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1 Introduction

In the previous chapter we started by attempting to define sparsity by bounding the edge density,
i.e., the ratio between the number of edges and the number of vertices, in the studied graph classes.
This turned out to be equivalent (up to multiplicative factor 2 between the parameters) to bounding
the degeneracy. Recall that a graph G is d-degenerate if every its subgraph has a vertex of maximum
degree at most d, or equivalently if one can arrange the vertices of G into a linear order so that
every vertex has at most d neighbors among vertices smaller in the order. The degeneracy of a
graph is the minimum d for which this is possible. A vertex ordering with the minimum degeneracy
provides sort of a decomposition for the graph, which can be algorithmically or combinatorially
useful — e.g. for the purpose of employing some iteration or induction.

At the end of the day, we would like to study sparsity that is persistent under local contractions,
as made explicit in the definitions of bounded expansion and nowhere denseness. Therefore, in our
definitions we replaced the notion of a subgraph by the notion of a shallow minor, which enables
us to inspect, in some sense, structures visible at any constant depth. It is natural to ask whether
the definition of degeneracy via vertex orderings also admits a generalization to looking at any
constant depth. The answer to this question is affirmative and comes in the form of generalized
coloring numbers. These parameters, defined through the existence of vertex orderings with certain
separation properties, are crucial tools for algorithmic and combinatorial treatment of classes of
bounded expansion and, to some extent, as well of nowhere dense classes.

2 Definitions and basic properties

Let G be a graph. By a vertex ordering of G we mean any enumeration of V (G) with numbers from
1 to |V (G)|, i.e., a bijective function σ : V (G)→ {1, . . . , |V (G)|}. We often think of σ as the linear
order ≤σ on the assigned precedences: for vertices u, v ∈ V (G), we write u ≤σ v iff σ(u) ≤ σ(v).

We need to consider what is the right generalization of condition “every vertex has at most
d neighbors among vertices smaller in the ordering” to looking at depth r instead of depth 0.
There are three natural definitions, illustrated in Figure 1; each of them corresponds to a different
generalized coloring number, and each of them is useful for some purposes. We first generalize, in
two different ways, the concept of reaching a smaller vertex by a single edge to reaching a smaller
vertex by a short path.

Definition 2.1. Let G be a graph, let σ be a vertex ordering of G, and let r ∈ N. For vertices
u, v ∈ V (G) with u ≤σ v, we say that:

• u is strongly r-reachable from v, if there is a path of length at most r from u to v whose every
internal vertex w satisfies v <σ w; and
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• u is weakly r-reachable from v, if there is a path of length at most r from u to v whose every
internal vertex w satisfies u <σ w.

For a vertex v, the set of vertices strongly, respectively weakly, r-reachable from v in σ is denoted
by SReachr[G, σ, v], respectively by WReachr[G, σ, v].

Note that every vertex is both weakly and strongly r-reachable from itself. Another notion of
reaching is defined via the existence of many disjoint paths reaching smaller vertices.

Definition 2.2. Let G be a graph, let σ be a vertex ordering of G, and let r ∈ N. The r-
admissibility of a vertex v of G, denoted admr(G, σ, v), is equal to one plus the maximum size of a
family of paths P with the following properties:

• every path from P has length at most r and leads from v to some vertex smaller than v in σ;

• paths from P are pairwise vertex-disjoint apart from sharing the endpoint v.

Observe that by trimming each path of P to the first encountered vertex smaller than v in σ,
in the above definition we may assume without loss of generality that all the vertices traversed by
paths from P, apart from the endpoints other than v, are not smaller than v in σ. Note also that
the r-admissibility is equal not to |P|, where P is a path family as above, but to 1 + |P|. The
rationale behind the +1 summand is to be consistent with the choice of definitions for weak and
strong reachability; this will become clear later on.

σ

vu

σ

vu

σ

v

u ∈ SReach4[G, σ, v]

u ∈WReach8[G, σ, v]

adm3(G, σ, v) = 5

Figure 1: Different notions of reaching smaller vertices by short paths. In the first panel, u is
strongly 4-reachable from v. In the second panel, u is weakly 8-reachable from v. In the third
panel, the 3-admissibility of v is 5.

Note that WReachr[G, v, σ] and SReachr[G, σ, v] are sets, while admr(G, σ, v) is a number. We
are now ready to define the generalized coloring numbers.

Definition 2.3. Let G be a graph and let r ∈ N. For a vertex ordering σ of G, we define the weak
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r-coloring number, the strong r-coloring number, and the r-admissibility of σ as follows:

wcolr(G, σ) := max
v∈V (G)

|WReachr[G, σ, v]|,

scolr(G, σ) := max
v∈V (G)

|SReachr[G, σ, v]|,

admr(G, σ) := max
v∈V (G)

admr(G, σ, v).

The weak r-coloring number, the strong r-coloring number, and the r-admissibility of G are defined
as the minimum among vertex orderings σ of G of the respective parameter for σ. That is, if by
Π(G) we denote the set of vertex orderings of G, then

wcolr(G) := min
σ∈Π(G)

wcolr(G, σ),

scolr(G) := min
σ∈Π(G)

scolr(G, σ),

admr(G) := min
σ∈Π(G)

admr(G, σ).

Note that for r = 1, all the above three notions are equal to the degeneracy plus one; for r > 1
the notions are already different. The following inequalities follow directly from the definitions.

Proposition 2.4. For every r ∈ N, graph G, and its vertex ordering σ, the following holds:

admr(G, σ) ≤ scolr(G, σ) ≤ wcolr(G, σ).

Proof. For the second inequality, note that SReachr[G, σ, v] ⊆ WReachr[G, σ, v] for all v ∈ V (G).
For the first inequality, note that if for a vertex v we have a path family P witnessing the value of
admr(G, σ, v), and without loss of generality the endpoints of paths from P other than v are the
only vertices traversed by these paths that are smaller than v in σ, then each of these endpoints
belongs to SReachr[G, σ, v]− {v}.

It appears that the generalized coloring numbers are actually functionally equivalent: we not
only have the bounds as in Proposition 2.4, but actually any of them can be bounded both from
below and from above by a function of any other one. This enables convenient switching between
coloring numbers according to which is more suitable for a particular need. We prove this fact in
the following two lemmas.

Lemma 2.5. For every r ∈ N, graph G, and its vertex ordering σ, the following holds:

scolr(G, σ) ≤ 1 + (admr(G, σ)− 1)r.

Proof. Let k := admr(G, σ)− 1; we need to prove that scolr(G, σ) ≤ 1 + kr. Take any vertex v and
let A := {u : u <σ v} be the set of vertices smaller than v in σ. Run a BFS from v in the graph
G−A, and let T be the obtained shortest path spanning tree of the connected component of v in
G−A. For each vertex u ∈ A that is strongly r-reachable from u in σ, there is a path Pu of length
at most r witnessing this fact. Path Pu starts in v, and traverses only vertices of V (G)−A before
finally jumping to u ∈ A and finishing there. If u′ ∈ V (G) − A is the vertex preceding u on Pu,
then we can replace the subpath of Pu from v to u′ by a shortest path between v and u′ contained
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Figure 2: Construction of the tree T ′ (in green). The remainder of the tree T is depicted in grey.

in T ; the length of Pu does not increase in this manner. Thus, from now on we may assume that
all paths Pu are contained in the tree T , apart from their last edges.

Let T ′ be the union of paths Pu for u ∈ SReachr[G, σ, v]− {v}; see Figure 2 for an illustration.
From the above assumption it follows that T ′ is a tree. Moreover, if we root T ′ at v, then T ′ has
depth at most r and the leaves of T ′ are exactly the vertices of SReachr[G, σ, v]− {v}.

