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Problem 1

Let C be a somwhere dense graph class closed under taking subgraphs. Prove that the class C ′ consisting of
bipartite graphs belonging to C is also somwhere dense.

Proof. During the tutorials, we established that whenever C is a somwhere dense graph class, then for
some d ∈ N, we can find as a subgraph in some graph in C an exact d subdivision of arbitrarily large
clique (meaning each edge is subdivided exactly d times). If d is odd, we are done, as then this implies in
C ′ contains exact d subdivisions of arbitrarily large cliques (any cycle in this subdivision is even, thus it

is a bipartite graph). Otherwise d is even, and find an exact d subdivision of a clique of size t+
(

t
2

)

. Now
first t vertices of original clique will form branch vertices of our t clique, let the other branch vertices
form the set A. We start constructing H as follows: for each pair of new branch vertices, say u and v, pick
any a ∈ A and add the path from u through a to v to the graph H (observe that this path is of length
2(d + 1) and is thus even), and remove a from A. At the end of this process we will obtain a subgraph
which learly is a 2d+ 1 exact subdivision of Kt, thus belongs to C ′ and this concludes the proof. �

Problem 2

A graph G is k-planar, if there exists a drawing of G, such that

• every pair of edges intersect at no more than 1 point which moreover cannot be an endpoint of either of
them (presumably applies to edges not sharing an endpoint),

• no three edges intersect at a single point,
• every edge intersects at most k other edges.

Prove that for any fixed k the class of all k-planar graphs has bounded expansion.

Proof. Fix a drawing of our graph G satisfing the conditions of k-planarity. Now consider a pair of
corssing edges of our graph (say uv and xy). We may replace the crossing with a vertex — ie. add a
vertex t to the graph incident to {u, v, x, y} and remove the edges uv and xy from G while preserving
the drawing (and the number of crossings drops by 1). Repeatedly apply this procedure as long as we
can find a pair of crossing edges and call the resulting graph G ′. Clearly G ′ is planar (as we removed all
crossings). Now, I claim that G is a depth k congestion 2 minor of G ′. To this end, fix any orientation
of our graph G. Now for any vertex v define the branch set of v (call it φ(v)) as follows: for each
out-neighbour u of v, let t1, . . . , tl be the ‘crossing vertices’ added on the image of the edge −→vu in the
drawing (clearly l 6 k) and simply add them all to branch set of v.

Now each branch set φ(v) is a star (centred at v), and each vertex is at distance at most k from v.
Moreover each vertex belongs to at most 2 different branch sets. Thus, let H be the graph modeled by φ.
Clearly G ⊆ H, and H is a depth h congestion 2 minor of a planar graph, equivalently G ∈ C∇2k where C

denotes the class of all planar graphs, thus proving that k-planar graphs have bounded expansion. �

Problem 3

Let C be the class of all graphs with degree bounded by 3. Prove that, there is a constant ε > 0, such that for any
d ∈ N, wcold(C) > 2εd.

Proof. During the lecture we established the following inequality

∇d(G) 6 wcol4d+1(G),

which when combined with the monotonicity of wcol (ie r 6 s =⇒ wcolr(G) 6 wcols(G)) provides us
with a constructive means of proving lower bounds for wcol — finding a dense shallow minor.
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So, fix d ∈ N and let G be the graph consisting of 2d+1 + 1 disjoint full binary trees, each of depth d

exactly (call them Ti with the root ri and the set of leaves {ai,j : 1 6 j 6 2d} for i ∈ {1, . . . , 2d+1 + 1}).
We will be adding some edges to our graph, but we will maintain the invariant ∆(G) = 3. For each pair
(i, j) where i, j ∈ {1, . . . , 2d+1 + 1} and i < j we will add an edge between some leaf of Ti and Tj. To each
leaf we can add 2 edges without increasing the maximum degree, and each tree has got exactly 2d leafs
giving us 2d+1 possible ‘edge slots’.

So, we may find a map from the set {1, . . . , 2d+1 + 1} \ {i} to the set of leaves of Ti in which each leaf is
assigned to exactly two indices. Fix one such map for each i and call it fi. Now, for each pair of indices
i < j, add to G the edge between ai,fi(j) and aj,fj(i). Clearly the degree of each ai,j is now precisely 3,
and there is exactly 1 edge between each pair of trees Ti. As the depth of each of these trees is exactly d,
so is its radius. Thus letting H to be the minor of G resulting from contracting each tree Ti, it is a depth
d shallow minor of G. By construction, H is a clique on 2d+1 + 1 vertices, thus of edge density exactly
2d. By the inequality from the lecutre, we get wcol4d+1(C) > 2d. Now, we observe that for d > 3 we
get wcold(C) > wcold−1(C) > wcold−2(C) > wcold−3(C) and out of these, one is of the form 4k + 1, in

the worst case it is the last one, thus wcold(C) > 2(d−4)/4. Thus, we get the desired result (we can get
rid of multiplicative constant by lowering our ε enough, if we so desire; for smaller d, the inequality is
trivial). �
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