Sparsity – homework 3

Michał Zawalski

November 22, 2019

1 Problem 1.

Let $c = wcol_p(\mathcal{C})$. Since \mathcal{C} has bounded expansion, this constant is well-defined. Take any $G \in \mathcal{C}$. Let σ be any $wcol_p$ -optimal ordering of G. Now let's consider D to be the graph such that V(D) = V(G) and for every vertex $v \in V(D)$ we have $(v, a) \in E(D) \Leftrightarrow a \in WReach_p[G, \sigma, v]$. Clearly outdegree is bounded by c. Therefore it remains to show that every connected subgraph of size at most p points to one vertex. Take any connected subgraph $A \subseteq G$ such that $|A| \leq p$. Let $a \in A$ be the σ -minimal vertex of A. Clearly every vertex of A has a G-path to a consisting of vertices from A and thus of length at most p. Since p is p-minimal, this path witnesses that p belongs to p-minimal vertex of p-minimal vertex in p-minimal vertex of p-minimal vertex of

2 Problem 2.

As proven on lectures, in polynomial time we can compute ordering σ of G such that $adm_d(G, \sigma) \leq d \cdot adm_d(G)$. Then

$$wcol_d(G, \sigma) \le 1 + d(adm_d(G, \sigma) - 1)^{d^2} \le 1 + d(d \cdot adm_d(G) - 1)^{d^2}$$

and since \mathcal{C} has bounded expansion, it has bounded d-admissibility, which means that according to the given inequality gives $wcol_d(G, \sigma) \leq c$, where c is a constant depending only on d and \mathcal{C} .

Now I will show the algorithm for Encoder: firstly, given G he computes the ordering σ of G mentioned above. Then he labels the consecutive vertices in this ordering with natural numbers $1,2,\ldots,n$. For every vertex v he computes $WReach_d[G,\sigma,v]$ and outputs a function $\lambda(v):=\{(u,[distance\ from\ v\ to\ u])\mid u\in WReach_d[G,\sigma,v]\}$ (concatenation of entries in this set). Clearly this algorithm works in Ptime, since, as mentioned before, σ can be computed in Ptime, relabelling and computing WReach can also clearly be done in Ptime. Moreover, the labels have length at most $2c \cdot \log n = O(\log n)$.

Given $\lambda(v)$, $\lambda(u)$, the *Decoder* do as follows: for every element $((x,d_1),(y,d_2)) \in \lambda(v) \times \lambda(u)$, if x=y it computes d_1+d_2 and chooses the minimal value obtained this way. If no such pair was found or minimal score is greater than d, it outputs ∞ . Clearly it works in Ptime with respect to input length. It remains to show the answer is correct. Let P be the shortest path between u and v. Let $a \in P$ be its σ -minimal vertex. If $|P| \leq d$, then $dist_G(u,a)$, $dist_G(v,a) \leq d$. Clearly there are shortest paths both between u-a and v-a that consists only of vertices from P, and by minimality of a these paths witness that a belongs to $WReach_d$ of both vertices. Therefore it will be found.

Note that for any vertex $g \in G$ we have $dist_G(u, a) + dist_G(v, a) \leq dist_G(u, g) + dist_G(v, g)$ and thus this value will be the smallest considered, which gives the correct answer. If |P| > d, then similarly, for any $g \in G$ we have $dist_G(u, g) + dist_G(v, g) > d$ and thus the algorithm will output ∞ . Therefore the answer will always be correct, which completes the proof.

3 Problem 3.

Firstly, recall the Sunflower Lemma:

Lemma 1. Let \mathcal{F} be a family of sets from universe U with cardinality exactly n, without duplicates. If $|\mathcal{F}| > n!k^n$, then \mathcal{F} contains a (k+1)-petal **sunflower**: a subfamily $F \subseteq \mathcal{F}$ of size k+1 such that $\forall_{1 \leq i < j \leq k+1} F_i \cap F_j = \bigcap_{i \in [1,k+1]} F_i$. Moreover, it can be found in polynomial time with respect to size of \mathcal{F} , U and k.

Proof of this lemma can be found in [1].

If m=0, the problem is trivial. Hence I will assume that $m\geq 1$. Consider a function $F:A\to \mathcal{P}(V(G))$ defined in the following way: if $|WReach_r[G,\sigma,v]|=c$, let $F(v)=WReach_r[G,\sigma,v]$; otherwise obtain F(v) by taking $WReach_r[G,\sigma,v]$ and adding there $c-|WReach_r[G,\sigma,v]|$ additional fake elements. Observe that if $a<_{\sigma}b$, then $b\in F(b), b\not\in F(a)$ and thus $F(a)\neq F(b)$. This way we have |A| sets of cardinality exactly c in the universe of size at most (c+1)|V(G)|, which are all polynomial in the size of input. From the assumption $|A|\geq 4(2cm)^{c+1}=4c^c\cdot c(2m)^{c+1}>c!m^c$. Thus, according to the Sunflower Lemma, there is a (m+1)-petal sunflower \mathcal{X} , denote its sets by X_v in such a way that $X_v=F(v)$. Let $S=\bigcap X_v$ and let $B=\{a\mid a\in A\land F(a)\in \mathcal{X}\}$ without the σ -minimal element. I will show that S,B defined this way gives a solution for the problem. Clearly they can be computed in Ptime, since according to the Sunflower Lemma we can compute \mathcal{X} in Ptime.

Since all the sets X_v are of size c, then $|S| \leq c$. Note that S consists of vertices of G only, because no fake element was used twice. Since \mathcal{X} is (m+1)-petal sunflower, |B| = m. Clearly $B \subseteq Dom(F) = A$. Now I will show that B is distance-r independent. Suppose by way of contradiction that there are $a, b \in B$ such that $|P_{ab}| \leq r$, where $P_{ab} \subseteq G - S$. Let v be the σ -minimal element of P_{ab} . Let P_{av}, P_{bv} be the parts of P_{ab} after splitting in v. By σ -minimality of v, these paths witness that v belongs both to $WReach_r[G, \sigma, a]$ and $WReach_r[G, \sigma, b]$. Therefore it also belongs to the core of sunflower, which means that $v \in S$, which gives contradiction. Finally, it remains to show that $B \cap S = \emptyset$. Let v be any element of v. Let v be the v-minimal element of v and v are v are v are v and v and v are v are v and v are v are v and v are v and v are v and v are v and v are v are v and v are v and v are v and v are v are v and v are v and v are v and v are v are v are v and v are v are v are v and v are v are v a

References

[1] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, Saket Saurabh Parameterized algorithms, http://parameterized-algorithms.mimuw.edu.pl/parameterized-algorithms.pdf.