We now claim that every internal vertex w of T ′ has at most k children in T ′. Indeed, otherwise
we could find more than k vertex-disjoint paths of length at most r from w to A, one per each
subtree rooted at a child of w. Since w /∈ A implies v ≤σ w, this would imply admr(G, σ,w) > k+1,
contradicting the assumption that admr(G, σ) = k + 1.

Summarizing, T ′ is a tree of depth at most r, whose every internal vertex has at most k
children. Hence T ′ has at most kr leaves. Since the leaves of T ′ are exactly the vertices of
SReachr[G, σ, v]− {v}, it follows that |SReachr[G, σ, v]| ≤ 1 + kr; as v was chosen arbitrarily, this
concludes the proof.

Lemma 2.6. For every r ∈ N, graph G, and its vertex ordering σ, the following holds:

wcolr(G, σ) ≤ 1 + r(scolr(G, σ)− 1)r.

Proof. Let k := scolr(G, σ) − 1; we need to prove that wcolr(G, σ) ≤ 1 + rkr. For each vertex
u consider the set Bu := SReachr[G, σ, u] − {u}, which obviously has size at most k, and fix an
arbitrary enumeration {b1u, b2u, . . . , b`u} of Bu, where ` = |Bu| ≤ k.

Let us fix an arbitrary vertex v of G; we are going to examine its weak r-reachability set. Take
any u that belongs to WReachr[G, σ, v] − {v} and let P be any path witnessing this fact. That
is, P has length at least 1 and at most r, leads from v to u, and all internal vertices of P are not
smaller than u in σ. Call a vertex w on P a milestone if all vertices traversed by P between v
and w are not smaller than w in σ (see Figure 3 for an example). Note that v itself is the first
milestone, whereas u is the last milestone by the definition of weak reachability. Let w1, w2, . . . , wp
be the consecutive milestones on P , where w1 = v and wp = u. It is straightforward to see from
the definition that

u = wp <σ wp−1 <σ . . . <σ w2 <σ w1 = v.

We now claim the following: for each i ∈ {1, . . . , p − 1}, the infix of P between wi and wi+1

witnesses that wi+1 ∈ SReachr[G, σ,wi] − {wi}. Indeed, this infix has length at most r, and all
vertices traversed by P between wi and wi+1 (exclusive) have to be larger than wi in σ, for otherwise
we would see another milestone between wi and wi+1.

Since wi+1 ∈ SReachr[G, σ,wi] − {wi} = Bwi , we have that wi+1 = bjiwi for some ji satisfying
1 ≤ ji ≤ |Bwi | ≤ k. Now define the signature of u as follows:

φ(u) := (j1, j2, . . . , jp−1).
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σ

w1 = vw4 = u w3 w2

Figure 3: The example path from the second panel of Figure 1 has 4 milestones: w1 = u, w2 = v,
and two intermediate ones.

As the length of P is at most r, we have p ≤ r + 1. Therefore, the signature of any vertex
u ∈WReachr[G, σ, v]−{v} is a nonempty sequence of length at most r with entries from {1, . . . , k}.

Now comes the crucial observation: different vertices u, u′ ∈ WReachr[G, σ, v] − {v} always
receive different signatures; that is, for u 6= u′ we have φ(u) 6= φ(u′). To see this, observe that
starting with the first milestone v, one can, using a straightforward induction, recover consecutive
milestones from the signature alone. The last milestone is the vertex whose signature we consider.

We infer that the size of WReachr[G, σ, v]−{v} is bounded by the number of nonempty sequences
of length at most r with entries from {1, . . . , k}, which in turn is equal to k1 + k2 + . . .+ kr ≤ rkr.
Thus |WReachr[G, σ, v]| ≤ 1 + rkr for every vertex v, implying that wcolr(G, σ) ≤ 1 + rkr.

Putting Proposition 2.4 and Lemmas 2.5 and 2.6 together yields the following.

Corollary 2.7. For every r ∈ N, graph G, and its vertex ordering σ, the following holds:

admr(G, σ) ≤ scolr(G, σ) ≤ wcolr(G, σ) ≤ 1 + r(admr(G, σ)− 1)r
2
.

In particular, for every r ∈ N and graph G we have:

admr(G) ≤ scolr(G) ≤ wcolr(G) ≤ 1 + r(admr(G)− 1)r
2
.

We will later use the fact that admissibility has good algorithmic properties: it is relatively
easy to compute it. More precisely, in future lectures we will use the following statement.

Theorem 2.8. Let C be a fixed class of bounded expansion and let r ∈ N be fixed. Then there
exists an algorithm that, given an n-vertex graph G ∈ C, computes a vertex ordering σ of G with
admr(G, σ) = admr(G) in time O(n).

Since C and r are fixed in the above statement, the constants hidden in the O(·) notation may,
and do, depend on r and the parameters (grads) of C; this dependence is exponential. The proof
of Theorem 2.8 is quite difficult and relies on auxiliary data structures, and therefore we will not
cover it. However, during the tutorials we will see a simple proof of the following result.

Theorem 2.9. There is an algorithm that given a graph G with n vertices and m edges, and
parameter r ∈ N, computes in time O(n3m) a vertex ordering σ of G with admr(G, σ) ≤ r·admr(G).

The algorithm of Theorem 2.9 can be applied on any graph, and the constant hidden in the O(·)
notation does not depend on r (i.e., r is not fixed). In general most of the algorithms presented
in this chapter can be made to work in linear time (with hidden multiplicative constants heavily
depending on r and the class of bounded expansion from which a graph is drawn), but in order
not to obscure the presentation with implementation details of secondary importance, we will omit
these aspects.
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Observe that the abovementioned algorithms for computing (approximate) r-admissibility may
also serve as approximation algorithms for the weak and the strong r-coloring numbers, due to
the bounds of Corollary 2.7. This is particularly important for the algorithmic aspects of the
theory of sparse graphs, as many algorithmic results rely on first computing a vertex ordering with
bounded weak r-coloring number, and then using it for further computations. Developing efficient
approximation algorithms for the weak r-coloring number is a major open problem, both from the
theoretical and from the practical point of view.

3 Relation with density of shallow minors

The crucial point of the generalized coloring numbers is that they are not only functionally equiv-
alent to each other, but they are also functionally equivalent to the density of shallow minors.
Therefore, classes of bounded expansion may be equivalently defined as those, where for every
r ∈ N the weak r-coloring numbers of graphs from the class are bounded by a constant depending
only on r. We prove this in the following two lemmas. The first one is easy: a dense depth-r minor
witnesses that there is no vertex ordering with a small weak (4r+1)-coloring number. These second
one will be harder: we will prove that if an algorithm for computing the r-admissibility of a graph
fails to produce an ordering with small admissibility, this is because it encounters an obstacle in
the form of a dense depth-(r − 1) topological minor.

Lemma 3.1. For every r ∈ N and graph G the following holds:

∇r(G) ≤ wcol4r+1(G).

Proof. Let d := wcol4r+1(G). It suffices to show that every depth-r minor H of G contains a vertex
of degree at most d. Indeed, since the class {G}Or is closed under taking subgraphs by definition,
this would imply that every depth-r minor of G is d-degenerate, which means that the ratio between
the number of its edges and the number of its vertices is at most d.

Let H be a depth-r minor of G and let φ be a depth-r minor model witnessing this fact. Further,
let σ be a vertex ordering of G witnessing that wcol4r+1(G) ≤ d; that is, |WReach4r+1[G, σ, v]| ≤ d
for each v ∈ V (G). For every vertex u ∈ V (H), let γ(u) be the smallest, in σ, vertex of the
branch set φ(u); since the branch sets are pairwise disjoint, vertices φ(u) are pairwise different for
u ∈ V (H). Let then umax ∈ V (H) be the vertex of H for which γ(umax) is the largest in σ. We
claim that umax has at most d neighbors in H, which will conclude the proof.

