ALGOMANET Sparsity ## Tutorial 4: Uniform quasi-wideness January 23rd, 2020 **Problem 1.** Prove that a class of graphs is uniformly wide if and only if it has bounded maximum degree. **Problem 2.** Prove that every uniformly quasi-wide class is nowhere dense. **Definition 1.** A set of vertices I in a graph G is distance-d independent if vertices of I are pairwise at distance more than d. A set of vertices D is distance-d dominating if every vertex of G is at distance at most d from a vertex of D. The size of a largest distance-d independent set in G is denoted by $\operatorname{ind}_d(G)$, while the size of a smallest distance-d dominating set in G is denoted by $\operatorname{dom}_d(G)$. **Problem 3.** Prove that for every graph G and $d \in \mathbb{N}$, we have $$\operatorname{ind}_d(G) \geqslant \operatorname{dom}_d(G) \geqslant \operatorname{ind}_{2d}(G).$$ **Problem 4.** Give a sequence of graphs G_1, G_2, G_3, \ldots such that for every $i \in \mathbb{N}$, $\operatorname{ind}_2(G_i) = 1$ and $\operatorname{dom}_1(G_i) \geqslant i$. **Problem 5.** Consider the following algorithm applied on a graph G with a vertex ordering σ . For every vertex u, mark the vertex of WReach $_d[G, \sigma, u]$ that is the smallest in σ . Letting D be the set of all marked vertices, prove that D is a distance-d dominating set of G that satisfies $|D| \leq \operatorname{wcol}_{2d}(G, \sigma) \cdot \operatorname{dom}_d(G)$. **Problem 6.** Fix a nowhere dense class C and $d \in \mathbb{N}$. Prove that given $G \in C$, $A \subseteq V(G)$, and $k \in \mathbb{N}$, one can compute in polynomial time a subset $B \subseteq A$ such that the size of B is bounded by a function of k, and in G there is a distance-d independent set contained in A if and only if there is one contained in B. **Definition 2.** Consider the following algorithm for the Distance-d Dominating Set problem: given G and k, is there a distance-d dominating set in G of size at most k. The algorithm iteratively constructs a sequence of *candidates* D_1, D_2, D_3, \ldots – vertex subsets of size at most k – and a sequence of *witnesses* w_1, w_2, w_3, \ldots – single vertices. Having constructed D_1, \ldots, D_i and w_1, \ldots, w_i , the algorithm computes D_{i+1} and w_{i+1} as follows. Candidate Step: Check whether there exists a set of size at most k that distance-d dominates $\{w_1, \ldots, w_i\}$. If no, then terminate the algorithm and conclude that G does not have a distance-d dominating set of size at most k. Otherwise, pick D_{i+1} to be any such set. **Witness Step:** Check whether D_{i+1} is a distance-d dominating set of G. If yes, then terminate the algorithm returning D_{i+1} . Otherwise, pick w_{i+1} to be any vertex not dominated by D_{i+1} and proceed to the next round. **Problem 7.** Argue that if d is fixed and G is drawn from a fixed nowhere dense class C, then the ith Candidate Step can be implemented in time $i^{\mathcal{O}(k)} \cdot (n+m)$, while every Witness Step can be implemented in time $\mathcal{O}(k(n+m))$. **Problem 8.** Show that if d is fixed and G is drawn from a fixed nowhere dense class C, then for k = 1 the algorithm terminates after a constant number of rounds. **Problem 9.** Show that if d is fixed and G is drawn from a fixed nowhere dense class C, then the algorithm terminates after $k^{\mathcal{O}(1)}$ rounds, and therefore can be implemented so that it runs in time $2^{\mathcal{O}(k\log k)} \cdot (n+m)$. **Problem 10.** For a graph G and $d \in \mathbb{N}$, the *dth power* of G, denoted G^d , is the graph on the same vertex set as G where two vertices u, v are considered adjacent if and only if $\operatorname{dist}_G(u, v) \leq d$. Prove that for every nowhere dense class \mathcal{C} and $d \in \mathbb{N}$, there exists an integer k such that for every n-vertex graph $G \in \mathcal{C}$, the graph G^d has at most n^k different maximal cliques. **Problem 11.** For $p \in \mathbb{N}$, a family of sets \mathcal{F} is said to have the p-Helly property if the following condition holds. For every subfamily $\mathcal{G} \subseteq \mathcal{F}$ such that every p sets in \mathcal{G} have a nonempty intersection, actually the whole subfamily \mathcal{G} has a nonempty intersection as well. Prove that for every nowhere dense class of graphs \mathcal{C} and $d \in \mathbb{N}$, there exists $p \in \mathbb{N}$ such that for every graph $G \in \mathcal{C}$, the family of distance-d balls $\operatorname{Balls}_d(G) = \{N_d^G[u] : u \in V(G)\}$ has the p-Helly property.