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Let c := wcolp(C). Since C is of bounded expansion, we know that c <∞.

Now let’s take any G ∈ C. There is a vertex ordering σ of G, such that wcolp(G, σ) ≤ c. We define
graph D so that arc (v, u) is present in D if and only if u ∈WReachp[G, σ, v] \ {v}.

Clearly each v ∈ V (D) has less than c outgoing edges, because it has

|WReachp[G, σ, v] \ {v}| < wcolp(G, σ) ≤ p

outgoing edges.
Now let’s take any vertex subset A ⊆ V (G), such that |A| ≤ p and G[A] is connected. Let w be the

smallest vertex in A with respect to σ. For every v ∈ A \ {w} there exists a path from v to w contained in
A, so its length is at most p and w is the σ-smallest vertex on it, so w ∈WReachp[G, σ, v], which implies
that arc (v, w) is in D.
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The key ingredient of the solution is the following fact: Given a graph G with vertex ordering σ and
any pair of vertices u, v ∈ V (G), we know that:

dist(u, v) = min
k,l≥0

({k + l |WReachk[G, σ, u] ∩WReachl[G, σ, v] 6= ∅})

.
Proof:

• (≤) If w ∈WReachk[G, σ, u] ∩WReachl[G, σ, v], it follows that dist(u,w) ≤ k and dist(v, w) ≤ l, so
dist(u, v) ≤ k + l.

• (≥) Let’s take the shortest path P (of length d) from u to v and let w be the σ-minimal vertex on this
path. Vertex w splits P into two paths, one from u to w of length r, the other from w to v of length
d − r. The former certifies that w ∈ WReachr[G, σ, u], the latter that w ∈ WReach(d−r)[G, σ, v], so
RHS ≤ d.

Let’s allow labels to be from the set {0, 1, $,#}∗, we can trivially convert them into labels from {0, 1}∗
while increasing their length by a factor of two.

Now the encoder starts by enumerating vertices from 0 to n − 1 and computing any vertex ordering
σ such that wcold(G, σ) is bounded by a constant dependent only on C. It’s easy to do it in poly-
nomial time, for example using the algorithm from one of the tutorials that finds the ordering σ, s.t.
admd(G, σ) ≤ d · adm(G) ≤ d · adm(C). Since d-admissibility of such ordering is bounded by a constant,
then d-weak coloring number is also bounded.

After the ordering is calculated, encoder finds WReachk[G, σ, v] for every v ∈ V (G) and 0 ≤ k ≤ d and
sets the label λ(v) to be equal to:

$desc(WReach0[G, σ, v])$desc(WReach1[G, σ, v]) . . . $desc(WReachd[G, σ, v])

where desc(WReachk[G, σ, v]) is a string consisting of binary representations of numbers of vertices
from WReachk[G, σ, v] separated by ′#′ characters.

Length of λ(v) is trivially bounded by d+ d(wcold(G, σ) · O(log n)) = O(log n)

The decoder only needs to parse λ(u) and λ(v) and (assuming that min(∅) =∞) compute:

min
k+l≤d

({k + l |WReachk[G, σ, u] ∩WReachl[G, σ, v] 6= ∅})
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Note that it can easily determine whether WReachk[G, σ, u] ∩WReachl[G, σ, v] = ∅, because k, l ≤ d,
so it has bijective labels of vertices from WReachk[G, σ, u] and WReachl[G, σ, v]. This algorithm obviously
works in polynomial time.
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The case when m = 1 is trivial, so let’s assume that m > 1.

For any v ∈ V (G) let’s denote WReachr[G, σ, v] by Pv. Note that we can easily determine sets Pv
in polynomial time. Let’s now prove that a following stronger condition implies that B is distance-r
independet in G \ S:

∀u,v∈B,u 6=v(Pu ∩ Pv ⊆ S)

assume that this condition is satisfied, but there exists a path of length at most r in G \ S from u to v
(u 6= v). Then there exists a σ-minimal vertex w /∈ S on this path, which splits it into two paths certifying
that w ∈ Pu and w ∈ Pv, so Pu ∩ Pv * S – a contradiction.

Let H be a graph on the same vertices as G with an edge between u and v if u ≺σ v and u ∈ Pv.
Since |Pv \ {v}| ≤ c − 1, we get that deg(H) ≤ c − 1 and we can color H with c colors (in polynomial

time using a greedy algorithm). Let I ⊆ A be the largest one-color subset in A, obviously |I| ≥ |A|
c
> (cm)c.

Note now that family F = {Pv | v ∈ I} consists of pairwise different sets of size at most c (pairwise
different because each Pv has different σ-maximal vertex). Since |I| > (cm)c > c!(m − 1)c, we can ap-
ply the sunflower lemma and get a sunflower with m petals (and we can find it in time polynomial in
|I|,m, c ≤ |V (G)|, as described in the Platypus book). Let B ⊆ I be the set of vertices such that family
{Pv | v ∈ B} is the said sunflower (so |B| = m). Finally let S := ∩v∈BPv.

Obviously |S| ≤ c, because |Pv| ≤ c. Also sets S and B are disjoint, because if there was some u ∈ S∩B
then u ∈ ∩v∈BPv and u ∈ I, but since m > 1 there is some v 6= u, v ∈ B, then u ∈ Pv showing that u and
v have to have different colors in H, so they can’t be both in I. By the definition of a sunflower we know
that for any pair of different u, v ∈ B we have Pu ∩ Pv = S, so B is a distance-r independent set in G \ S.
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