observe that if d is the bound on the treedepth of the Gaifman graphs of
structures in C, then these Gaifman graphs will not contain paths longer than d′ := 2d, hence the
depth of T will be bounded by d′. We will now define a forest T by taking T , treating it as a logical
structure with parent function, and adding some unary relations that will encode the relations from
A. As clearly E(T) ⊆ E(G), we will have E(G(T)) = E(T) ⊆ E(G) = E(G(A)).

Consider any relation R present in A, say of arity k. Observe that for every tuple ā =
(a1, . . . , ak) ∈ R, the elements of ā form a clique in G, hence they are pairwise bound by the
ancestor-descendant relation in T . Therefore, there exists an element of ā, say ai, such that all aj for
j ∈ {1, . . . , k} are ancestors of aj . Let π : {1, . . . , k} → {0, . . . , d} be such that aj = parentπ(j)(ai),
for j ∈ {1, . . . , k}. Now, for every π as above we introduce a new unary relation Rπ in T which
selects all elements e such that

(parentπ(1)(e), parentπ(2)(e), . . . , parentπ(k)(e)) ∈ R.

Now, every atomic check of the form R(x1, . . . , xk) in A can be replaced by the following equivalent
formula in T. We make a disjunction over all i ∈ {1, . . . , k} and all π : {1, . . . , k} → {0, . . . , d}
satisfying π(i) = 0 of the following assertions:

Rπ(xi) ∧
k∧
j=1

(
xj = parentj(xi)

)
.

By performing this construction for every relation R in A we obtain a forest T and a formula ϕ̂(x̄)
over the signature of this forest such that ϕ(A) = ϕ̂(T).

By composing the transformations provided by Lemmas 3.2 and 3.1 in order we obtain the
following corollary, which is just a strengthening of Lemma 3.2 by requiring that the output formula
is quantifier-free.

Lemma 3.3. Let C be a class of structures of bounded treedepth and let ϕ(x̄) be an FO formula
over the signature of C. There exists a class of forests of bounded depth Ĉ, a quantifier-free formula
ϕ̂(x̄) over the signature of Ĉ, and a linear-time algorithm that given A ∈ C outputs a forest T ∈ Ĉ
with the following properties: T has the same universe as A, E(G(T)) ⊆ E(G(A)), and

ϕ(A) = ϕ̂(T).

6

3.3 Classes of bounded expansion

We can now state and prove the result about quantifier elimination on classes of bounded expansion.

Theorem 3.4. Let C be a class of structures of bounded expansion and let ϕ(x̄) be an FO formula
over the signature of C. There exists a class of bounded expansion Ĉ, a quantifier-free formula ϕ̂(x̄)
over the signature of Ĉ, and a linear-time algorithm that given A ∈ C outputs a structure Â ∈ Ĉ
with the following properties: Â has the same universe as A, E(G(Â)) ⊆ E(G(A)), and

ϕ(A) = ϕ̂(Â).

Proof. We again proceed by induction on the structure of the formula ϕ(x̄), proving the statement
for all subformulas in a bottom-up manner. Similarly as in the proof of Lemma 3.1, there is nothing
to prove for atomic subformulas, and the induction step for boolean connectives is easy. We are
left with giving the induction step for subformulas of the form ∃zψ(ȳ, z). Again, by applying the
induction assumption to ψ(ȳ, z), we may assume that this formula is quantifier-free.

Similarly as in the proof of Lemma 3.2, we may remove functions from the structure A by
replacing each function f with a new binary relation Rf binding arguments with values. For this,
we also repeatedly replace every usage of a term of the form f(x) in ψ(ȳ, z) with a new variable
x′, quantified existentially, and add a constraint Rf (x, x′) to ψ. Note that this operation does not
change the Gaifman graph of A. Thus, from now on we may assume that the input structure A does
not contain any functions, but this comes at the cost of introducing new existentially quantified
variables. Hence, we are working with a formula of the form ∃z̄ψ(ȳ, z̄), where now z̄ is a tuple of
variables, rather than one variable.