Take any neighbor w of umax in H. Since the branch sets φ(umax) and φ(w) have radii at most r
and there is an edge between them, there is a path P of length at most 4r+1 that leads from γ(umax)
to γ(w), and which traverses only vertices of φ(umax)∪ φ(w). Observe further that γ(w) is smaller
in σ than all the other vertices of φ(umax)∪φ(w): it is smaller than all the other vertices of φ(w) by
definition, and by the choice of umax it is also smaller than γ(umax), which in turn is smaller than all
the other vertices of φ(umax). This means that P witnesses that γ(w) ∈WReach4r+1[G, σ, γ(umax)].
Since this weak reachability set has size at most d, we conclude that indeed umax has at most d
neighbors in H.

Lemma 3.2. For every r ∈ N and graph G, the following holds

admr(G) ≤ 1 + 6r
(
d∇̃r−1(G)e

)3
.

6



Proof. For a set S ⊆ V (G) and v ∈ S, let br(S, v) be the maximum size of a family P of paths in
G with the following properties:

• each path P ∈ P has length at most r, leads from v to some other vertex of S, and all its
internal vertices do not belong to S; and

• for all distinct P, P ′ ∈ P, we have V (P ) ∩ V (P ′) = {v}.

We order the vertices of G as v1, v2, . . . , vn as follows. Assume vi+1, . . . , vn have already been
ordered. Define Si := {v1, . . . , vi}. Choose any v ∈ Si such br(Si, v) is minimum possible, and
define vi := v. (In particular, vn is any vertex of minimum degree in G.) Clearly, the r-admissibility
of the resulting order is 1 + max1≤i≤n br(Si, vi).

Let d := d∇̃r−1(G)e and assume towards a contradiction that in the above construction we
encounter in some iteration i a set S := Si such that br(S, v) > ` := 6rd3 for all v ∈ S. For each
v ∈ S, fix a family of paths Pv witnessing that br(S, v) > `; in particular, |Pv| > `. Let s := |S|.

S

v

Figure 4: Situation in the proof of Lemma 3.2. Paths from Q are depicted in red; even though this
might not be visible in the figure, they are pairwise internally vertex-disjoint. For one particular
vertex v, families Pv and P ′v are depicted. The latter one is in dark blue, while the suffixes of paths
from Pv that were dropped in the construction of paths from P ′v are in light blue.

Our goal is to construct from the set S and path families {Pv}v∈S a depth-(r − 1) topological
minor of G which is too dense, i.e., has edge density larger than d. As a first step, we choose a
maximal family Q of paths satisfying the following conditions:

• each path from Q has length at most 2r − 1, connects two distinct vertices of S, and all its
internal vertices do not belong to S;

• each pair of distinct vertices of S is connected by at most one path from Q; and

• paths from Q are pairwise internally vertex-disjoint.

Note that these are not paths from the families Pv, but arbitrary paths in G. Let H be the graph
with vertex set S and edges between all pairs of vertices u, v ∈ S that are connected by a path in
Q. Then H 4top

r−1 G, hence |Q| = |E(H)| ≤ d · s. Let K be the set of all internal vertices of the
paths in Q. As every path from Q has at most 2r−2 internal vertices, we have |K| ≤ s ·d · (2r−2).

As H 4top
r−1 G, we have that H is 2d-degenerate. Hence H admits a proper coloring with (2d+1)

colors, which implies that H contains an independent set I of size at least s
2d+1 .
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For every v ∈ S, we define P ′v to be the family of prefixes paths in Pv from v to a vertex in
(S ∪K)− {v} with all internal vertices in V (G)− (S ∪K). More precisely, for every path P ∈ Pv,
we let P ′ be the prefix of P from v to the first vertex belonging to (S ∪K) − {v}, and we let P ′v
comprise paths P ′ for all P ∈ Pv. Note that P ′ is correctly defined because the endpoint of P
different from v belongs to S − {v}. Obviously, we have |P ′v| = |Pv| for all v ∈ S.

Here comes the crucial observation: for distinct u, v ∈ I, the paths in P ′u and P ′v are pairwise
internally vertex-disjoint. Indeed, suppose that some paths P1 ∈ P ′u and P2 ∈ P ′v intersected at
some vertex w ∈ V (G) − (K ∪ S). Then the union of paths P1 and P2 would contain a path of
length at most 2r − 2 connecting u and v that is internally disjoint from all paths in Q. Since u
and v are not adjacent in H (recall that u, v ∈ I and I is an independent set in H), this path could
be added to Q. This would contradict the maximality of Q.

We now construct a depth-(r − 1) topological minor J of G on vertex set S ∪ K as follows:
contract all paths in

⋃
v∈I P ′v to single edges. By the observation of the previous paragraph, all

these paths are pairwise internally vertex-disjoint, so this contraction is well-defined and yields a
depth-(r − 1) topological minor of G.

It remains to estimate the edge density of J . On one hand, we have

|V (J)| ≤ |S|+ |K| ≤ s+ s · d · (2r − 2) ≤ s · d · (2r − 1).

On the other hand, every vertex v ∈ I brings at least |P ′v| > ` edges to J , hence

|E(J)| > |I| · ` ≥ s

2d+ 1
· `.

The lemma statement is trivial when G is edgeless, so we may assume otherwise; in particular
d ≥ 1. Then

|E(J)|
|V (J)|

>
s · `

(2d+ 1) · s · d · (2r − 1)
>

`

6rd2
= d,

which is a contradiction with J being a depth-(r − 1) topological minor of G.

Lemmas 3.1 and 3.2 together with the results from Chapter 1 (more precisely, the bounds
between densities of shallow minors and shallow topological minors) yield the following.

Theorem 3.3. Let C be a class of graphs. Then the following conditions are equivalent.

1. C has bounded expansion.

2. There is a function f : N→ N such that wcolr(G) ≤ f(r) for all G ∈ C and r ∈ N.

3. There is a function f : N→ N such that scolr(G) ≤ f(r) for all G ∈ C and r ∈ N.

4. There is a function f : N→ N such that admr(G) ≤ f(r) for all G ∈ C and r ∈ N.

Further, in the first chapter we proved that if a class C is nowhere dense, then there is a function
f : N×R→ N such that for all r ∈ N, ε > 0, and G ∈ COr, we have that |E(G)|

|V (G)| ≤ f(r, ε) · |V (G)|ε.
Observe that the relations between parameters: grads, topological grads, weak coloring numbers,
strong coloring numbers, admissibility, are governed by polynomial upper bounds; that is, each
parameter above is bounded by a polynomial of any other parameter, possibly with increased
radius r. This yields the following.

Theorem 3.4. Let C be nowhere dense class of graphs. Then there is a function f : N × R → N
such that wcolr(G) ≤ f(r, ε) · |V (G)|ε for all r ∈ N, ε > 0, and G ∈ C.
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4 Universal orderings

The proof of Lemma 3.2 is based on the following claim. Recall that for a graph G, vertex subset
S ⊆ V (G), v ∈ S, and r ∈ N, by br(S, v) we denote the maximum cardinality of a family of paths
P such that each P ∈ P has length at most r, leads from v to another vertex of S, and is internally
disjoint from S, while paths from P pairwise share only the vertex v.

Lemma 4.1. Suppose G is a graph and S ⊆ V (G) is a vertex subset such that

br(S, v) > 6rd3 for all vertices v ∈ S,

for some r, d ∈ N. Then G contains a depth-(r− 1) topological minor of edge density larger than d.

