Sparsity — homework 6

VC dimension and polynomial expansion

Deadline: January 30th, 2020, 23:00 CET

Problem 1. Prove that if a class of graphs \mathcal{C} has polynomial expansion, then the class \mathcal{C}^2 either has polynomial expansion as well, or is not nowhere dense.

Note: The square of a class C, i.e. C^2 , was defined at the beginning of Chapter 5 of the lecture notes.

Problem 2. For two set systems \mathcal{F}_1 and \mathcal{F}_2 over the same grounds set U, we define the set system $\mathcal{F}_1 \oplus \mathcal{F}_2$ over U as follows:

$$\mathcal{F}_1 \oplus \mathcal{F}_2 := \{ A_1 \cup A_2, A_1 \cap A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2 \}.$$

That is, $\mathcal{F}_1 \oplus \mathcal{F}_2$ consists of all the unions and all the intersections of pairs of sets, where the first set in the pair comes from \mathcal{F}_1 and the second one comes from \mathcal{F}_2 .

Prove that for every pair of integers $d_1, d_2 \in \mathbb{N}$ there exists $d \in \mathbb{N}$ such that the following holds: if the VC dimension of \mathcal{F}_1 is at most d_1 and the VC dimension of \mathcal{F}_2 is at most d_2 , then the VC dimension of $\mathcal{F}_1 \oplus \mathcal{F}_2$ is at most d.

Problem 3. A triangle in a graph is a triple of pairwise adjacent vertices, while a triangle packing is a set of pairwise vertex-disjoint triangles. A triangle packing \mathcal{P} in a graph G is maximal if every triangle in G intersects a triangle in \mathcal{P} .

Prove that there exists a constant $c \in \mathbb{N}$ such that the following holds. Suppose G is an n-vertex planar graph and \mathcal{P}, \mathcal{R} are two maximal triangle packings in G, where $|\mathcal{P}| \leq |\mathcal{R}|$. Then for every integer k satisfying $|\mathcal{P}| \leq k \leq |\mathcal{R}|$ there exists a maximal triangle packing \mathcal{Q} in G such that

$$||\mathcal{Q}| - k| \leqslant c \cdot n^{2/3}.$$