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1 Problem 1.

Let c = wcolp(C). Since C has bounded expansion, this constant is well-defined. Take anyG ∈ C. Let
σ be any wcolp-optimal ordering of G. Now let’s consider D to be the graph such that V (D) = V (G)
and for every vertex v ∈ V (D) we have (v, a) ∈ E(D)⇔ a ∈ WReachp[G, σ, v]. Clearly outdegree
is bounded by c. Therefore it remains to show that every connected subgraph of size at most p
points to one vertex. Take any connected subgraph A ⊆ G such that |A| ≤ p. Let a ∈ A be the
σ-minimal vertex of A. Clearly every vertex of A has a G-path to a consisting of vertices from A
and thus of length at most p. Since a is σ-minimal, this path witnesses that a belongs to WReach
of every vertex in A, and thus there is an edge from every vertex of A to a, which completes the
proof.

2 Problem 2.

As proven on lectures, in polynomial time we can compute ordering σ of G such that admd(G, σ) ≤
d · admd(G). Then

wcold(G, σ) ≤ 1 + d(admd(G, σ)− 1)d
2

≤ 1 + d(d · admd(G)− 1)d
2

and since C has bounded expansion, it has bounded d-admissibility, which means that according to
the given inequality gives wcold(G, σ) ≤ c, where c is a constant depending only on d and C.

Now I will show the algorithm for Encoder : firstly, given G he computes the ordering σ of G
mentioned above. Then he labels the consecutive vertices in this ordering with natural numbers
1, 2, . . . , n. For every vertex v he computes WReachd[G, σ, v] and outputs a function λ(v) :=
{(u, [distance from v to u]) | u ∈ WReachd[G, σ, v]} (concatenation of entries in this set). Clearly
this algorithm works in Ptime, since, as mentioned before, σ can be computed in Ptime, relabelling
and computing WReach can also clearly be done in Ptime. Moreover, the labels have length at
most 2c · log n = O(log n).

Given λ(v), λ(u), the Decoder do as follows: for every element ((x, d1), (y, d2)) ∈ λ(v)× λ(u), if
x = y it computes d1 + d2 and chooses the minimal value obtained this way. If no such pair was
found or minimal score is greater than d, it outputs ∞. Clearly it works in Ptime with respect to
input length. It remains to show the answer is correct. Let P be the shortest path between u and v.
Let a ∈ P be its σ-minimal vertex. If |P | ≤ d, then distG(u, a), distG(v, a) ≤ d. Clearly there are
shortest paths both between u-a and v-a that consists only of vertices from P , and by minimality
of a these paths witness that a belongs to WReachd of both vertices. Therefore it will be found.
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Note that for any vertex g ∈ G we have distG(u, a) + distG(v, a) ≤ distG(u, g) + distG(v, g) and
thus this value will be the smallest considered, which gives the correct answer. If |P | > d, then
similarly, for any g ∈ G we have distG(u, g) + distG(v, g) > d and thus the algorithm will output
∞. Therefore the answer will always be correct, which completes the proof.

3 Problem 3.

Firstly, recall the Sunflower Lemma:

Lemma 1. Let F be a family of sets from universe U with cardinality exactly n, without duplicates.
If |F| > n!kn, then F contains a (k + 1)-petal sunflower: a subfamily F ⊆ F of size k + 1 such
that ∀1≤i<j≤k+1Fi ∩ Fj =

⋂
i∈[1,k+1] Fi. Moreover, it can be found in polynomial time with respect

to size of F , U and k.

Proof of this lemma can be found in [1].
If m = 0, the problem is trivial. Hence I will assume that m ≥ 1. Consider a function F : A→

P(V (G)) defined in the following way: if |WReachr[G, σ, v]| = c, let F (v) = WReachr[G, σ, v]; oth-
erwise obtain F (v) by taking WReachr[G, σ, v] and adding there c− |WReachr[G, σ, v]| additional
fake elements. Observe that if a <σ b, then b ∈ F (b), b 6∈ F (a) and thus F (a) 6= F (b). This way
we have |A| sets of cardinality exactly c in the universe of size at most (c+ 1)|V (G)|, which are all
polynomial in the size of input. From the assumption |A| ≥ 4(2cm)c+1 = 4cc · c(2m)c+1 > c!mc.
Thus, according to the Sunflower Lemma, there is a (m+ 1)-petal sunflower X , denote its sets by
Xv in such a way that Xv = F (v). Let S =

⋂
Xv and let B = {a | a ∈ A ∧ F (a) ∈ X} without the

σ-minimal element. I will show that S,B defined this way gives a solution for the problem. Clearly
they can be computed in Ptime, since according to the Sunflower Lemma we can compute X in
Ptime.

Since all the sets Xv are of size c, then |S| ≤ c. Note that S consists of vertices of G only,
because no fake element was used twice. Since X is (m + 1)-petal sunflower, |B| = m. Clearly
B ⊆ Dom(F ) = A. Now I will show that B is distance-r independent. Suppose by way of
contradiction that there are a, b ∈ B such that |Pab| ≤ r, where Pab ⊆ G − S. Let v be the σ-
minimal element of Pab. Let Pav, Pbv be the parts of Pab after splitting in v. By σ-minimality of v,
these paths witness that v belongs both to WReachr[G, σ, a] and WReachr[G, σ, b]. Therefore it
also belongs to the core of sunflower, which means that v ∈ S, which gives contradiction. Finally,
it remains to show that B ∩ S = Ø. Let a be any element of B. Let b be the σ-minimal element
of {a | a ∈ A ∧ F (a) ∈ X}. By the construction of B, we know that a 6= b and b <σ a. Therefore
clearly a 6∈WReach[G, σ, b] and thus a cannot be in the sunflower’s core, which is equal to S. This
completes the proof.
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