A careful inspection of the proof of the above lemma shows that it can be modified to the
following variant.

Lemma 4.2. Suppose G is a graph and S ⊆ V (G) is a vertex subset such that

br(S, v) > α−1 · 6rd3 for at least α|S| vertices v ∈ S,

for some r, d ∈ N and a real α ∈ (0, 1]. Then G contains a depth-(r − 1) topological minor of edge
density larger than d.

Proof sketch. Let T ⊆ S be the set of those vertices v ∈ S for which br(S, v) > α−1 · 6rd3. Then
|T | ≥ α|S|. Assuming by contradiction that ∇̃r−1(G) ≤ d, we may modify the reasoning from the
proof of Lemma 3.2 as follows. When we construct the independent set I in the auxiliary graph
H, we may consider only the vertices of T and include a 1

2d+1 -fraction of them — namely, we take
the largest intersection of T with a color class in a (2d + 1)-coloring of H. Hence we have I ⊆ T

and |I| ≥ |T |
2d+1 ≥

α|S|
2d+1 . The rest of the construction proceeds as before. In the final estimation of

number of edges in the obtained topological minor J we see that there is an additional multiplicative
factor α originating in the lower lower bound on the cardinality of I, but also a multiplicative factor
α−1 originating in the higher lower bound on the cardinalities of families Pv for v ∈ I. These two
factors cancel out and we conclude that the edge density of J is larger than d, a contradiction.

We will now use Lemma 4.2 to reason about the existence of universal orderings for classes of
bounded expansion. The issue is as follows. Let C be a class of bounded expansion and consider
some G ∈ C. By Theorem 3.3 there is a function f : N → N, depending only on C, such that we
can find an ordering σ1 with wcol1(G, σ1) ≤ f(1), and an ordering σ2 with wcol2(G, σ2) ≤ f(2),
and an ordering σ3 with wcol3(G, σ3) ≤ f(3), and so on. However, a priori the construction of
each ordering σr depends on the value of r, so for different r we may obtain different orderings
σr. It is natural to ask whether there exists one universal ordering σ that works for all values of r
simultaneously. This is indeed true, as we prove next.

Theorem 4.3. For every class of bounded expansion C there is a function f : N→ N such that for
every G ∈ C there exists a vertex ordering σ of G satisfying

wcolr(G, σ) ≤ f(r) for all r ∈ N.
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Proof. Fix any G ∈ C and let n = |V (G)|. We construct the ordering σ = (v1, v2, . . . , vn) from
right to left, similarly as in the proof of Lemma 3.2. That is, in every step of the construction we
assume that vertices vi+1, . . . , vn have already been fixed, and now we would like to select vertex
vi from S := V (G) \ {vi+1, . . . , vn}.

Let s = |S|. By Lemma 4.2, the number of vertices of S satisfying

b1(S, v) > 21 · 6 · 1 · d∇̃0(C)e3

is at most s
2 . Similarly, the number of vertices of S satisfying

b2(S, v) > 22 · 6 · 2 · d∇̃1(C)e3

is at most s
4 . In general, for r ≤ log2 s, the number of vertices of S satisfying

br(S, v) > 2r · 6rd∇̃r−1(C)e3

is at most s
2r . Summing the above bounds up, we conclude that for at least

|S| −
(
|S|
2

+
|S|
4

+ . . .+
|S|

2blog2 sc

)
=

|S|
2blog2 sc

≥ 1

vertices v ∈ S the following assertion holds: for all r ≤ log2 s, we have

br(S, v) ≤ 2r · 6rd∇̃r−1(C)e3 (1)

Now observe that for r > log2 s, for every v ∈ S we have

br(S, v) ≤ |S| = s = 2log2 s ≤ 2r,

hence for r > log2 s the upper bound (1) holds trivially. Therefore, there exists v ∈ S satisfying (1)
for all r ∈ N. By picking always such a vertex as the next vi, we obtain an ordering σ satisfying

admr(G, σ) ≤ 2r · 6rd∇̃r−1(C)e3 for all r ∈ N.

It now remains to apply Corollary 2.7 to conclude that the numbers wcolr(G, σ) are universally
bounded by a function of r which depends only on C.

We note that the ordering σ provided by Theorem 4.3 may have suboptimal values of admr(G, σ)
for individual values of r, but they will be always bounded provided G is drawn from a fixed class
of bounded expansion.

5 Duality between independent sets and dominating sets

In this section we provide one of the foremost examples of applications of generalized coloring
numbers: approximation algorithms for the independence number and the domination number of
a graph. We start with a few definitions.

For a radius r ∈ N and a graph G, a subset of vertices I ⊆ V (G) is distance-r independent
if vertices of I are pairwise at distance more than r; formally, for all distinct u, v ∈ I, we have
distG(u, v) > r. Note that a vertex subset I is distance-2r independent in G if and only if the
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distance-r neighborhoods (balls of radius r) of vertices of I are pairwise disjoint. The size of a
largest distance-r independent set in a graph G is called the distance-r indepdendence number of
G and will be denoted by indr(G).

A subset of vertices D ⊆ V (G) is called a distance-r dominating set in G if every vertex of G
is at distance at most r from some vertex of D. Equivalently, the distance-r neighborhoods of the
vertices of D in total cover the whole vertex set of G. The size of a smallest distance-r dominating
set in a graph G is called the distance-r domination number of G and will be denoted by domr(G).

Thus, finding large distance-2r independent sets is sort of a packing problem, where we try
to pack as many disjoint balls of radius r in a given graph. On the other hand, finding a small
distance-r dominating sets is sort of a covering problem, where we want to cover the graph with
as few balls of radius r as possible. One can also think of it as a hitting problem: a distance-r
dominating set is precisely a set that intersects all distance-r neighborhoods in a graph. Thus, it is
easy to see that in any graph, the optimum for the first problem is a lower bound on the optimum
for the second.

Lemma 5.1. For every r ∈ N and graph G, the following holds:

ind2r(G) ≤ domr(G).

Proof. Let I be a distance-2r independent set of maximum size in G. Then distance-r neigh-
borhoods of vertices of I are pairwise disjoint, hence every distance-r dominating set in G has
to contain at least one vertex from each of these distance-r neighborhoods in order to distance-r
dominate I. Consequently, every distance-r dominating set of G has size at least |I|.

In general, there are graphs with distance-2 independence number equal to 1 and arbitrarily
large distance-1 domination number, so we cannot hope for any reasonable inequality in the other
direction. However, if we restrict attention to classes of bounded expansion, it turns out that be-
tween the distance-2r independence number and distance-r domination number there is a constant
multiplicative gap.

Theorem 5.2. For every r ∈ N and graph G, the following holds:

domr(G) ≤ wcol2r+1(G)2 · ind2r+1(G).

Moreover, there is an algorithm with running time O(n3m) that given G, r, and a vertex ordering σ
of G with wcol2r+1(G, σ) = c, computes a distance-r dominating set D of G and a distance-(2r+1)
independent set I of G satisfying |D| ≤ c2 · |I|.

Note that in Theorem 5.2, the right hand side of the inequality contains the distance-(2r+1) in-
dependence number, which may be even smaller than the distance-2r independence number. Before
we proceed to the proof of Theorem 5.2, let us infer the following algorithmic corollary. Here, we
consider the algorithmic problems Distance-r Dominating Set and Distance-r Independent
Set, where given a graph G and parameter r ∈ N, our goal is to compute the smallest distance-r
dominating set, respectively the largest distance-r independent set, in G.