Let k = |ȳ|+ |z̄| be the total number of variables present. Since k is considered a constant and
C has bounded expansion, in linear time we can compute a treedepth-k coloring λ of G := G(A),
that is, a coloring of the universe U of A with M colors, where M is a constant depending only on
C and k, such that every k color classes induce in G a subgraph of treedepth at most k. Let Ξ be
the set of all k-sized subsets of colors under λ; then |Ξ| =

(
M
k

)
. For every set X of k colors under λ,

let A[X] be the substructure of A induced by the vertices with colors in X. That is, the universe of
A[X] is λ−1(X) and in A[X] we preserve all tuples from all relations from A whose all entries are
in λ−1(X). Letting D be the class of all structures over the signature of C whose Gaifman graphs
have treedepth at most k, we see that A[X] ∈ D for all X ∈ Ξ.

Now comes the key claim, which follows immediately from the fact that ∃z̄ψ(ȳ, z̄) is an existential
formula that involves only k variables, while Ξ contains all k-tuples of colors in λ.

Claim 2. For any ā ∈ U ȳ, we have that A |= ∃z̄ψ(ā, z̄) if and only if there exists X ∈ Ξ such that
ā ⊆ λ−1(X) and A[X] |= ∃z̄ψ(ā, z̄).

We now apply Lemma 3.3 to the class D, formula ∃z̄ψ(ȳ, z̄), and structures A[X] for X ∈ Ξ.
This provides us with a class of bounded-depth forests D̂, formula ψ̂(ȳ), and structures Â[X] for
X ∈ Ξ (computable in linear time) such that

ψ̂(Â[X]) = ∃z̄ψ(A[X]) for all X ∈ Ξ.

Now we modify the forests Â[X] for X ∈ Ξ by renaming symbols so that their signatures become
disjoint; in particular, each forest Â[X] uses its own parent function parentX(·). This in particular

7

means that now Â[X] ∈ D̂X , where D̂X is obtained from D̂ by the same renaming of the signature,
and we may similarly modify ψ̂(ȳ) to a formula ψ̂X(ȳ) so that

ψ̂X(Â[X]) = ∃z̄ψ(A[X]) for all X ∈ Ξ. (1)

We now define the final structure Â as the superposition of structures Â[X] for X ∈ Ξ. That is,
the universe of Â is U and for every X ∈ Ξ, we add all relations from Â[X] to Â (note that these
relations are restricted to elements of λ−1(X)). Observe that since the signatures of structures Â[X]
are disjoint, the signature of Â is the (disjoint) union of those signatures and relations originating
in different structures Â[X] do not mix with each other. In addition, we add M unary predicates,
each selecting vertices of a different color in λ.

Note that thus, we have

E(G(Â)) =
⋃
X∈Ξ

E(G(Â[X])),

however by Lemma 3.3 we know that

E(G(Â[X])) ⊆ E(G(A[X])) ⊆ E(G) for all X ∈ Ξ.

Hence we have
E(G(Â)) ⊆ E(G(A)),

as required.
Finally, we define the formula ψ̂(ȳ) as follows:

ψ̂(ȳ) =
∨
X∈Ξ

[∧
s∈ȳ

(λ(s) ∈ X) ∧ ψ̂X(ȳ)

]
.

Here, λ(s) ∈ X is a shorthand for a disjunction of size |X| = k that checks whether s is of any of
the colors in X. It follows directly from Claim 2 and (1) that

ψ̂(Â) = ∃z̄ψ(A).

Since ψ̂(ȳ) is quantifier-free, we are done.

We observe that Theorem 2.1 trivially follows from Theorem 3.4. Indeed, by applying The-
orem 3.4 to the input sentence ϕ and structure A, we obtain a quantifier-free sentence ϕ̂ and a
structure Â, computable in linear time from A, such that ϕ is true in A if and only if ϕ̂ is true in Â.
But ϕ̂ is a quantifier-free sentence, which means that it is just a boolean combination of nullary
relation checks. Therefore, its satisfaction in Â can be checked in constant time and we are done.

8

