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1 Problem 1.

Let ¢ = weol,(C). Since C has bounded expansion, this constant is well-defined. Take any G € C. Let
o be any wcolp-optimal ordering of G. Now let’s consider D to be the graph such that V(D) = V(G)
and for every vertex v € V(D) we have (v,a) € E(D) < a € WReach,[G, 0,v]. Clearly outdegree
is bounded by c¢. Therefore it remains to show that every connected subgraph of size at most p
points to one vertex. Take any connected subgraph A C G such that |A| < p. Let a € A be the
o-minimal vertex of A. Clearly every vertex of A has a G-path to a consisting of vertices from A
and thus of length at most p. Since a is o-minimal, this path witnesses that a belongs to W Reach
of every vertex in A, and thus there is an edge from every vertex of A to a, which completes the
proof.

2 Problem 2.

As proven on lectures, in polynomial time we can compute ordering o of G such that admy(G, o) <
d - admy(G). Then

weoly(G, o) < 1+ dadma(G, o) — 1)® <1+ d(d- admqa(G) — 1)*

and since C has bounded expansion, it has bounded d-admissibility, which means that according to
the given inequality gives wcoly(G, o) < ¢, where c is a constant depending only on d and C.

Now I will show the algorithm for Encoder: firstly, given G he computes the ordering o of G
mentioned above. Then he labels the consecutive vertices in this ordering with natural numbers
1,2,...,n. For every vertex v he computes W Reachy|G,o,v] and outputs a function A(v) :=
{(u, [distance from v tou]) | u € W Reachq|G,0,v]} (concatenation of entries in this set). Clearly
this algorithm works in Ptime, since, as mentioned before, o can be computed in Ptime, relabelling
and computing W Reach can also clearly be done in Ptime. Moreover, the labels have length at
most 2¢ - logn = O(logn).

Given A(v), A(u), the Decoder do as follows: for every element ((x,d1), (y,d2)) € A(v) x A(u), if
xr = y it computes d; + do and chooses the minimal value obtained this way. If no such pair was
found or minimal score is greater than d, it outputs co. Clearly it works in Ptime with respect to
input length. It remains to show the answer is correct. Let P be the shortest path between v and v.
Let a € P be its o-minimal vertex. If |P| < d, then distg(u,a), distg(v,a) < d. Clearly there are
shortest paths both between u-a and v-a that consists only of vertices from P, and by minimality
of a these paths witness that a belongs to W Reachy of both vertices. Therefore it will be found.



Note that for any vertex g € G we have distg(u,a) + distg(v,a) < distg(u,g) + distg(v, g) and
thus this value will be the smallest considered, which gives the correct answer. If |P| > d, then
similarly, for any g € G we have distg(u, g) + distg(v,g) > d and thus the algorithm will output
oo. Therefore the answer will always be correct, which completes the proof.

3 Problem 3.

Firstly, recall the Sunflower Lemma:

Lemma 1. Let F be a family of sets from universe U with cardinality exactly n, without duplicates.
If |F| > nlk™, then F contains a (k + 1)-petal sunflower: a subfamily F C F of size k + 1 such
that Vi<icj<p+1F5 N Fy = ﬂie[l,k—H] F;. Moreover, it can be found in polynomial time with respect
to size of F,U and k.

Proof of this lemma can be found in [1].

If m = 0, the problem is trivial. Hence I will assume that m > 1. Consider a function F : A —
P(V(G)) defined in the following way: if |W Reach,|G, 0,v]| = ¢, let F(v) = W Reach, |G, o, v]; oth-
erwise obtain F'(v) by taking W Reach,|G, o,v] and adding there ¢ — |W Reach..[G, o, v]| additional
fake elements. Observe that if a <, b, then b € F(b),b € F(a) and thus F(a) # F(b). This way
we have |A| sets of cardinality exactly ¢ in the universe of size at most (¢ + 1)|V(G)|, which are all
polynomial in the size of input. From the assumption |A| > 4(2em)°t! = 4¢€ - ¢(2m)T! > clme.
Thus, according to the Sunflower Lemma, there is a (m + 1)-petal sunflower X, denote its sets by
X, in such a way that X, = F(v). Let S =\ X, and let B={a|a € AA F(a) € X} without the
o-minimal element. I will show that S, B defined this way gives a solution for the problem. Clearly
they can be computed in Ptime, since according to the Sunflower Lemma we can compute X in
Ptime.

Since all the sets X, are of size ¢, then |S| < ¢. Note that S consists of vertices of G only,
because no fake element was used twice. Since X is (m + 1)-petal sunflower, |B| = m. Clearly
B C Dom(F) = A. Now I will show that B is distance-r independent. Suppose by way of
contradiction that there are a,b € B such that |P,| < r, where Py, € G — S. Let v be the o-
minimal element of P,;,. Let Py, Py, be the parts of P,; after splitting in v. By o-minimality of v,
these paths witness that v belongs both to W Reach, |G, c,a] and W Reach,|G,o,b]. Therefore it
also belongs to the core of sunflower, which means that v € .S, which gives contradiction. Finally,
it remains to show that BNS = . Let a be any element of B. Let b be the o-minimal element
of {a | a € AN F(a) € X}. By the construction of B, we know that a # b and b <, a. Therefore
clearly a € W Reach|G, o, b] and thus a cannot be in the sunflower’s core, which is equal to S. This
completes the proof.
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