Corollary 5.3. For every class of bounded expansion C and every r ∈ N, the Distance-r Dom-
inating Set problem and the Distance-r Independent Set problem admit constant-factor ap-
proximation algorithms running in time O(n3m). The approximation factor depends on C and r,
while the constant hidden in the O(·) notation does not.
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Proof. By Theorem 2.9, given a graph G ∈ C and r ∈ N we may compute in time O(n3m) a vertex
ordering σ with adm2r+1(G, σ) ≤ (2r + 1) · adm2r+1(C). By Corollary 2.7, we have

wcol2r+1(G, σ) ≤ 1 + (2r + 1)((2r + 1) · adm2r+1(C)− 1)(2r+1)2 =: c.

Now, apply the algorithm of Theorem 5.2 on G, r, and σ, yielding a distance-r dominating set D
and a distance-(2r + 1) independent set I with |D| ≤ c2 · |I|. By Lemma 5.1, we have

|D| ≤ c2 · |I| ≤ c2 · ind2r+1(G) ≤ c2 · ind2r(G) ≤ c2 · domr(G),

so the size of D is at most c2 times the optimum. This yields the approximation algorithm for the
Distance-r Dominating Set problem. For the independence, observe that

|I| ≥ |D|/c2 ≥ domr(G)/c2 ≥ ind2r(G)/c2 ≥ ind2r+1(G)/c2,

so the size of I is at least 1/c2 times the optimum, both for 2r-independent sets and for (2r + 1)-
independent sets. This yields the approximation algorithm for Distance-2r Independent Set
and Distance-(2r + 1) Independent Set.

We now proceed to the proof of Theorem 5.2.

Proof of Theorem 5.2. We give a proof of the algorithmic result, as it trivially implies the stated
inequality by taking σ to be a vertex ordering of G with the optimum (2r + 1)-weak coloring
number. It is easy, using a breadth-first search, to verify in time O(m) for two vertices u <σ v
whether u ∈ WReach2r+1[G, σ, v]. By applying this for every pair of vertices, we may compute in
time O(n2m) the set WReach2r+1[G, σ, v] for every v ∈ V (G).

We now apply the following greedy procedure, which will maintain three sets of vertices:

• D, the constructed distance-r dominating set;

• A, which will eventually be turned into a distance-(2r + 1) independent set; and

• R, the set of vertices that remain to be dominated

We maintain the invariant that R comprises vertices of G that are not distance-r dominated by D.

1. Start with D := ∅, A := ∅, and R := V (G).

2. As long as R is non-empty, perform the following:

(a) Let v be the vertex of R that is the smallest in σ.

(b) Add v to A.

(c) Add all vertices of WReach2r+1[G, σ, v] to D.

(d) Remove from R every vertex that became distance-r dominated by vertices added to D.

It is straightforward to implement the block under the loop in time O(nm), by running a breadth-
first search from every vertex added to D, so the whole algorithm runs in time O(n2m). Also, the
following assertions follow immediately from the algorithm:

• At the end D is an distance-r dominating set of G, because R becomes empty.

12
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Figure 5: Illustration for the two claims in the proof of Theorem 5.2.

• At the end we have |D| ≤ c · |A|, as with every vertex added to A we add at most c vertices
to D.

It remains to find a large distance-(2r+1) independent set within A. We do this using the following
two claims.

Claim 1. For each u ∈ V (G) there is at most one vertex v ∈ A such that u ∈WReachr[G, σ, v].

Proof. Suppose otherwise: there are two different vertices v, v′ ∈ A with u ∈ WReachr[G, σ, v] ∩
WReachr[G, σ, v

′]. Without loss of generality suppose v <σ v
′; this implies that v was added to A

before v′. Since u ∈WReachr[G, σ, v], we have that u was added to D when v was added to A (or
u was added to D even before). In particular, at this moment, every vertex at distance at most
r from u, in particular v′, was removed from R. However, this contradicts the assumption that
v′ ∈ A, since we select to A only vertices that, at the moment of their selection, belong to R. y

Claim 2. For each v ∈ A there are at most c vertices w ∈ A with w ≤σ v and distG(v, w) ≤ 2r+1.

Proof. Take any such vertex w ∈ A and let P be any path connecting w and v that has length at
most 2r + 1. Let uw be the vertex of P that is the smallest in σ, and let r1, r2 be the lengths of
the subpaths of P from w to uw and from uw to v, respectively; in particular r1 + r2 ≤ 2r + 1.
These subpaths certify that uw ∈ WReach2r+1[G, σ,w] ∩WReach2r+1[G, σ, v], so in particular uw
was added to D when w was added to A (or even before). Observe that we cannot have r2 ≤ r,
because then after adding uw to D the vertex v would be removed from R, a contradiction with
v ∈ A. Hence r2 ≥ r + 1, so r1 ≤ r, and thus uw ∈ WReachr[G, σ,w]. By the first claim we infer
that w is the unique vertex of A for which uw ∈ WReachr[G, σ,w]. We conclude that vertices uw
are pairwise different for all w ∈ A with w ≤σ v and distG(v, w) ≤ 2r + 1. Since every such vertex
uw belongs to WReach2r+1[G, σ, v] and this set has size at most c, the claim follows. y

Construct now an auxiliary graph H on the vertex set A, where distinct vertices v, w ∈ A
are adjacent if and only if distG(v, w) ≤ 2r + 1. It is straightforward to construct H in time
O(nm) by running a breadth-first search from every vertex of A. The second claim states that the
restriction of σ to A is a vertex ordering of H with degeneracy c−1, which implies that H admits a
proper coloring with c colors; such a coloring can be obtained in time O(n2) by employing a greedy
algorithm. At least one of the color classes in this coloring has size at least |A|/c; let us denote it
by I. By construction we have that I is a (2r + 1)-independent set in G and it has size

|I| ≥ |A|/c ≥ |D|/c2,

which concludes the proof.
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6 Neighborhood complexity

The next topic of our structural investigations is neighborhood complexity. The setting is as follows.
Suppose we have fixed some radius r ∈ N, and we investigate a graph G and a subset of its vertices
A ⊆ V (G). Suppose further that what interests us is how different vertices of the graph “interact”
with A, where interaction is some “local” relation. The simplest example, on which we will focus,
is just the distance relation: for a vertex u ∈ V (G), the vertices of A with which u interacts are
simply those that are at distance at most r from u; in other words, we investigate the distance-r
neighborhood of u in A defined as N r

G[u] ∩ A, where N r
G[u] comprises of all vertices at distance at

most r from u. The question is: how many different interactions (distance-r neighborhoods) can
there be? In general graphs it can be of course exponential in |A|. It turns out that in classes
of bounded expansion this number is always linear in the size of A, as explained in the following
theorem, on which we will focus now.

Theorem 6.1. Let C be a class of bounded expansion and let r ∈ N. There exists a constant c,
depending only on C and r, such that for every G ∈ C and nonempty A ⊆ V (G), we have

|{N r
G[u] ∩A : u ∈ V (G)}| ≤ c · |A|.

Actually, we will prove a stronger result: not only the number of different distance-r neigh-
borhoods is linear, but even a number of distance-r profiles is linear, where a distance-r profile is
essentially a distance-r neighborhood enriched with information on the actual values of distances
not greater than r.

Definition 6.2. For r ∈ N, a graph G, a vertex subset A ⊆ V (G), and a vertex u ∈ V (G), the
distance-r profile of u on A is the function profiler[u,A] : A→ {0, 1, . . . , r,∞} defined as follows: for
a ∈ A, if distG(u, a) ≤ r then profiler[u,A](a) = distG(u, a), and otherwise profiler[u,A](a) = ∞.
A function f : A→ {0, 1, . . . , r,∞} is realized as a distance-r profile on A if there exists u ∈ V (G)
with f = profiler[u,A].

Observe that two vertices with the same distance-r profiles on A have the same distance-r
neighborhood in A, hence to prove Theorem 6.1 it suffices to prove the following.

