Sparsity — homework 2

Measuring sparsity and introduction to generalized coloring numbers

Deadline: November 14th, 2019, 23:00 CET

Problem 1. Prove that if \mathcal{C} is a somewhere dense class of graphs that is closed under taking subgraphs, then the class \mathcal{C}' consisting of all bipartite graphs contained in \mathcal{C} is also somewhere dense.

Problem 2. A graph G is called k-planar if there is a drawing of G in the plane in which the edges may intersect, but the following conditions are satisfied:

- every pair of edges intersects in at most one point, which moreover is not an endpoint of any of them;
- no three edges intersect at one point; and
- \bullet every edge intersects at most k other edges.

Prove that for every $k \in \mathbb{N}$, the class of k-planar graphs has bounded expansion.

Problem 3. Prove that if C is the class of all graphs of maximum degree at most 3, then there exists a constant $\varepsilon > 0$ such that

$$\operatorname{wcol}_d(\mathcal{C}) \geqslant 2^{\varepsilon d}$$
 for every $d \in \mathbb{N}$.

Note: At least 5 points will be awarded for solutions assuming that C is the class of graphs of maximum degree at most Δ for some constant $\Delta \geqslant 4$.