Theorem 6.3. Let C be a class of bounded expansion and let r ∈ N. There exists a constant c,
depending only on C and r, such that for every G ∈ C and nonempty A ⊆ V (G), the number of
different functions from A to {0, 1, . . . , r,∞} realized as distance-r profiles on A is at most c · |A|.

Proof. Denote d := wcol2r(C); since C has bounded expansion, d is a constant depending only on
r and C. We will give a proof that the number of different functions realized as distance-r profiles
on A is bounded by

1 + d · 2d−1 · (r + 2)d · |A|,

hence setting c := 1 + d · 2d−1 · (r + 2)d will suffice.
Since G ∈ C, there is some vertex ordering σ of G with wcol2r(G, σ) ≤ d; we fix such an

ordering for the rest of the proof. For brevity, for u ∈ V (G) we write WReachr[u] instead of
WReachr[G, σ, u].

Let B :=
⋃
a∈A WReachr[a]. Obviously B ⊇ A and |B| ≤ d|A|, because |WReachr[a]| ≤

wcol2r(G, σ) ≤ d for each a ∈ A. For u ∈ V (G), we define the local separator of u as

X[u] := WReachr[u] ∩B.
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The name is justified by the fact that X[u] is a separator for paths of length at most r from u to
A in the following sense.

Claim 3. For each vertex u ∈ V (G), every path of length at most r connecting u with a vertex of
A contains a vertex of X[u].

Proof. Take any such path P and let x be the smallest vertex on P in the order σ. Then the prefix
of P up to x and the suffix of P from x onward witness that x ∈WReachr[u] ∩B. y

We next show that if two vertices have the same local separator and the same distance-r profile
on it, then they actually have the same distance-r profile on A. This corroborates the intuition
that all the “information flow” between a vertex and A has to pass through its local separator.

A
B

X

v

a

x

u

Figure 6: Situation in the proof of Claim 4.

Claim 4. For every pair of vertices u, v ∈ V (G), if X[u] = X[v] = X for some X ⊆ B and
profiler[u,X] = profiler[v,X], then also profiler[u,A] = profiler[v,A].

Proof. By symmetry, it suffices to show that if for some a ∈ A and q ≤ r we have distG(u, a) ≤ q,
then also distG(v, a) ≤ q. Let P be a path of length at most q that connects u and a. Since
q ≤ r, by Claim 3 we have that P contains a vertex of X, say x. In particular P witnesses that
distG(u, x) + distG(x, a) ≤ q ≤ r. Since profiler[u,X] = profiler[v,X] and distG(u, x) ≤ r, we have
that distG(u, x) = distG(v, x). Consequently, by the triangle inequality we have

distG(v, a) ≤ distG(v, x) + distG(x, a) = distG(u, x) + distG(x, a) ≤ q,

and we are done. y

Let
X := {X[u] : u ∈ V (G)} − {∅}.

In other words, X comprises all nonempty subsets of B that are realized as a local separator
for some vertex u. Observe that since for each u ∈ V (G) we have X[u] ⊆ WReachr[u] and
|WReachr[u]| ≤ wcol2r(G, σ) ≤ d, each set in X has size at most d. Thus, for a given X ∈ X the
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number of different distance-r profiles on X is bounded by the total number of functions from X
to {0, 1, . . . , r,∞}, which in turn is upper bounded by (r+ 2)d. Therefore, it suffices to prove that

|X | ≤ d · 2d−1 · |A|. (2)

Indeed, then on each local separator from X we will have at most (r + 2)d different distance-r
profiles, yielding, by Claim 4, at most d · 2d−1 · (r+ 2)d · |A| different distance-r profiles on A. The
additional +1 summand is because we also need to take into consideration vertices u with X[u] = ∅;
again by Claim 4, all those vertices have the same profile on A (it is not hard to see that this profile
maps every vertex of A to ∞).

Hence we are left with proving (2). For X ∈ X let us define

φ(X) := the largest vertex of X in the ordering σ.

Thus, φ is a function from X to B. Since |B| ≤ d|A|, to show (2) it suffices to prove the following.

Claim 5. For each b ∈ B we have |φ−1(b)| ≤ 2d−1.

Proof. It suffices to show that for each X ∈ φ−1(b) we have X ⊆ WReach2r[b]. Indeed, since
|WReach2r[b]| ≤ d, there are at most 2d−1 different subsets of WReach2r[b] containing b, and by
the assertion above these will be the only candidates for sets from φ−1(b).

σ

b ux

P

Q

Figure 7: Situation in the proof of Claim 5. The vertices of X are depicted in blue. The concate-
nation of paths P and Q is a walk of length at most 2r that witnesses that x ∈WReach2r[b].

Let then X ∈ X be such that φ(X) = b, that is, b is the largest element of X in σ. Since X ∈ X ,
there is a vertex u ∈ V (G) such that X = X[u]. Take any x ∈ X. As X ⊆ WReachr[u], there is
a path P of length at most r from u to x such that x is the smallest vertex traversed by P in the
ordering σ. Similarly, since b ∈ X ⊆WReachr[u], there is a path Q of length at most r from u to
b such that b is the smallest vertex traversed by P in the ordering σ. By the choice of b we have
that x ≤σ b, hence all vertices traversed by P or Q are not smaller than x in σ. We conclude that
the concatenation of P and Q witnesses that x ∈ WReach2r[b]. As x was chosen arbitrarily, this
implies that X ⊆WReach2r[b] and finishes the proof. y

As we discussed, Claim 5 implies (2), which in turn implies the statement of the theorem.

An analogous result holds for nowhere dense classes, but it is more difficult and we will not
prove it.

Theorem 6.4. Let C be a nowhere dense class, r ∈ N, and ε > 0. There exists a constant c,
depending only on C, r, and ε, such that for every G ∈ C and nonempty A ⊆ V (G), the number of
different functions from A to {0, 1, . . . , r,∞} realized as distance-r profiles on A is at most c·|A|1+ε.
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7 Low tree-depth decompositions

Let us recall the definition of treedepth.

Definition 7.1. Let T be a rooted tree. For u, v ∈ V (T ) we write u ≤T v if u lies on the unique
shortest path from v to the root of T . The height of T is the number of vertices on a longest
root-leaf path in T . The closure of T , denoted clos(T ), is the graph with vertex set V (T ) and
uv ∈ E(clos(T )) if and only if u <T v or v <T u. A rooted forest F is a disjoint union of rooted
trees, the height of F is the maximum height among trees T ∈ F . and the closure of F , denoted
clos(F ), is the union of all clos(T ) for trees T in F .

Definition 7.2. Let G be a graph. The tree-depth of G, denoted td(G), is the minimum height of
a rooted forest F such that G ⊆ clos(F ).

Figure 8: A graph and its tree-depth decomposition of height 4.

A rooted forest F with G ⊆ clos(F ) is often called a tree-depth decomposition of G. Note that
we may assume w.l.o.g. that V (F ) = V (G), for other vertices may be safely removed.

Equivalently, the tree-depth of a graph can be defined using the following recursive formula.

Lemma 7.3. For each graph G the following holds:

td(G) =


1 if |V (G)| = 1

1 + minv∈V (G) td(G− v) if G is connected and |V (G)| > 1

maxi∈{1,...,k} td(Gi) if G1, . . . , Gk are the components of G.

Interestingly, tree-depth can be seen as the limit of the sequence of weak coloring numbers for
larger and larger radii, as made precise in the following lemma that was discussed on the first
lecture.

Lemma 7.4. Let G be an n-vertex graph. Then

wcol1(G) ≤ wcol2(G) ≤ . . . ≤ wcoln(G) = wcol∞(G) = td(G).

Baker’s technique. To get some motivation and intuition, let us discuss the celebrated Baker’s
layering technique for planar graphs. Let us recall the following statement from the first lecture.

Theorem 7.5. A connected planar graph of radius r has treewidth at most 3r + 2.
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The following observation, known as the Baker’s layering technique, is a cornerstone of many
algorithms in planar graphs (in particular, most of the approximation algorithms in planar graphs).

Theorem 7.6. Given a planar graph G and an integer p, one can in polynomial time color G with
p+ 1 colors such that any set of i ≤ p colors induces a graph of treewidth at most 3i+ 2.

Proof. Without loss of generality, assume that G is connected, as otherwise apply the algorithm to
each connected component independently.

Fix a root vertex v ∈ G and perform breadth-first from v. Let Lk be the set of vertices within
distance exactly k from v. Assing to a vertex w ∈ V (G) color dist(v, w) mod (p+ 1). That is, we
use {0, 1, . . . , p} as the set of p+ 1 colors and color Lk with color k mod (p+ 1).

For a integers k ≥ 0 and 1 ≤ i ≤ p, consider the graph Gk,i induced by
⋃k+i−1
j=k Lj . Let G′k,i

be constructed as follows: start with a graph induced by
⋃k+i−1
j=0 Lj and then contract

⋃k−1
j=0 Lj

onto v. G′k,i has radius at most i and thus treewidth at most 3i + 2. Consequently, for every set
I ⊆ {0, 1, . . . , p} of size |I| ≤ p, every connected component of G[

⋃
i∈I Li] has treewidth at most

3|I|+ 2.

The above trick comes in many variants and in many of the variants can be generalized to any
proper minor closed graph classes. A variant of such a statement is also true in graphs of bounded
expansion. However, then we need to allow much more colors (making the result less interesting
from the point of view of approximation algorithms), but instead we obtain a bound on treedepth,
not only treewidth.

Low tree-depth colorings. We now come to the definition of low tree-depth decompositions or
low tree-depth colorings.

Definition 7.7. Let G be a graph and let r ∈ N. An r-tree-depth coloring of G is a coloring of
vertices of G with some set of colors such that any r′ ≤ r color classes induce a subgraph with
tree-depth at most r′.

Thus, in an r-tree-depth coloring, every color class must be an independent set, every pair of
color classes must induce a forest of stars, and so on up to depth r. We will now prove that the
weak coloring numbers and low tree-depth colorings are strongly related, and in particular classes of
bounded expansion can be characterized as those that admit r-tree-depth colorings with a bounded
number of colors, for every r ∈ N.

Lemma 7.8. Let G be a graph and let r ∈ N. If wcol2r−2(G) ≤ m, then the vertices of G can be
colored with m colors so that any for connected subgraph H ⊆ G, either some color appears exactly
once in H or H receives at least r distinct colors.

Proof. Let σ be an ordering of V (G) with wcol2r−2(G, σ) ≤ m. Color the vertices greedily with m
colors, from left to right along the order σ, such that the color assigned to a vertex v is distinct
from all colors assigned to vertices weakly (2r−2)-reachable from v. We claim that this coloring,
call it λ, satisfies the desired properties.

Let H be a connected subgraph of G and let v be the minimum vertex of H with respect to σ.
If the color λ(v) appears exactly once in H, then we are done.
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Hence assume that λ(v) occurs more than once in H. We shall prove that H receives at least
r different colors. To this end, we will find paths P1, . . . , Pr−1 such that

H ⊇ P1 ⊇ P2 ⊇ . . . ⊇ Pr−1

and vertices u0, u1, . . . , ur−2 with

u0 ∈ V (H)− V (P1) and ui ∈ V (Pi)− V (Pi+1) for 1 ≤ i ≤ r − 2

such that the color λ(ui) does not appear in Pj for all 0 ≤ i < j ≤ r − 1. Furthermore, we will
guarantee that |V (Pi)| ≥ 2r−i−1 for all 1 ≤ i ≤ r − 1, which in particular implies |V (Pr−1)| ≥ 1.
Hence, the colors λ(ui) for 0 ≤ i ≤ r − 2 are all distinct and we can find one additional vertex
ur−1 ∈ V (Pr−1) whose color is distinct from all other colors. This gives us r distinct colors in total.

Let u 6= v be a vertex of H with λ(u) = λ(v) and let P = v, v1, . . . , vq = u be any path in H
connecting v and u; such path exists since H is connected. We must have q > 2r−2, for otherwise
v would be weakly (2r−2)-reachable from u and we would have λ(v) 6= λ(u). Let u0 := v and let
P1 := v1, . . . , v2r−2 . Clearly P1 has 2r−2 vertices and with the same argument as above, no vertex
of P1 has color λ(u0), as u0 is weakly (2r−2)-reachable from every vertex of P1.

If the paths P1, . . . , Pi have been constructed and satisfy the above conditions, we can repeat
the above argument to find ui and Pi+1 with the desired properties. Simply let ui be the vertex
which is the smallest with respect to σ on Pi and argue as above that its color under λ is unique
on Pi, for it is weakly (2r−2)-reachable from every vertex of Pi. Now let Pi+1 be the larger of the
two subpaths into which the removal of ui breaks Pi. Since Pi contained at least 2r−i−1 vertices, it
follows that Pi+1 contains at least 2r−i−2 vertices.

As we will see in a moment, the properties of the coloring yielded by Lemma 7.8 in fact guarantee
that it is a low tree-depth coloring. We give a special name to such colorings.

Definition 7.9. An r-centered coloring of a graph G is a coloring of vertices of G such that for
any connected subgraph H ⊆ G, either some color appears exactly once in H or H receives more
than r different colors.

Lemma 7.10. Any r-centered coloring of a graph is also an r-tree-depth coloring.

Proof. Let λ be an r-centered coloring of G. Assume, for the sake of contradiction, that there is a
subgraph G′ ⊆ G with td(G′) = k ≤ r which receives less than k colors. Choose G′ to be minimal
with this property. Then G′ is connected. As G′ receives less than k ≤ r colors and the coloring λ
is r-centered, there is one color which occurs exactly once in G′, say this color is given to vertex v.
Then td(G′ − v) ≥ k − 1 and G′ − v receives less than k − 1 colors. Hence G′ is not minimal with
the considered property, contradicting our assumption.

Conversely, supposing that a graph G admits a low tree-depth coloring, we can bound the
density of depth-r topological minors in G, and hence by Theorem 3.3 also the weak coloring
numbers of G are bounded. We first need the following simple claim.

Lemma 7.11. For any graph G, it holds that ∇̃∞(G) ≤ td(G)− 1.
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Proof. It suffices to show that for every topological minor H of G contains a vertex of degree at
most td(G) − 1. Let F be a rooted forest of height td(G) whose closure contains G. Let φ be a
minor model of H in G. Let u be a vertex of H such that φ(u) is at the largest depth in F among
the vertices of φ(V (H)). Hence, for every edge uv ∈ E(H) the vertex φ(v) is not a descendant of
φ(u) in F , so the path φ(uv) has to contain a strict ancestor of φ(u) in F . All these strict ancestors
have to be pairwise different, and the number of such ancestors is at most td(G) − 1, hence the
number of neighbors v of u in H is at most td(G)− 1.

Lemma 7.12. Let G be a graph and let r ∈ N. Assume that G admits a (2r+1)-tree-depth coloring
with m colors. Then ∇̃r(G) ≤ 2r ·

(
m

2r+1

)
.

Proof. Fix a coloring λ : V (G)→ {1, . . . ,m} such that the union of any i ≤ 2r + 1 color classes in
λ induces a graph of tree-depth at most i. Let H be a depth-r topological minor of G, and let φ be
a depth-r topological minor model of H in G. We have to show that |E(H)| ≤ 2r ·

(
m

2r+1

)
· |V (H)|.

LetM be the set of all subsets of {1, . . . ,m} of size 2r+1. Every edge e ∈ E(H) corresponds to
a path φ(e) of length at most 2r+ 1 in G. Hence, we can partition E(H) into

(
m

2r+1

)
sets {EI}I∈M

such that an edge e may belong to EI only if I contains all colors that occur on φ(e). For each
I ∈ M, let HI be the subgraph of H consisting of edges of EI and vertices incident to them. It
follows from the assumed property of EI that the images of all edges of HI under φ are contained in
a subgraph of G induced by λ−1(I); this subgraph has tree-depth at most 2r+1 by the assumption
that λ is a (2r + 1)-tree-depth coloring. Hence, HI is a topological minor of a graph of tree-depth
at most 2r + 1, so by Lemma 7.11 we have

|EI | ≤ 2r · |V (HI)| ≤ 2r · |V (H)|.

By summing the inequalities as above for all I ∈M, we conclude that |E(H)| ≤ 2r
(
m

2r+1

)
· |V (H)|,

as requested.

Lemmas 7.8, 7.10, and 7.12, together with Theorem 3.3 and the relations between density of
shallow minors and of shallow topological minors, yield the following.

Theorem 7.13. Let C be a class of graphs. Then the following conditions are equivalent.

1. C has bounded expansion.

2. There is a function M : N → N such that for each r ∈ N, every graph G ∈ C admits an
r-tree-depth coloring with M(r) colors.

Algorithmic applications. Let us dwell a bit on the algorithmic aspects of Theorem 7.13. Fix a
class C of bounded expansion and a graph G ∈ C. By Theorem 2.9, we can compute in time O(n4)
an vertex ordering of G with r-approximate r-admissibility, for any constant r we choose, using the
fact that on bounded expansion classes we have O(n3m) = O(n4). By Corollary 2.7, this ordering
has also the weak r-coloring number bounded by a constant. Now, the construction of Lemma 7.8
can be easily made algorithmic, and by Lemma 7.10 the obtained coloring is a p-treedepth coloring,
assuming we chose r = 2p−2. This yields the following.

Corollary 7.14. For a fixed p ∈ N and a class of bounded expansion C, given a graph G ∈ C one
can compute a p-treedepth coloring of G with M(p) colors in time O(n4).
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We can hence efficiently solve the subgraph isomorphism problem on classes of bounded expan-
sion, as hinted at in the introduction of this section. We first note that we can solve it efficiently
on graphs of bounded tree-depth.

For this, it is essential that we are able to approximate the tree-depth of a graph G and compute
a low height forest F such that G ⊆ clos(G). It turns out that there is a very simple way to do it,
provided we are happy with obtaining height exponential in the optimum. Namely, any depth-first
search forest of a graph G is a valid tree-depth decomposition of G of height at most 2td(G), as we
show in the next lemmas.

Lemma 7.15. The tree-depth of an n-vertex path is equal to dlog2(n+ 1)e.

Proof. It suffices to prove that whenever 2k ≤ n ≤ 2k+1 − 1, the tree-depth of Pn is equal to k+ 1.
We proceed by induction on k. For k = 0 the claim holds trivially. Let Pn be the path on n vertices,
where 2k ≤ n ≤ 2k+1 − 1.

We first show that td(Pn) ≤ k + 1. Let u be a middle vertex on Pn, that is, one whose removal
splits Pn into two subpaths on at most bn/2c < 2k vertices each. By induction assumption, for each
of these subpaths we can find a tree-depth decomposition of height at most k, and these can be
combined into a tree-depth decomposition of Pn of height k + 1 by taking their union and adding
u as the root.

We now show that td(Pn) ≥ k + 1. Take any tree-depth decomposition T of Pn; T is a rooted
tree since Pn is connected. Let u be the root of T . Then each of the two subpaths of Pn − u is
placed entirely in one subtree rooted at a child of u in T . Since n ≥ 2k, one of these subpaths
has at least 2k−1 vertices, so by the induction assumption its tree-depth is at least k. Then the
corresponding subtree of T rooted at a child of u has height at least k, implying that T has height
at least k + 1.

Lemma 7.16. Let G be a graph. Then every rooted forest F obtained by running a depth-first
search in each connected component of G satisfies G ⊆ clos(F ) and height(F ) < 2td(G).

Proof. Let F be such a rooted forest. It is straightforward to see that G ⊆ clos(F ). Indeed, if there
was an edge uv ∈ E(G) such that u and v were not bound by the ancestor-descendant relation in
F , then provided u was visited earlier by the DFS than v, the edge uv would be used by the DFS to
access v from u, so v should have been a descendant of u. To see that height(F ) ≤ 2td(G), observe
that if d := height(F ), then G contains a path on d vertices. By Lemma 7.15 we infer that the
tree-depth of this path, and consequently also the tree-depth of G, is at least dlog2(d+ 1)e. Since
td(G) ≥ dlog2(d+ 1)e > log2 d, it follows that d < 2td(G).

With an approximate decomposition at hand, we can solve the subgraph isomorphism problem
on graphs of bounded tree-depth.

Lemma 7.17. Let G,H be graphs and assume that G has tree-depth at most k. Then we can decide
in time f(k,H) · |V (G)| whether G contains a subgraph isomorphic to H, for some computable
function f .

Proof sketch. By Lemma 7.16, in linear time we can compute a tree-depth decomposition of G of
depth at most d := 2k. On this decomposition one can employ a simple, though a bit tedious
dynamic programming algorithm with running time dO(|V (H)|) · n. Details will be given during the
tutorials.
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We can now solve the subgraph isomorphism problem on classes of bounded expansion.

Theorem 7.18. Let C be a class of bounded expansion and let H be a graph. Then the subgraph
isomorphism problem with pattern graph H can be decided on C in time f(H) · n4.

Proof. Let h = |V (H)|. According to Corollary 7.14, we can compute in time f(h) · n4 an h-tree-
depth coloring for an n-vertex input graph G ∈ C with M(h) colors, for some functions M and f .
Now we iterate through all combinations of at most h colors and test for each such combination I,
whether H is isomorphic to a subgraph of GI , where GI is the subgraph of G induced by the union
of colors of I. As H has only h vertices, we can give a positive answer to the subgraph isomorphism
problem if and only if we find a subgraph GI containing H. As each GI has tree-depth at most
h, according to Lemma 7.17 we can test this in time g(h) · n for some function g. Therefore,

by iterating through all
(M(h)

h

)
combinations I of h colors, we obtain the overall running time of(M(h)

h

)
· g(h) · n.

The bottleneck of the computation in Theorem 7.18 is the computation of an ordering with
bounded weak coloring number. As we mentioned in Theorem 2.8, on every bounded expansion
class there is a linear time algorithm for computing r-admissibility exactly, which hence can be
used as a linear time algorithm for approximating the weak coloring number. Using this result,
plus a number of technical checks of implementation details, one can improve the running time of
the algorithm of Theorem 7.18 to linear f(H) · n for some function f .

A careful reader has probably observed that in fact, the usage of the approximation algorithm for
tree-depth in the proof of Theorem 7.18 was actually not necessary. This is because Corollary 7.14
yields not only a h-tree-depth coloring, but actually a h-centered coloring, and in an h-centered
coloring it is straightforward to construct tree-depth decomposition for every combination of h
colors, essentially by simulating the proof of Lemma 7.10. However, the ability of approximating
tree-depth shows that low tree-depth colorings can be used as a black-box, without understanding
the inner workings of the proof of their existence.
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